Institute for Systems Research
Permanent URI for this communityhttp://hdl.handle.net/1903/4375
Browse
Search Results
Item Representation of Spectral Profiles in the Auditory System, II: Detection of Spectral Peak Shape Changes(1994) Vranic-Sowers, S.; Shamma, S.A.; ISRBased on the ripple analysis model outlined in Part I of this paper, predictions are made for the detection of shape changes in spectral peak profiles. Peak shape is uniquely described in terms of two parameters: bandwidth factor (BWF) which reflects the tuning or sharpness of a peak, and a symmetry factor (SF) which roughly measures the local evenness or oddness of a peak. Using profile analysis methods, thresholds to changes in these parameters (defined as dBWF/BWF and dSF) are measured together with the effects of several manipulations such as using different peak levels, varying spectral component densities, and randomizing the frequencies of the peaks. The new ripple analysis model accounts well for the measured thresholds. Predictions of the three previously published models for the same profiles are also evaluated and discussed.Item Representation of Spectral Profiles in the Auditory System, I: A Ripple Analysis Model(1994) Vranic-Sowers, S.; Shamma, S.A.; ISRA model of profile analysis is proposed in which a spectral profile is assumed to be represented by a weighted sum of sinusoidally modulated spectra (ripples). The analysis is performed by a bank of bandpass filters, each tuned to a particular ripple frequency and ripple phase. The parameters of the model are estimated using data from ripple detection experiments in [Green} 1986; Hillier 1991]. Detection thresholds are computed from the filter outputs and compared with perceptual thresholds, for profile detection experiments with step, single component increment, and the alternating profiles. The model accounts well for the measured thresholds in these experiments. Physiological and psychophysical evidences from the auditory and visual systems in support of this type of a model are also reviewed. The implications of this model for pitch and timbre perception are briefly discussed.Item Modeling Perception of Spectral Profile Changes(1993) Vranic-Sowers, S.; Shamma, S.A.; ISRIn this thesis, we explore how the human auditory system represents and detects changes in a spectral profile. First, using profile analysis methods, we measure listeners' sensitivities to changes in spectral peak shapes and ripple phases. More specifically, we measure thresholds to changes in peak symmetry and bandwidth (which respectively are measures of the local evenness or oddness of a peak and of the tuning or sharpness of a peak). The effects of several other manipulations are also studied. It is found that the thresholds are constant for almost all initial peak shapes. Second, these changes in symmetry and bandwidth are interpreted as changes in the phase and magnitude of the profile's Fourier transform. In this light, the last set of experiments measured the sensitivity to (ripple) phase changes in spectral sinusoids. We find that the thresholds obtained are similar to the above-mentioned symmetry thresholds.A fundamental conclusion arising from this analysis is that spectral peaks are represented along two largely independent axes: the magnitude and phase of their Fourier transforms. More specifically, it is argued that, along these two dimensions, the auditory system analyzes an arbitrary spectral pattern in a localized Fourier transform domain. This is closely analogous to spatial frequency transformations in the visual system. Within this general framework, we propose a model of profile analysis in which a spectral profile is represented by a weighted sum of sinusoidally modulated spectra (ripples). The first part of the analysis is performed by a bank of bandpass filters, each tuned to a particular ripple frequency and ripple phase. The parameters of the model are estimated using data from several ripple discrimination experiments. The second part of the model is a detection stage which operates on the magnitude and phase of the computed transform, and varies with the type of perceptual task. The results of the detection operations are compared to experimental data from various profile analysis tasks. The model accounts well for the perceptual results in these tests. We propose two types of psychoacoustical experiments involving any arbitrary spectral patter, which should further verify the predictions of the model.
Item Representation of Spectral Profiles in the Auditory System Part II: A Ripple Analysis Model(1993) Vranic-Sowers, S.; Shamma, S.A.; ISRBased on experimental results presented in [Vranic-Sowers and Shamma, 1993], and on further physiological and psychoacoustical evidence, it is argued that the auditory system analyzes a spectral profile along two largely independent dimensions. They correspond to the magnitude and phase of a localized Fourier transformation of the profile, closely analogues to the spatial frequency transformations described in the visual system. Within this general framework, a model of profile analysis is proposed in which a spectral profile is assumed to be represented by a weighted sum of sinusoidally modulated spectra (ripples). The analysis is performed by a bank of bandpass filters, each tuned to a particular ripple frequency and ripple phase. The parameters of the model are estimated using data from ripple detection experiments in [Green, 1986; Hillier, 1991]. Perceptual thresholds are then computed from the filter outputs and compared with thresholds measured for peak profile experiments, and for detection tasks with step, single component increment, and the alternating profiles.