College of Agriculture & Natural Resources
Permanent URI for this communityhttp://hdl.handle.net/1903/1598
The collections in this community comprise faculty research works, as well as graduate theses and dissertations.
Browse
22 results
Search Results
Item Characterization of Copy Number Variation’s Potential Role in Marek’s Disease(MDPI, 2017-05-09) Xu, Lingyang; He, Yanghua; Ding, Yi; Sun, Guirong; Carrillo, Jose Adrian; Li, Yaokun; Ghaly, Mona M.; Ma, Li; Zhang, Huanmin; Liu, George E.; Song, JiuzhouMarek’s Disease (MD) is a highly contagious pathogenic and oncogenic disease primarily affecting chickens. Chicken Lines 63 and 72, as well as their recombinant congenic strains (RCS) with varied susceptibility to MD, are ideal models to study the complex mechanisms of genetic resistance to MD. In this study, we investigated copy number variation (CNV) in these inbred chicken lines using the Affymetrix Axiom HD 600 K SNP genotyping array. We detected 393 CNV segments across all ten chicken lines, of which 12 CNVs were specifically identified in Line 72. We then assessed genetic structure based on CNV and observed markedly different patterns. Finally, we validated two deletion events in Line 72 and correlated them with genes expression using qPCR and RNA-seq, respectively. Our combined results indicated that these two CNV deletions were likely to contribute to MD susceptibility.Item Marek’s Disease Virus Infection Induced Mitochondria Changes in Chickens(MDPI, 2019-06-27) Chu, Qin; Ding, Yi; Cai, Wentao; Liu, Lei; Zhang, Huanmin; Song, JiuzhouMitochondria are crucial cellular organelles in eukaryotes and participate in many cell processes including immune response, growth development, and tumorigenesis. Marek’s disease (MD), caused by an avian alpha-herpesvirus Marek’s disease virus (MDV), is characterized with lymphomas and immunosuppression. In this research, we hypothesize that mitochondria may play roles in response to MDV infection. To test it, mitochondrial DNA (mtDNA) abundance and gene expression in immune organs were examined in two well-defined and highly inbred lines of chickens, the MD-susceptible line 72 and the MD-resistant line 63. We found that mitochondrial DNA contents decreased significantly at the transformation phase in spleen of the MD-susceptible line 72 birds in contrast to the MD-resistant line 63. The mtDNA-genes and the nucleus-genes relevant to mtDNA maintenance and transcription, however, were significantly up-regulated. Interestingly, we found that POLG2 might play a potential role that led to the imbalance of mtDNA copy number and gene expression alteration. MDV infection induced imbalance of mitochondrial contents and gene expression, demonstrating the indispensability of mitochondria in virus-induced cell transformation and subsequent lymphoma formation, such as MD development in chicken. This is the first report on relationship between virus infection and mitochondria in chicken, which provides important insights into the understanding on pathogenesis and tumorigenesis due to viral infection.Item Allele-Specific Expression of CD4+ T Cells in Response to Marek’s Disease Virus Infection(MDPI, 2019-09-17) Bai, Hao; He, Yanghua; Ding, Yi; Carrillo, José A.; Selvaraj, Ramesh K.; Zhang, Huanmin; Chen, Jilan; Song, JiuzhouMarek’s disease (MD) is a T cell lymphoma disease induced by Marek’s disease virus (MDV), a highly oncogenic α herpesvirus primarily affecting chickens. MD is a chronic infectious disease that threatens the poultry industry. However, the mechanisms of genetic resistance for MD are complex and not completely understood. In this study, to identify high-confidence candidate genes of MD genetic resistance, high throughput sequencing (RNA-seq) was used to obtain transcriptomic data of CD4+ T cells isolated from MDV-infected and non-infected groups of two reciprocal crosses of individuals mating by two highly inbred chicken lines (63 MD-resistant and 72 MD-susceptible). After RNA-seq analysis with two biological replicates in each group, we identified 61 and 123 single nucleotide polymorphisms (SNPs) (false discovery rate (FDR) < 0.05) annotated in 39 and 132 genes in intercrosses 63 × 72 and 72 × 63, respectively, which exhibited allele-specific expression (ASE) in response to MDV infection. Similarly, we identified 62 and 79 SNPs annotated in 66 and 96 genes in infected and non-infected groups, respectively. We identified 534 and 1543 differentially expressed genes (DEGs) (FDR < 0.05) related to MDV infection in intercrosses 63 × 72 and 72 × 63, respectively. We also identified 328 and 20 DEGs in infected and non-infected groups, respectively. The qRT-PCR using seven DEGs further verified our results of RNA-seq analysis. The qRT-PCR of 11 important ASE genes was performed for gene functional validation in CD4+ T cells and tumors. Combining the analyses, six genes (MCL1, SLC43A2, PDE3B, ADAM33, BLB1, and DMB2), especially MCL1, were highlighted as the candidate genes with the potential to be involved in MDV infection. Gene-set enrichment analysis revealed that many ASE genes are linked to T cell activation, T cell receptor (TCR), B cell receptor (BCR), ERK/MAPK, and PI3K/AKT-mTOR signaling pathways, which play potentially important roles in MDV infection. Our approach underlines the importance of comprehensive functional studies for gaining valuable biological insight into the genetic factors behind MD and other complex traits, and our findings provide additional insights into the mechanisms of MD and disease resistance breeding in poultry.Item Tributyrin, a Butyrate Pro-Drug, Primes Satellite Cells for Differentiation by Altering the Epigenetic Landscape(MDPI, 2021-12-09) Murray, Robert L.; Zhang, Wei; Liu, Jianan; Cooper, Jason; Mitchell, Alex; Buman, Maria; Song, Jiuzhou; Stahl, Chad H.Satellite cells (SC) are a population of muscle resident stem cells that are responsible for postnatal muscle growth and repair. With investigation into the genomic regulation of SC fate, the role of the epigenome in governing SC myogenesis is becoming clearer. Histone deacetylase (HDAC) inhibitors have been demonstrated to be effective at enhancing the myogenic program of SC, but their role in altering the epigenetic landscape of SC remains undetermined. Our objective was to determine how an HDAC inhibitor, butyrate, promotes myogenic differentiation. SC from tributyrin treated neonatal piglets showed a decrease relative to SC from control animals in the expression of enhance of zeste homologue-2 (EZH2), a chromatin modifier, ex vivo. Chromatin Immunoprecipitation-Sequencing (ChIP-Seq) analysis of SC isolated from tributyrin treated pigs showed a global reduction of the tri-methylation of lysine 27 of histone H3 (H3K27me3) repressive chromatin mark. To determine if reductions in EZH2 was the primary mechanism through which butyrate affects SC behavior, SC were transfected with siRNA targeting EZH2, treated with 0.5 mM butyrate, or both. Treatment with butyrate reduced paired-box-7 (Pax7) and myogenic differentiation-1 (MyoD) gene expression, while siRNA caused reductions in EZH2 had no effect on their expression. EZH2 depletion did result in an increase in differentiating SC, but not in myotube hypertrophy. These results indicate that while EZH2 reduction may force myogenic differentiation, butyrate may operate through a parallel mechanism to enhance the myogenic program.Item Genomic characteristics of cattle copy number variations(Springer Nature, 2011-02-23) Hou, Yali; Liu, George E; Bickhart, Derek M; Cardone, Maria Francesca; Wang, Kai; Kim, Eui-soo; Matukumalli, Lakshmi K; Ventura, Mario; Song, Jiuzhou; VanRaden, Paul M; Sonstegard, Tad S; Van Tassell, Curt PCopy number variation (CNV) represents another important source of genetic variation complementary to single nucleotide polymorphism (SNP). High-density SNP array data have been routinely used to detect human CNVs, many of which have significant functional effects on gene expression and human diseases. In the dairy industry, a large quantity of SNP genotyping results are becoming available and can be used for CNV discovery to understand and accelerate genetic improvement for complex traits. We performed a systematic analysis of CNV using the Bovine HapMap SNP genotyping data, including 539 animals of 21 modern cattle breeds and 6 outgroups. After correcting genomic waves and considering the pedigree information, we identified 682 candidate CNV regions, which represent 139.8 megabases (~4.60%) of the genome. Selected CNVs were further experimentally validated and we found that copy number "gain" CNVs were predominantly clustered in tandem rather than existing as interspersed duplications. Many CNV regions (~56%) overlap with cattle genes (1,263), which are significantly enriched for immunity, lactation, reproduction and rumination. The overlap of this new dataset and other published CNV studies was less than 40%; however, our discovery of large, high frequency (> 5% of animals surveyed) CNV regions showed 90% agreement with other studies. These results highlight the differences and commonalities between technical platforms. We present a comprehensive genomic analysis of cattle CNVs derived from SNP data which will be a valuable genomic variation resource. Combined with SNP detection assays, gene-containing CNV regions may help identify genes undergoing artificial selection in domesticated animals.Item Temporal transcriptome changes induced by MDV in marek's disease-resistant and -susceptible inbred chickens(Springer Nature, 2011-10-12) Yu, Ying; Luo, Juan; Mitra, Apratim; Chang, Shuang; Tian, Fei; Zhang, Huanmin; Yuan, Ping; Zhou, Huaijun; Song, JiuzhouMarek's disease (MD) is a lymphoproliferative disease in chickens caused by Marek's disease virus (MDV) and characterized by T cell lymphoma and infiltration of lymphoid cells into various organs such as liver, spleen, peripheral nerves and muscle. Resistance to MD and disease risk have long been thought to be influenced both by genetic and environmental factors, the combination of which contributes to the observed outcome in an individual. We hypothesize that after MDV infection, genes related to MD-resistance or -susceptibility may exhibit different trends in transcriptional activity in chicken lines having a varying degree of resistance to MD. In order to study the mechanisms of resistance and susceptibility to MD, we performed genome-wide temporal expression analysis in spleen tissues from MD-resistant line 63, susceptible line 72 and recombinant congenic strain M (RCS-M) that has a phenotype intermediate between lines 63 and 72 after MDV infection. Three time points of the MDV life cycle in chicken were selected for study: 5 days post infection (dpi), 10dpi and 21dpi, representing the early cytolytic, latent and late cytolytic stages, respectively. We observed similar gene expression profiles at the three time points in line 63 and RCS-M chickens that are both different from line 72. Pathway analysis using Ingenuity Pathway Analysis (IPA) showed that MDV can broadly influence the chickens irrespective of whether they are resistant or susceptible to MD. However, some pathways like cardiac arrhythmia and cardiovascular disease were found to be affected only in line 72; while some networks related to cell-mediated immune response and antigen presentation were enriched only in line 63 and RCS-M. We identified 78 and 30 candidate genes associated with MD resistance, at 10 and 21dpi respectively, by considering genes having the same trend of expression change after MDV infection in lines 63 and RCS-M. On the other hand, by considering genes with the same trend of expression change after MDV infection in lines 72 and RCS-M, we identified 78 and 43 genes at 10 and 21dpi, respectively, which may be associated with MD-susceptibility. By testing temporal transcriptome changes using three representative chicken lines with different resistance to MD, we identified 108 candidate genes for MD-resistance and 121 candidate genes for MD-susceptibility over the three time points. Genes included in our resistance or susceptibility genes lists that are also involved in more than 5 biofunctions, such as CD8α, IL8, USP18, and CTLA4, are considered to be important genes involved in MD-resistance or -susceptibility. We were also able to identify several biofunctions related with immune response that we believe play an important role in MD-resistance.Item miRNA-dysregulation associated with tenderness variation induced by acute stress in Angus cattle(Springer Nature, 2012-06-01) Zhao, Chunping; Tian, Fei; Yu, Ying; Liu, George; Zan, Linsen; Updike, M Scott; Song, JiuzhoumiRNAs are a class of small, single-stranded, non-coding RNAs that perform post-transcriptional repression of target genes by binding to 3’ untranslated regions. Research has found that miRNAs involved in the regulation of many metabolic processes. Here we uncovered that the beef quality of Angus cattle sharply diversified after acute stress. By performing miRNA microarray analysis, 13 miRNAs were significantly differentially expressed in stressed group compared to control group. Using a bioinformatics method, 135 protein-coding genes were predicted as the targets of significant differentially expressed miRNAs. Gene Ontology (GO) term and Ingenuity Pathway Analysis (IPA) mined that these target genes involved in some important pathways, which may have impact on meat quality and beef tenderness.Item Fine mapping of copy number variations on two cattle genome assemblies using high density SNP array(Springer Nature, 2012-08-06) Hou, Yali; Bickhart, Derek M; Hvinden, Miranda L; Li, Congjun; Song, Jiuzhou; Boichard, Didier A; Fritz, Sébastien; Eggen, André; DeNise, Sue; Wiggans, George R; Sonstegard, Tad S; Van Tassell, Curtis P; Liu, George EBtau_4.0 and UMD3.1 are two distinct cattle reference genome assemblies. In our previous study using the low density BovineSNP50 array, we reported a copy number variation (CNV) analysis on Btau_4.0 with 521 animals of 21 cattle breeds, yielding 682 CNV regions with a total length of 139.8 megabases. In this study using the high density BovineHD SNP array, we performed high resolution CNV analyses on both Btau_4.0 and UMD3.1 with 674 animals of 27 cattle breeds. We first compared CNV results derived from these two different SNP array platforms on Btau_4.0. With two thirds of the animals shared between studies, on Btau_4.0 we identified 3,346 candidate CNV regions representing 142.7 megabases (~4.70%) of the genome. With a similar total length but 5 times more event counts, the average CNVR length of current Btau_4.0 dataset is significantly shorter than the previous one (42.7 kb vs. 205 kb). Although subsets of these two results overlapped, 64% (91.6 megabases) of current dataset was not present in the previous study. We also performed similar analyses on UMD3.1 using these BovineHD SNP array results. Approximately 50% more and 20% longer CNVs were called on UMD3.1 as compared to those on Btau_4.0. However, a comparable result of CNVRs (3,438 regions with a total length 146.9 megabases) was obtained. We suspect that these results are due to the UMD3.1 assembly's efforts of placing unplaced contigs and removing unmerged alleles. Selected CNVs were further experimentally validated, achieving a 73% PCR validation rate, which is considerably higher than the previous validation rate. About 20-45% of CNV regions overlapped with cattle RefSeq genes and Ensembl genes. Panther and IPA analyses indicated that these genes provide a wide spectrum of biological processes involving immune system, lipid metabolism, cell, organism and system development. In this study using the high density BovineHD SNP array, we performed high resolution CNV analyses on both Btau_4.0 and UMD3.1 with 674 animals of 27 cattle breeds. We first compared CNV results derived from these two different SNP array platforms on Btau_4.0. With two thirds of the animals shared between studies, on Btau_4.0 we identified 3,346 candidate CNV regions representing 142.7 megabases (~4.70%) of the genome. With a similar total length but 5 times more event counts, the average CNVR length of current Btau_4.0 dataset is significantly shorter than the previous one (42.7 kb vs. 205 kb). Although subsets of these two results overlapped, 64% (91.6 megabases) of current dataset was not present in the previous study. We also performed similar analyses on UMD3.1 using these BovineHD SNP array results. Approximately 50% more and 20% longer CNVs were called on UMD3.1 as compared to those on Btau_4.0. However, a comparable result of CNVRs (3,438 regions with a total length 146.9 megabases) was obtained. We suspect that these results are due to the UMD3.1 assembly's efforts of placing unplaced contigs and removing unmerged alleles. Selected CNVs were further experimentally validated, achieving a 73% PCR validation rate, which is considerably higher than the previous validation rate. About 20-45% of CNV regions overlapped with cattle RefSeq genes and Ensembl genes. Panther and IPA analyses indicated that these genes provide a wide spectrum of biological processes involving immune system, lipid metabolism, cell, organism and system development. We present a comprehensive result of cattle CNVs at a higher resolution and sensitivity. We identified over 3,000 candidate CNV regions on both Btau_4.0 and UMD3.1, further compared current datasets with previous results, and examined the impacts of genome assemblies on CNV calling.Item Marek’s disease virus infection induces widespread differential chromatin marks in inbred chicken lines(Springer Nature, 2012-10-16) Mitra, Apratim; Luo, Juan; Zhang, Huanming; Cui, Kairong; Zhao, Keji; Song, JiuzhouMarek’s disease (MD) is a neoplastic disease in chickens caused by the MD virus (MDV). Successful vaccine development against MD has resulted in increased virulence of MDV and the understanding of genetic resistance to the disease is, therefore, crucial to long-term control strategies. Also, epigenetic factors are believed to be one of the major determinants of disease response. Here, we carried out comprehensive analyses of the epigenetic landscape induced by MDV, utilizing genome-wide histone H3 lysine 4 and lysine 27 trimethylation maps from chicken lines with varying resistance to MD. Differential chromatin marks were observed on genes previously implicated in the disease such as MX1 and CTLA-4 and also on genes reported in other cancers including IGF2BP1 and GAL. We detected bivalent domains on immune-related transcriptional regulators BCL6, CITED2 and EGR1, which underwent dynamic changes in both lines as a result of MDV infection. In addition, putative roles for GAL in the mechanism of MD progression were revealed. Our results confirm the presence of widespread epigenetic differences induced by MD in chicken lines with different levels of genetic resistance. A majority of observed epigenetic changes were indicative of increased levels of viral infection in the susceptible line symptomatic of lowered immunocompetence in these birds caused by early cytolytic infection. The GAL system that has known anti-proliferative effects in other cancers is also revealed to be potentially involved in MD progression. Our study provides further insight into the mechanisms of MD progression while revealing a complex landscape of epigenetic regulatory mechanisms that varies depending on host factors.Item Genome wide CNV analysis reveals additional variants associated with milk production traits in Holsteins(Springer Nature, 2014-08-15) Xu, Lingyang; Cole, John B; Bickhart, Derek M; Hou, Yali; Song, Jiuzhou; VanRaden, Paul M; Sonstegard, Tad S; Van Tassell, Curtis P; Liu, George EMilk production is an economically important sector of global agriculture. Much attention has been paid to the identification of quantitative trait loci (QTL) associated with milk, fat, and protein yield and the genetic and molecular mechanisms underlying them. Copy number variation (CNV) is an emerging class of variants which may be associated with complex traits. In this study, we performed a genome-wide association between CNVs and milk production traits in 26,362 Holstein bulls and cows. A total of 99 candidate CNVs were identified using Illumina BovineSNP50 array data, and association tests for each production trait were performed using a linear regression analysis with PCA correlation. A total of 34 CNVs on 22 chromosomes were significantly associated with at least one milk production trait after false discovery rate (FDR) correction. Some of those CNVs were located within or near known QTL for milk production traits. We further investigated the relationship between associated CNVs with neighboring SNPs. For all 82 combinations of traits and CNVs (less than 400 kb in length), we found 17 cases where CNVs directly overlapped with tag SNPs and 40 cases where CNVs were adjacent to tag SNPs. In 5 cases, CNVs located were in strong linkage disequilibrium with tag SNPs, either within or adjacent to the same haplotype block. There were an additional 20 cases where CNVs did not have a significant association with SNPs, suggesting that the effects of those CNVs were probably not captured by tag SNPs. We conclude that combining CNV with SNP analyses reveals more genetic variations underlying milk production traits than those revealed by SNPs alone.
- «
- 1 (current)
- 2
- 3
- »