Theses and Dissertations from UMD

Permanent URI for this communityhttp://hdl.handle.net/1903/2

New submissions to the thesis/dissertation collections are added automatically as they are received from the Graduate School. Currently, the Graduate School deposits all theses and dissertations from a given semester after the official graduation date. This means that there may be up to a 4 month delay in the appearance of a give thesis/dissertation in DRUM

More information is available at Theses and Dissertations at University of Maryland Libraries.

Browse

Search Results

Now showing 1 - 10 of 46
  • Item
    FROM PARTS TO WHOLE IN ACTION AND OBJECT UNDERSTANDING
    (2024) Devaraj, Chinmaya; Aloimonos, Yiannis; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The traditional paradigm of supervised learning in action or object recognition often relieson a top-down approach, ignoring explicit modeling of what activity or objects consist of. Recent approaches in generative AI research have shown us the ability to generate images and videos using text, indirectly indicating that we have control over the constituents of images and videos. In this dissertation, we explore ways to use the constituents of actions to develop methods to improve understanding of action. We devise different approaches to utilize the parts of actions, namely object motion, object state changes, and motion descriptions obtained by LLMs in various tasks like in the next active object segmentation, zero-shot action recognition, or video-text retrieval. We show promising benefits in action anticipation, zero-shot action recognition, and text-video retrieval tasks, demonstrating the practical applications of our methods. In the first part of the dissertation, we explore the idea of using the constituents of actions inGCNs for zero-shot human-object action recognition. The main idea is that semantically similar actions (of similar constituents) are closer in feature space. Thus, in our graph, we encode the edges connecting those actions with higher similarity. We introduce a method to visually ground the external knowledge graph using the concept of shared similarity between similar actions. We evaluate the method on the EPIC Kitchens dataset and the Charades dataset showing impressive results over baseline methods. We further show that visually grounding the knowledge graph enhances the performance of GCNs when an adversarial attack corrupts the input graph. In the second part of the thesis, we extend our ideas on human-object interactions in firstpersonvideos. Human actions involving hand manipulations are structured according to the making and breaking of hand-object contact, and human visual understanding of action relies on anticipation of contact, as demonstrated by pioneering work in cognitive science. Taking inspiration from this, we introduce representations and models centered on contact, which we then use in action prediction and anticipation. We train the Anticipation Module, a module producing Contact Anticipation Maps and Next Active Object Segmentations - novel low-level representations providing temporal and spatial characteristics of anticipated near future action. On top of the Anticipation Module, we apply Egocentric Object Manipulation Graphs (Ego- OMG), a framework for action anticipation and prediction. Using the Anticipation Module to aid Ego-OMG produces state-of-the-art results, achieving first and second places on the unseen and seen test sets of the EPIC Kitchens Action Anticipation Challenge and achieving state-of-the-art results on action anticipation and action prediction over EPIC Kitchens. In the same line of thinking of constituents of action, we next focus on investigatinghow motion understanding can be modeled in current video-text models. We introduce motion descriptions generated by GPT4 on three action datasets that capture fine-grained motion descriptions of activities. We evaluated several video-text models on the task of retrieval of motion descriptions and found them to need to catch up to the human expert performance. We introduce a method of improving motion understanding in video-text models by utilizing motion descriptions. This method is demonstrated on two action datasets for the motion description retrieval task. The results draw attention to the need for quality captions involving fine-grained motion information in existing datasets and demonstrate the effectiveness of the proposed pipeline in understanding fine-grained motion during video-text retrieval.
