Institute for Systems Research Technical Reports

Permanent URI for this collectionhttp://hdl.handle.net/1903/4376

This archive contains a collection of reports generated by the faculty and students of the Institute for Systems Research (ISR), a permanent, interdisciplinary research unit in the A. James Clark School of Engineering at the University of Maryland. ISR-based projects are conducted through partnerships with industry and government, bringing together faculty and students from multiple academic departments and colleges across the university.

Browse

Search Results

Now showing 1 - 10 of 162
  • Thumbnail Image
    Item
    On the Converse to Pompeiu's Problem
    (1997) Berenstein, Carlos A.; ISR
    This is a reprint of a 1976 paper that appears in an inaccessible Brazilian journal and has become very looked after. It deals with the problem of determining a convex plane domain from the existence of infinitely many over determined Neumann eigenvalues. Recent related work in magneto hydrodynamics of Vogelius and other applications are closely related to this result. The more general result appears in J. Analyse Math 1980 and Crelle l987. See Zalcmain's bibliographic survey of pompeiu problem for other references.
  • Thumbnail Image
    Item
    Robot Formations: Learning Minimum-Length Paths on Uneven Terrain
    (2000) Hristu, Dimitrios; ISR; CDCSS
    We discuss a prototypeproblem involving terrain exploration and learning by formations ofautonomous vehicles. We investigate an algorithm forcoordinating multiple robots whose task is to find the shortest pathbetween a fixed pair of start and target locations, without access toa "global" map containing those locations.

    Odometry information alone isnot sufficient for minimizing path length if the terrain is uneven orif it includes obstacles. We generalize existing results on a simplecontrol law, also known as "local pursuit," which is appropriate inthe context of formations and which requires limited interactionbetween vehicles.

    Our algorithm is iterative and converges to alocally optimal path. We include simulations and experimentsillustrating the performance of the proposed strategy.

    The research and scientific content in this material has been published in the IEEE Mediterranean Conference on Control and Automation, July 2000.
  • Thumbnail Image
    Item
    Fast Evaluation of Demagnetizing Field in Three Dimensional Micromagnetics using Multipole Approximation
    (2000) Tan, X.; Baras, John S.; Krishnaprasad, Perinkulam S.; Baras, John S.; Krishnaprasad, Perinkulam S.; ISR; CDCSS
    Computational micromagnetics in three dimensions is of increasing interest with the development of magnetostrictive sensors andactuators. In solving the Landau-Lifshitz-Gilbert (LLG) equation, the governing equation of magnetic dynamics for ferromagnetic materials, we need to evaluate the effective field. The effective field consists of several terms, among which the demagnetizing field is of long-range nature.

    Evaluating the demagnetizing field directly requires work of O(N^2) for a grid of N cells and thus it is the bottleneck in computational micromagnetics. A fast hierarchical algorithm using multipole approximation is developed to evaluate the demagnetizing field. We first construct a mesh hierarchy and divide the grid into boxes of different levels. The lowest level box is the whole grid while the highest level boxes are just cells. The approximate field contribution from the cells contained in a box is characterized by the box attributes, which are obtained via multipole approximation. The algorithm computes field contributions from remote cells using attributes of appropriate boxes containing those cells, and it computes contributions from adjacent cells directly. Numerical results have shown that the algorithm requires work of O(NlogN) and at the same time it achieves high accuracy. It makes micromagnetic simulation in three dimensions feasible.

  • Thumbnail Image
    Item
    Computational Micromagnetics for Magnetostrictive Actuators
    (2000) Tan, X.; Baras, John S.; Krishnaprasad, Perinkulam S.; Baras, John S.; Krishnaprasad, Perinkulam S.; ISR; CDCSS
    Computational micromagnetics plays an important role in design and control of magnetostrictive actuators. A systematic approach to calculate magnetic dynamics and magnetostriction is presented. A finite difference method is developed to solve the coupled Landau-Lifshitz-Gilbert(LLG) equation for dynamics of magnetization and a one dimensional elastic motion equation. The effective field in the LLG equation consists of the external field, the demagnetizing field, the exchange field, and the anisotropy field.

    A hierarchical algorithm using multipole approximation speeds up the evaluation of the demagnetizing field, reducing computational cost from O(N^2) to O(NlogN). A hybrid 3D/1D rod model is adopted to compute the magnetostriction: a 3D model is used in solving the LLG equation for the dynamics of magnetization; then assuming that the rod is along z-direction, we take all cells with same z-cordinate as a new cell. The values of the magnetization and the effective field of the new cell are obtained from averaging those of the original cells that the new cell contains. Each new cell is represented as a mass-spring in solving the motion equation.

    Numerical results include: 1. domain wall dynamics, including domain wall formation and motion; 2. effects of physical parameters, grid geometry, grid refinement and field step on H-M hysteresis curves; 3. magnetostriction curve.

  • Thumbnail Image
    Item
    Computing Balanced Realizations for Nonlinear Systems
    (2000) Newman, Andrew J.; Krishnaprasad, Perinkulam S.; Krishnaprasad, