Institute for Systems Research Technical Reports
Permanent URI for this collectionhttp://hdl.handle.net/1903/4376
This archive contains a collection of reports generated by the faculty and students of the Institute for Systems Research (ISR), a permanent, interdisciplinary research unit in the A. James Clark School of Engineering at the University of Maryland. ISR-based projects are conducted through partnerships with industry and government, bringing together faculty and students from multiple academic departments and colleges across the university.
Browse
Search Results
Item Full wafer mapping and response surface modeling techniques for thin film deposition processes(2008-07-25) Leon, Marıa del Pilar; Adomaitis, RaymondComputational techniques for representing and analyzing full wafer metrology data are developed for chemical vapor deposition and other thin-film processing applications. Spatially resolved mea- surement data are used to produce “vir tual wafers” that are subsequently used to create response surface models for predicting the full-wafer thickness, composition, or any other proper ty profile as a function of processing parameters. Statistical analysis tools are developed to assess model prediction accuracy and to compare the relative accuracies of different models created from the same wafer data set. Examples illustrating the use of these techniques for film proper ty unifor- mity optimization and for creating intentional film-proper ty spatial gradients for combinatorial CVD applications are presented.Item A Comparative Study of Reactor Designs for the Production of Graded Films with Applications to Combinatorial CVD(2007-10-24) Sreenivasan, Ramaswamy; Adomaitis, Raymond A.Segmented CVD reactor designs enabling spatial control of across-wafer gas phase composition were evaluated for depositing graded films suitable for combinatorial studies. Specifically two reactor designs were constructed and evaluated with experiments and response surface model (RSM) based analysis to quantify the reactor performance in terms of film thickness uniformity, sensitivity to adjustable reactor operating conditions, range of thickness over which uniformity could be achieved and each reactor’s ability to control the thickness gradient across the wafer surface. Design features distinguishing the two reactor systems and their influence on gradient control versus deposition rate performance are summarized. RS models relating wafer state properties to process recipes are shown to be effective tools to quantify, qualify and compare different reactor designs.Item Modeling and Simulation of a Tungsten Chemical Vapor Deposition Reactor(2000) Chang, Hsiao-Yung; Adomaitis, Raymond A.; ISRChemical vapor deposition (CVD) processes are widely used in semiconductor device fabrication to deposit thin films of electronic materials. Physically based CVD modeling and simulation methods have been adopted for reactor design and process optimization applications to satisfy the increasingly strigent processing requirements.In this research, an ULVAC ERA-1000 selective tungsten chemical vapor deposition system located at the University of Maryland was studied where a temperature difference as large as 120 oC between the system wafer temperature reading and the thermocoupled instrumented wafer measurement was found during the manual processing mode.
The goal of this research was to develop a simplified, but accurate, three-dimensional transport model that is capable of describing the observed reactor behavior.
A hybrid approach combining experimental and simulation studies was used for model development. Several sets of experiments were conducted to investigate the effects of process parameters on wafer temperature.
A three-dimensional gas flow and temperature model was developed and used to compute the energy transferred across the gas/wafer interface. System dependent heat transfer parameters were formulated as a nonlinear parameter estimation problem and identified using experimental measurements.
Good agreement was found between the steady-state wafer temperature predictions and experimental data at various gas compositions, and the wafer temperature dynamics were successfully predicted using a temperature model considering the energy exchanges between the thermocouple, wafer, and showerhead.
Item Influence of Gas Composition on Wafer Temperature Control in a Tungsten Chemical Vapor Deposition Reactor(2000) Chang, Hsiao-Yung; Adomaitis, Raymond A.; Kidder, John N., Jr.; Rubloff, Gary W.; ISRExperimental measurements of wafer temperature in a single-wafer,lamp-heated CVD system were used to study the wafer temperature responseto gas composition. A physically based simulation procedure for theprocess gas and wafer temperature was developed in which a subset ofparameter values were estimated using a nonlinear, iterative parameteridentification method, producing a validated model with true predictivecapabilities.With process heating lamp power held constant, wafertemperature variations of up to 160 degrees K were observed by varying feed gasH_2/N_2 ratio. Heat transfer between the wafer and susceptor wasstudied by shifting the instrumented wafer off the susceptor axis,exposing a portion of the wafer backside to the chamber floor. Modelpredictions and experimental observations both demonstrated that the gasvelocity field had little influence on the observed wafer and predictedgas temperatures.
Item Modeling and Reduction with Applications to Semiconductor Processing(1999) Newman, Andrew J.; Krishnaprasad, P.S.; ISR; CDCSSThis thesis consists of several somewhat distinct but connected parts, withan underlying motivation in problems pertaining to control and optimizationof semiconductor processing. The first part (Chapters 3 and 4) addressesproblems in model reduction for nonlinear state-space control systems. In1993, Scherpen generalized the balanced truncation method to the nonlinearsetting. However, the Scherpen procedure is not easily computable and hasnot yet been applied in practice.We offer a method for computing a workingapproximation to the controllability energy function, one of the mainobjects involved in the method. Moreover, we show that for a class ofsecond-order mechanical systems with dissipation, under certain conditionsrelated to the dissipation, an exact formula for the controllabilityfunction can be derived. We then present an algorithm for a numericalimplementation of the Morse-Palais lemma, which produces a local coordinatetransformation under which a real-valued function with a non-degeneratecritical point is quadratic on a neighborhood of the critical point.
Application of the algorithm to the controllabilty function plays a key rolein computing the balanced representation. We then apply our methods andalgorithms to derive balanced realizations for nonlinear state-space modelsof two example mechanical systems: a simple pendulum and a double pendulum.
The second part (Chapter 5) deals with modeling of rapid thermal chemicalvapor deposition (RTCVD) for growth of silicon thin films, viafirst-principles and empirical analysis. We develop detailedprocess-equipment models and study the factors that influence depositionuniformity, such as temperature, pressure, and precursor gas flow rates,through analysis of experimental and simulation results. We demonstratethat temperature uniformity does not guarantee deposition thicknessuniformity in a particular commercial RTCVD reactor of interest.
In thethird part (Chapter 6) we continue the modeling effort, specializing to acontrol system for RTCVD heat transfer. We then develop and apply ad-hocversions of prominent model reduction approaches to derive reduced modelsand perform a comparative study.
Item Modeling and Optimization for Epitaxial Growth: Transport and Growth Studies(1999) Newman, Andrew J.; Krishnaprasad, Perinkulam S.; Krishnaprasad, Perinkulam S.; ISR; CDCSSThis report details the objectives, methodologies, and results for Phase II ofthe project, "Modeling and Optimization for Epitaxial Growth"(see~cite{NKPB98} for Phase I report). This project is a joint effort betweenthe Institute for Systems Research (ISR) and Northrop Grumman'sElectronic Sensors and Systems Sector (ESSS), Baltimore, MD.The overallobjective is to improve manufacturing effectiveness for epitaxial growth ofsilicon and silicon-germanium (Si-Ge) thin films on a silicon wafer. Growthtakes place in the ASM Epsilon-1 chemical vapor deposition (CVD) reactor, aproduction tool currently in use at ESSS. Phase II project results includedevelopment of a new comprehensive process-equipment model capable ofpredicting gas flow, heat transfer, species transport, and chemical mechanismsin the reactor under a variety of process conditions and equipment settings.
Applications of the model include prediction and control of deposition rate andthickness uniformity; studying sensitivity of deposition rate to processsettings such as temperature, pressure, and flow rates; and reducing the use ofconsumables via purge flow optimization. The implications of varioussimulation results are discussed in terms of how they can be used to reducecosts and improve product quality, e.g., thickness uniformity of thin films. We demonstrate that achieving deposition uniformity requires some degree oftemperature non-uniformity to compensate for the effects of other phenomenasuch as reactant depletion, gas heating and gas phase reactions, thermaldiffusion of species, and flow patterns.
Item Modeling and Model Reduction for Control and Optimization of Epitaxial Growth in a Commercial Rapid Thermal Chemical Vapor Deposition Reactor(1998) Newman, Andrew J.; Krishnaprasad, Perinkulam S.; Ponczak, Sam; Brabant, Paul; Krishnaprasad, Perinkulam S.; ISRIn December 1996, a project was initiated at the Institute for Systems Research (ISR), under an agreement between Northrop GrummanElectronic Sensors and Systems Division (ESSD) and the ISR, to investigatethe epitaxial growth of silicon-germanium (Si-Ge) heterostructures in a commercial rapid thermal chemical vapor deposition (RTCVD) reactor. This report provides a detailed account of the objectives and results of work done on this project as of September 1997. The report covers two maintopics: modeling and model reduction. Physics-based models are developedfor thermal, fluid, and chemical mechanisms involved in epitaxial growth.Experimental work for model validation and determination of growth parameters is described. Due to the complexity and high computational demands of the models, we investigate the use of model reduction techniques to reduce the model complexity, leading to faster simulation and facilitating the use of standard control and optimization strategies.Item Model Reduction for a Tungsten Chemical Vapor Deposition System(1998) Chang, Hsiao-Yung; Adomaitis, Raymond A.; ISRA model of a tungsten chemical vapor deposition (CVD) system isdeveloped to study the CVD system thermal dynamics and wafer temperaturenonuniformities during a processing cycle. We develop a model for heattransfer in the system's wafer/susceptor/guard ring assembly and discretizethe modeling equation with a multiple-grid, nonlinear collocation technique.This weighted residual method is based on the assumption that the system'sdynamics are governed by a small number of modes and that the remaining modesare slaved to these slow modes. Our numerical technique produces a model thatis effectively reduced in its dynamical dimension, while retaining theresolution required for the wafer assembly model. The numerical techniqueis implemented with only moderately more effort than the traditional collocationor pseudospectral techniques. Furthermore, by formulating the technique in termsof a collocation procedure, the relationship between temperature measurementsmade on the wafer and the simulator results produced with the reduced-ordermodel remain clear.Item Analysis of Heat Transfer in a Chemical Vapor Deposition Reactor: An Eigenfunction Expansion Solution Approach(1997) Chang, Hsiao-Yung; Adomaitis, Raymond A.; Adomaitis, Raymond A.; ISRA numerical solution procedure combining several weighted residual methods and based on global trial function expansion is developed to solve a model for the steady state gas flow field and temperature distribution in a low-pressure chemical vapor deposition reactor. The enthalpy flux across the wafer/gas boundary is calculated explicitly and is found to vary significantly as a function of wafer position. An average heat transfer coefficient is estimated numerically and is compared to typical radiative heat transfer rates in the system. The convergence properties of the discretization method developed also are discussed.