  • Thumbnail Image
    Item
    Understanding and Improving Reliability of Predictive and Generative Deep Learning Models
    (2024) Kattakinda, Priyatham; Feizi, Soheil; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Deep learning models are prone to acquiring spurious correlations and biases during training and adversarial attacks during inference. In the context of predictive models, this results in inaccurate predictions relying on spurious features. Our research delves into this phenomenon specifically concerning objects placed in uncommon settings, where they are not conventionally found in the real world (e.g., a plane on water or a television in a cave). We introduce the "FOCUS: Familiar Objects in Common and Uncommon Settings" dataset which aims to stress-test the generalization capabilities of deep image classifiers. By leveraging the power of modern search engines, we deliberately gather data containing objects in common and uncommon settings in a wide range of locations, weather conditions, and time of day. Our comprehensive analysis of popular image classifiers on the FOCUS dataset reveals a noticeable decline in performance when classifying images in atypical scenarios. FOCUS only consists of natural images which are extremely challenging to collect as by definition it is rare to find objects in unusual settings. To address this challenge, we introduce an alternative dataset named Diffusion Dreamed Distribution Shifts (D3S). D3S comprises synthetic images generated through StableDiffusion, utilizing text prompts and image guides derived from placing a sample foreground image onto a background template image. This scalable approach allows us to create 120,000 images featuring objects from all 1000 ImageNet classes set against 10 diverse backgrounds. Due to the incredible photorealism of the diffusion model, our images are much closer to natural images than previous synthetic datasets. To alleviate this problem, we propose two methods of learning richer and more robust image representations. In the first approach, we harness the foreground and background labels within D3S to learn a foreground (background)representation resistant to changes in background (foreground). This is achieved by penalizing the mutual information between the foreground (background) features and the background (foreground) labels. We demonstrate the efficacy of these representations by training classifiers on a task with strong spurious correlations. Thus far, our focus has centered on predictive models, scrutinizing the robustness of the learned object representations, particularly when the contextual surroundings are unconventional. In the second approach, we propose to use embeddings of objects and their relationships extracted using off-the-shelf image segmentation models and text encoders respectively as input tokens to a transformer. This leads to remarkably richer features that improve performance on downstream tasks such as image retrieval. Large language models are also prone to failures during inference. Given the widespread use of LLMs, understanding the propensity of these models to fail given adversarial inputs is crucial. To that end we propose a series of fast adversarial attacks called BEAST that uses beam search to add adversarial tokens to a given input prompt. These attacks induce hallucination, cause the models to jailbreak and facilitate unintended membership inference from model outputs. Our attacks are fast and are executable in relatively compute constrained environments.
  • Thumbnail Image
    Item
    Feedback for Vision
    (2024) Maynord, Michael; Aloimonos, Yiannis; Fermüller, Cornelia; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Feedback plays a prominent role in biological vision, where perception is modulated based on agents' evolving expectations and world model. This is the case both in visually understanding the static structure of the world, as well as in modeling the dynamic structure of action. In this thesis we present first an approach to incorporating controlled feedback into image understanding, second an adaptation of this approach to action understanding, and lastly a notion of feedback in video monitoring. First, we introduce a novel mechanism which modulates perception based on high level categorical expectations: Mid-Vision Feedback (MVF). MVF associates high level contexts with linear transformations. When a context is "expected" its associated linear transformation is applied over feature vectors in a mid level of a network. The result is that mid-level network representations are biased towards conformance with high level expectations, improving overall accuracy and contextual consistency. Additionally, during training, mid-level feature vectors are biased through introduction of a loss term which increases the distance between feature vectors associated with different contexts. MVF is agnostic as to the source of contextual expectations, and can serve as a mechanism for top down integration of symbolic systems with deep vision architectures. We demonstrate the utility of MVF for object classification across three popular datasets and multiple architectures, including both Convolutional Neural Network architectures and a Transformer architecture. We adapt MVF for action understanding with Sub-Action Modulation (SAM) for Video Networks. When humans interpret action they bring high level expectations of the context in which those actions are being performed. Along this thinking, we develop an approach to incorporating context into action understanding. Video segments are classified uniquely into a small set of action primitives (called Therbligs), which are grouped hierarchically into "Meta-Therbligs" as a context representation. SAM is an approach to first modeling Meta-Therbligs, and then incorporating expectation of Meta-Therbligs into mid-level processes through feedback. This allows the modulation of mid-level features in accordance with a temporally compositional representation of context. We show the superior performance of MVF to post-hoc filtering for incorporation of contextual knowledge, and show superior performance of configurations using predicted context (when no context is known a priori) over configurations with no context awareness. We demonstrate the utility of SAM over four popular video understanding architectures - I3D, MoViNet, TimeSFormer, and ViViT. Experiments over EPIC Kitchens and 50 Salads on the tasks of action recognition \& anticipation demonstrate