Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    SECURITY UNDER IMPERFECT CHANNEL KNOWLEDGE IN WIRELESS NETWORKS
    (2016) Mukherjee, Pritam; Ulukus, Sennur; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This dissertation studies physical layer security in wireless networks using an information theoretic framework. The central theme of this work is exploring the effect of delayed or no channel state information (CSI) on physical layer security in various wireless channel models. We begin with the fast Rayleigh fading wiretap channel, over which a legitimate transmitter wishes to have secure communication with a legitimate receiver in the presence of an eavesdropper. Subject to an average power constraint on the input, and with no CSI at any user, we show that the input distribution that achieves the secrecy capacity for this wiretap channel is discrete with a finite number of mass points. This enables us to evaluate the exact secrecy capacity of this channel numerically. Next, we consider multi-user models, specifically, the wiretap channel with M helpers, the K-user multiple access wiretap channel, and the K-user interference channel with an external eavesdropper, when no eavesdropper's CSI is available at the transmitters. In each case, we establish the optimal sum secure degrees of freedom (s.d.o.f.) by providing achievable schemes and matching converses. We show that the unavailability of the eavesdropper's CSI at the transmitter (CSIT) does not reduce the s.d.o.f. of the wiretap channel with helpers. However, there is loss in s.d.o.f. for both the multiple access wiretap channel and the interference channel with an external eavesdropper. In particular, we show that in the absence of eavesdropper's CSIT, the K-user multiple access wiretap channel reduces to a wiretap channel with (K-1) helpers from a sum s.d.o.f. perspective, and the optimal sum s.d.o.f. reduces from K(K-1)/(K(K-1)+1) to (K-1)/K. For the interference channel with an external eavesdropper, the optimal sum s.d.o.f. decreases from K(K-1)/(2K-1) to (K-1)/2 in the absence of the eavesdropper's CSIT. Our results show that the lack of eavesdropper's CSIT does not have a significant impact on the optimal s.d.o.f. for any of the three channel models, especially when the number of users is large. We, then, study multiple-input multiple-output (MIMO) multi-user channels. We begin with the case when full CSIT is available. We consider a two-user MIMO multiple access wiretap channel with N antennas at each transmitter, N antennas at the legitimate receiver, and K antennas at the eavesdropper. We determine the optimal sum s.d.o.f. for this model for all values of N and K. We subdivide our problem into several regimes based on the values of N and K, and provide achievable schemes based on real and vector space alignment techniques for fixed and fading channel gains, respectively. To prove the optimality of the achievable schemes, we provide matching converses for each regime. Our results show how the number of eavesdropper antennas affects the optimal sum s.d.o.f. of the multiple access wiretap channel. In line with the theme of this dissertation, we next consider the MIMO wiretap channel with one helper and the two-user MIMO multiple access channel when no eavesdropper CSIT is available. In each case, the eavesdropper has K antennas while the remaining terminals have N antennas. We determine the optimal sum s.d.o.f. for each channel model for the regime K<= N, and we show that in this regime, the multiple access wiretap channel reduces to the wiretap channel with a helper in the absence of eavesdropper CSIT. For the regime N<= K<= 2N, we obtain the optimal linear s.d.o.f., and show that the multiple access wiretap channel and the wiretap channel with a helper have the same optimal s.d.o.f. when restricted to linear encoding strategies. In the absence of any such restrictions, we provide an upper bound for the sum s.d.o.f. of the multiple access wiretap channel in the regime N<= K<= 2N. Our results show that unlike in the single-input single-output (SISO) case, there is loss of s.d.o.f. for even the wiretap channel with a helper due to lack of eavesdropper CSIT, when K>= N. Finally, we explore the effect of delayed CSIT on physical layer security. In particular, we consider the two user multiple-input single-output (MISO) broadcast channel with confidential messages, in which the nature of CSIT from each user can be of the form I_{i}, i=1,2 where I_{i} belongs to {P, D,N}, and the forms P, D and N correspond to perfect and instantaneous, completely delayed, and no CSIT, respectively. Thus, the overall CSIT can be any of nine possible states corresponding to all possible values of (I_{1},I_{2}). While the optimal sum s.d.o.f. in the homogeneous settings corresponding to I_1=I_2 are already known in the literature, we focus on the heterogeneous settings where I_1 is not equal to I_2 and establish the optimal s.d.o.f. region in each case. We further consider the case where the CSIT state varies with time. Each state (I_1,I_2) can then occur for \lambda_{I_{1}I_{2}} fraction of the total duration. We determine the s.d.o.f. region of the MISO broadcast channel with confidential messages under such an alternating CSIT setting, with a mild symmetry assumption, where \lambda_{I_{1} I_{2}}=\lambda_{I_{2}I_{1}}.
  • Thumbnail Image
    Item
    Distributed Load Balancing Algorithm in Wireless Networks
    (2014) Sheikhattar, Alireza; Kalantari, Mehdi; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    As communication networks scale up in size, complexity and demand, effective distribution of the traffic load throughout the network is a matter of great importance. Load balancing will enhance the network throughput and enables us to utilize both communication and energy resources more evenly through an efficient redistribution of traffic load across the network. This thesis provides an algorithm for balancing the traffic load in a general network setting. Unlike most of state-of-the-art algorithms in load balancing context, the proposed method is fully distributed, eliminating the need to collect information at a central node and thereby improving network reliability. The effective distribution of load is realized through solving a convex optimization problem where the p-norm of network load is minimized subject to network physical constraints. The optimization solution relies on the Alternating Direction Method of Multipliers (ADMM), which is a powerful tool for solving distributed convex optimization problems. A three-step ADMM-based iterative scheme is derived from suitably reformulated form of p-norm problem. The distributed implementation of the proposed algorithm is further elaborated by introducing a projection step and an initialization setup. The projection step involves an inner-loop iterative scheme to solve linear subproblems. In a distributed setting, each iteration step requires communication among all neighboring nodes. Due to high energy consumption of node-to-node communication, it is most appealing to devise a fast and computationally efficient iterative scheme which can converge to optimal solution within a desired accuracy by using as few iteration steps as possible. A fast convergence iterative scheme is presented which shows superior convergence performance compared to conventional methods. Inspired by fast propagation of waves in physical media, this iterative scheme is derived from partial differential equations for propagation of electrical voltages and currents in a transmission line. To perform these iterations, all nodes should have access to an acceleration parameter which relies on the network topology. The initialization stage is developed in order to overcome the last challenging obstacle toward achieving a fully distributed algorithm.
  • Thumbnail Image
    Item
    Connectivity and Data Transmission over Wireless Mobile Systems
    (2011) Frangiadakis, Nikolaos; Roussopoulos, Nick; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    We live in a world where wireless connectivity is pervasive and becomes ubiquitous. Numerous devices with varying capabilities and multiple interfaces are surrounding us. Most home users use Wi-Fi routers, whereas a large portion of human inhabited land is covered by cellular networks. As the number of these devices, and the services they provide, increase, our needs in bandwidth and interoperability are also augmented. Although deploying additional infrastructure and future protocols may alleviate these problems, efficient use of the available resources is important. We are interested in the problem of identifying the properties of a system able to operate using multiple interfaces, take advantage of user locations, identify the users that should be involved in the routing, and setup a mechanism for information dissemination. The challenges we need to overcome arise from network complexity and heterogeneousness, as well as the fact that they have no single owner or manager. In this thesis I focus on two cases, namely that of utilizing "in-situ" WiFi Access Points to enhance the connections of mobile users, and that of establishing "Virtual Access Points" in locations where there is no fixed roadside equipment available. Both environments have attracted interest for numerous related works. In the first case the main effort is to take advantage of the available bandwidth, while in the second to provide delay tolerant connectivity, possibly in the face of disasters. Our main contribution is to utilize a database to store user locations in the system, and to provide ways to use that information to improve system effectiveness. This feature allows our system to remain effective in specific scenarios and tests, where other approaches fail.
  • Thumbnail Image
    Item
    LINK ADAPTATION IN WIRELESS NETWORKS: A CROSS-LAYER APPROACH
    (2010) Tas, Nazif Cihan; Agrawala, Ashok; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Conventional Link Adaptation Techniques in wireless networks aim to overcome harsh link conditions caused by physical environmental properties, by adaptively regulating modulation, coding and other signal and protocol specific parameters. These techniques are essential for the overall performance of the networks, especially for environments where the ambient noise level is high or the noise level changes rapidly. Link adaptation techniques answer the questions of What to change? and When to change? in order to improve the present layer performance. Once these decisions are made, other layers are expected to function perfectly with the new communication channel conditions. In our work, we have shown that this assumption does not always hold; and provide two mechanisms that lessen the negative outcomes caused by these decisions. Our first solution, MORAL, is a MAC layer link adaptation technique which utilizes the physical transmission information in order to create differentiation between wireless users with different communication capabilities. MORAL passively collects information from its neighbors and re-aligns the MAC layer parameters according to the observed conditions. MORAL improves the fairness and total throughput of the system through distributing the mutually shared network assets to the wireless users in a fairer manner, according to their capabilities. Our second solution, Data Rate and Fragmentation Aware Ad-hoc Routing protocol, is a network layer link adaptation technique which utilizes the physical transmission information in order to differentiate the wireless links according to their communication capabilities. The proposed mechanism takes the physical transmission parameters into account during the path creation process and produces energy-efficient network paths. The research demonstrated in this dissertation contributes to our understanding of link adaptation techniques and broadens the scope of such techniques beyond simple, one-step physical parameter adjustments. We have designed and implemented two cross-layer mechanisms that utilize the physical layer information to better adapt to the varying channel conditions caused by physical link adaptation mechanisms. These mechanisms has shown that even though the Link Adaptation concept starts at the physical layer, its effects are by no means restricted to this layer; and the wireless networks can benefit considerably by expanding the scope of this concept throughout the entire network stack.
  • Thumbnail Image
    Item
    Robust design of wireless networks
    (2006-11-20) Kashyap, Abhishek; Kashyap, Abhishek; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    We consider the problem of robust topology control, routing and power control in wireless networks. We consider two aspects of robustness: topology control for robustness against device and link failures; routing and power control for robustness against traffic variations. The first problem is more specific to wireless sensor networks. Sensors typically use wireless transmitters to communicate with each other. However, sensors may be located in a way that they cannot even form a connected network (e.g, due to failures of some sensors, or loss of battery power). Using power control to induce a connected topology may not be feasible as the sensors may be placed in clusters far apart. We consider the problem of adding the smallest number of relay nodes so that the induced communication graph is k-connected. We consider both edge and vertex connectivity. The problem is NP-hard. We develop approximation algorithms that find close to optimal solutions. We consider extension to higher dimensions, and provide approximation guarantees for the algorithms. In addition, our methods extend with the same approximation guarantees to a generalization when the locations of relays are required to avoid certain polygonal obstacles. We also consider extension to networks with non-uniform transmission range, and provide approximation algorithms. The second problem we consider is of joint routing and transmission power assignment in multi-hop wireless networks with unknown traffic. We assume the traffic matrix, which specifies the traffic load between every source-destination pair in the network, is unknown, but always lies inside a polytope. Our goal is to find a fixed routing and power assignment that minimizes the maximum total transmission power in the network over all traffic matrices in a given polytope. In our approach, we do not need to monitor and update paths to adapt to traffic variations. We formulate this problem as a non-convex semi-infinite programming problem. We propose an efficient algorithm that computes a routing and power assignment that is schedulable for all traffic matrices in the given polytope. We perform extensive simulations to show that the proposed algorithm performs close to algorithms that adaptively optimize their solution to the traffic variations.