SAM produces superior accuracies across all models, tasks, and datasets with minimal architectural alterations. Lastly, we consider a notion of “feedback” where high level expectations, or specifications, are provided by human operators, allowing integration of humans into the perceptual loop . This is important for interfacing with humans, as perceptual tasks which are conventionally left entirely to human labor are increasingly (yet, thus, imperfectly) automated. We consider the task of surveillance. Security watchstanders who monitor multiple videos over long periods of time can be susceptible to information overload and fatigue. To address this, we present a configurable perception pipeline architecture, called the {\it Image Surveillance Assistant} (ISA), for assisting watchstanders with video surveillance tasks. We also present ISA$_1$, an initial implementation that can be configured with a set of {\em context specifications} which watchstanders can select or provide to indicate what imagery should generate notifications. ISA$_1$'s inputs include (1) an image and (2) context specifications, which contain English sentences and a decision boundary defined over object detection vectors. ISA$_1$ assesses the match of the image with the contexts by comparing (1) detected versus specified objects and (2) automatically-generated versus specified captions. Finally, we present a study to assess the utility of using captions in ISA$_1$, and found that they substantially improve the performance of image context detection. Finally, notions of context and the contrast used to separate context for better manipulation in the above feedback work can be of benefit not only to feedback architectures, but within feed-forward architectures as well. We apply this intuition to the task of action understanding in video, where input is separated into motion and ``context''. Motivated by Goldman's Theory of Human Action - a framework in which action decomposes into 1) base physical movements, and 2) the context in which they occur - we propose a novel learning formulation for motion and context, where context is derived as the complement to motion. More specifically, we model physical movement through the adoption of Therbligs, a set of elemental physical motions centered around object manipulation. Context is modeled through the use of a contrastive mutual information loss that formulates context information as the action information not contained within movement information. We empirically prove the utility brought by this separation of representation, showing sizable improvements in action recognition and action anticipation accuracies for a variety of models. We present results over two object manipulation datasets: EPIC Kitchens 100, and 50 Salads.
  • Item
    Supervision and Data Dynamics in Vision Across Recognition and Generation Landscapes
    (2024) Suri, Saksham; Shrivastava, Abhinav; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    This thesis looks at visual perception through the lens of supervision and data dynamics across recognition and generation landscapes. Generative and discriminative modeling form important pillars in computer vision. Depending on the task techniques to better learn and utilize the data and labels can change. Through this work we investigate different tasks along this landscape focusing on different supervision strategies, highlighting pitfalls in current approaches and propose modified architectures and losses to utilize the data better under different settings. On the recognition side we start by analyzing Vision Transformers (ViTs) through a comprehensive analysis under varied supervision paradigms. We look at a mix of explicit supervision, contrastive self-supervision, and reconstructive self-supervision by delving into attention mechanisms and learned representations. We then look at a more specific case of supervision geared towards object detection which is called sparse supervision where their are missing annotations. We propose to utilize self and semi-supervised techniques to solve this task. Finally, we also explore a discovery style framework with applications on GAN generated image detection. Unlike sparse supervision discussed earlier, this scenario handles the case where are test time we have an unknown number of new classes. We were the first work proposing this problem where instead of just identifying synthetic images, we also try to group them based on their generation source. The exploration of Generative Adversarial Networks (GANs) in an open-world scenario uncovers the intricacies of learning with limited supervision for discovery style problems. On the generation side we delve into different supervision strategies involving decomposing and decoupling representations. In the first work we tackle the problem of paired Image-to-Image (I2I) translation by decomposing supervision into reconstruction and residuals and highlight issues with traditional training approaches. We then look at generating talking head videos through two different kinds of supervision, video and audio. For driving the generation using a video we look at decoupling representations for the task of few-shot talking-head synthesis where the supervision is provided using only a few samples (shots). For this task we factorize the representation into spatial and style components which helps the learning. To supervise the generation additionally through audio, we look at multimodal supervision for lip-synchronized talking head generation. For this we incorporate audio and video modalities to synthesize lifelike talking-heads which can work even in in-the-wild scenarios. In the last part we showcase two works which link our experiences from generation and recognition where we explore generative modeling to improve recognition models. The first work here utilizes the advancements in diffusion based image generation models to improve recognition models. Given the high fidelity and control of generation which diffusion models have brought, we utilize synthetic data from these models and create a suitable pipeline to utilize this data effectively to improve detection and segmentation performance. As a follow up to our ViT analysis we also propose a new technique to utilize off the shelf pretrained ViTs and generate high resolution features using a learnt lightweight feature transform. These high resolution features are especially effective for dense tasks like correspondence, segmentation, detection and object discovery.
  • Thumbnail Image
    Item
    A Framework for Remaining Useful Life Prediction and Optimization for Complex Engineering Systems
    (2024) Weiner, Matthew Joesph; Azarm, Shapour; Groth, Katrina M; Reliability Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Remaining useful life (RUL) prediction plays a crucial role in maintaining the operational efficiency, reliability, and performance of complex engineering systems. Recent efforts have primarily focused on individual components or subsystems, neglecting the intricate relationships between components and their impact on system-level RUL (SRUL). The existing gap in predictive methodologies has prompted the need for an integrated approach to address the complex nature of these systems, while optimizing the performance with respect to these predictive indicators. This thesis introduces a novel methodology for predicting and optimizing SRUL, and demonstrates how the predicted SRUL can be used to optimize system operation. The approach incorporates various types of data, including condition monitoring sensor data and component reliability data. The methodology leverages probabilistic deep learning (PDL) techniques to predict component RUL distributions based on sensor data and component reliability data when sensor data is not available. Furthermore, an equation node-based Bayesian network (BN) is employed to capture the complex causal relationships between components and predict the SRUL. Finally, the system operation is optimized using a multi-objective genetic algorithm (MOGA), where SRUL is treated as a constraint and also as an objective function, and the other objective relates to mission completion time. The validation process includes a thorough examination of the component-level methodology using the C-MAPSS data set. The practical application of the proposed methodology in this thesis is through a case study involving an unmanned surface vessel (USV), which incorporates all aspects of the methodology, including system-level validation through qualitative metrics. Evaluation metrics are employed to quantify and qualify both component and system-level results, as well as the results from the optimizer, providing a comprehensive understanding of the proposed approach’s performance. There are several main contributions of this thesis. These include a new deep learning structure for component-level PHM, one that utilizes a hybrid-loss function for a multi-layer long short-term memory (LSTM) regression model to predict RUL with a given confidence interval while also considering the complex interactions among components. Another contribution is the development of a new framework for computing SRUL from these predicted component RULs, in which a Bayesian network is used to perform logic operations and determine the SRUL. These contributions advance the field of PHM, but also provide a practical application in engineering. The ability to accurately predict and manage the RUL of components within a system has profound implications for maintenance scheduling, cost reduction, and overall system reliability. The integration of the proposed method with an optimization algorithm closes the loop, offering a comprehensive solution for offline planning and SRUL prediction and optimization. The results of this research can be used to enhance the efficiency and reliability of engineering systems, leading to more informed decision-making.
  • Thumbnail Image
    Item
    Recognizing Object-Centric Attributes and Relations
    (2023) Pham, Khoi; Shrivastava, Abhinav; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Recognizing an object's visual appearance through its attributes, such as color and shape, and its relations to other objects in an environment, is an innate human ability that allows us to effortlessly interact with the world. This ability remains effective even when humans encounter unfamiliar objects or objects with appearances evolve over time, as humans can still identify them by discerning their attributes and relations. This dissertation aims to equip computer vision systems with this capability, empowering them to recognize object's attributes and relations to become more robust in handling real-world scene complexities. The thesis is structured into two main parts. The first part focuses on recognizing attributes for objects, an area where existing research is limited to domain-specific attributes or constrained by small-scale and noisy data. We overcome these limitations by introducing a comprehensive dataset for attributes in the wild, marked by challenges with attribute diversity, label sparsity, and data imbalance. To navigate these challenges, we propose techniques that address class imbalance, employ attention mechanism, and utilize contrastive learning for aligning objects with shared attributes. However, as such dataset is expensive to collect, we also develop a framework that leverages large-scale, readily available image-text data for learning attribute prediction. The proposed framework can effectively scale up to predict a larger space of attribute concepts in real-world settings, including novel attributes represented in arbitrary text phrases that are not encountered during training. We showcase various applications of the proposed attribute prediction frameworks, including semantic image search and object image tagging with attributes. The second part delves into the understanding of visual relations between objects. First, we investigate how the interplay of attributes and relations can improve image-text matching. Moving beyond the computationally expensive cross-attention network of previous studies, we introduce a dual encoder framework using scene graphs that is more efficient yet equally powerful on current image-text retrieval benchmark. Our approach can produce scene graph embeddings rich in attribute and relation semantics, which we show to be useful for image retrieval and image tagging. Lastly, we present our work in training large vision-language models on image-text data for recognizing visual relations. We formulate a new subject-centric approach that predicts multiple relations simultaneously conditioned on a single subject. Our approach is among the first work to learn from both weakly- and strongly-grounded image-text data to predict an extensive range of relationship classes.
  • Thumbnail Image
    Item
    DEEP LEARNING ENSEMBLES FOR LIGHTWEIGHT OBJECT DETECTION
    (2023) Mattingly, Alexander Singfei; Bhattacharyya, Shuvra S.; Electrical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Object detection, the task of identifying and localizing important objectswithin an image frame, is a critical task in automation, surveillance, and safety applications. Further, developments in lightweight sensor technologies, improved small-scale computing, and the widespread accessibility of well-labeled data have enabled numerous applications for object detection on inexpensive or low-power hardware. Many applications, such as self-driving and unmanned aerial vehicles, must process sensor data as it arrives (in real-time) using onboard hardware (at- the-edge) in order to continually inform systems such as navigation. Additionally, detection must be often achieved on platforms with limited Size, Weight, and Power (SWaP) since advanced computer hardware may not be possible to place nearby the sensor. This presents a unique challenge: how can we best provide accurate real-time object detection on limited SWaP systems while maintaining low power and computational cost? A widespread approach for detection is using deep-learning. An object de-tection network is trained on a labeled dataset of images containing known objects and their location. After training, the network may be used to infer on new data, providing both bounding boxes and class identifiers for each box. Popular single- shot detectors have been demonstrated to achieve real-time performance on some systems while having acceptable detection accuracy. An ensemble is a system comprised of several detectors. In theory, detectorswith architectural differences, ones trained on different data, or detectors given different augmented data at inference time will discover and detect different features of an image. Unifying the results of several different detectors has been demonstrated to improve the detection performance of the ensemble compared to the performance of any component network at the expense of additional computational cost. Further, systems using an ensemble of detectors have been shown to be good solutions to object detection problems in limited SWaP applications such as surveillance and search-and-rescue. Unlike tasks such as classification, where the output of a network describes theentire input, object detection is concerned both with localization and classification of one or multiple objects in an image. Two different bounding boxes for partially occluded objects may overlap, or highly similar bounding boxes may describe the same object. As a result, unifying the results of object detector networks is far more difficult than unifying classifier networks. Current works typically accomplish this by applying strategies that iteratively combine bounding boxes by overlap. However, little comparative study has been done to determine the effectiveness of these approaches. This thesis builds on current methods of ensembling object detector networksusing novel approaches to combine bounding boxes. We first introduce current methods for ensembling and a dataflow-based framework for efficient, scalable com- putation of ensembles of detectors. We then contribute a novel method for ensem- bling and implement a practical system for scalable detection using an elastic neural network.
  • Thumbnail Image
    Item
    Scalable Methods for Robust Machine Learning
    (2023) Levine, Alexander Jacob; Feizi, Soheil; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    In recent years, machine learning systems have been developed that demonstrate remarkable performance on many tasks. However, naive metrics of performance, such as the accuracy of a classifier on test samples drawn from the same distribution as the training set, can provide an overly optimistic view of the suitability of a model for real-world deployment. In this dissertation, we develop models that are robust, in addition to performing well on large-scale tasks. One notion of robustness is adversarial robustness, which characterizes the performance of models under adversarial attacks. Adversarial attacks are small, often imperceptible, distortions to the inputs of machine learning systems which are crafted to substantially change the output of the system. These attacks represent a real security threat, and are especially concerning when machine learning systems are used in safety-critical applications. To mitigate this threat, certifiably robust classification techniques have been developed. In a certifiably robust classifier, for each input sample, in addition to a classification, the classifier also produces a certificate, which is a guaranteed lower bound on the magnitude of any perturbation required to change the classification. Existing methods for certifiable robustness have significant limitations, which we address in Parts I and II of this dissertation: (i) Currently, randomized smoothing techniques are the only certification techniques that are viable for large-scale image classification (i.e. ImageNet). However, randomized smoothing techniques generally provide only high-probability, rather than exact, certificate results. To address this, we develop deterministic randomized smoothing-based algorithms, which produce exact certificates with finite computational costs. In particular, in Part I of this dissertation, we present to our knowledge the first deterministic, ImageNet-scale certification methods under the L_1, L_p (for p < 1), and "L_0" metrics. (ii) Certification results only apply to particular metrics of perturbation size. There is therefore a need to develop new techniques to provide provable robustness against different types of attacks. In Part II of this dissertation, we develop randomized smoothing-based algorithms for several new types of adversarial perturbation, including Wasserstein adversarial attacks, Patch adversarial attacks, and Data Poisoning attacks. The methods developed for Patch and Poisoning attacks are also deterministic, allowing for efficient exact certification. In Part III of this dissertation, we consider a different notion of robustness: test-time adaptability to new objectives in reinforcement learning. This is formalized as goal-conditioned reinforcement learning (GCRL), in which each episode is conditioned by a new "goal," which determines the episode's reward function. In this work, we explore a connection between off-policy GCRL and knowledge distillation, which leads us to apply Gradient-Based Attention Transfer, a knowledge distillation technique, to the Q-function update. We show, empirically and theoretically, that this can improve the performance of off-policy GCRL when the space of goals is high-dimensional.
  • Thumbnail Image
    Item
    Adversarial Robustness and Fairness in Deep Learning
    (2023) Cherepanova, Valeriia; Goldstein, Tom; Applied Mathematics and Scientific Computation; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    While deep learning has led to remarkable advancements across various domains, the widespread adoption of neural network models has brought forth significant challenges such as vulnerability to adversarial attacks and model unfairness. These challenges have profound implications for privacy, security, and societal impact, requiring thorough investigation and development of effective mitigation strategies. In this work we address both these challenges. We study adversarial robustness of deep learning models and explore defense mechanisms against poisoning attacks. We also explore the sources of algorithmic bias and evaluate existing bias mitigation strategies in neural networks. Through this work, we aim to contribute to the understanding and enhancement of both adversarial robustness and fairness of deep learning systems.
  • Thumbnail Image
    Item
    Learning and Composing Primitives for the Visual World
    (2023) Gupta, Kamal; Shrivastava, Abhinav; Davis, Larry; Computer Science; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Compositionality is at the core of how humans understand and create visual data. In order for the computational approaches to assist humans in creative tasks, it is crucial for them to understand and perform composition. The recent advances in deep generative models have enabled us to convert noise to highly realistic scenes. However, in order to harness these models for building real-world applications, I argue that we need to be able to represent and control the generation process with the composition of interpretable primitives. In the first half of this talk, I’ll discuss how deep models can discover such primitives from visual data. By playing a cooperative referential game between two neural network agents, we can represent images with discrete meaningful concepts without supervision. I further extend this work for applications in image and video editing by learning a dense correspondence of primitives across images. In the second half, I’ll focus on learning how to compose primitives for both 2D and 3D visual data. By expressing the scenes as an assembly of smaller parts, we can easily perform generation from scratch or from partial scenes as input. I’ll conclude the talk with a discussion of possible future directions and applications of generative models, and how we can better enable users to guide the creative process.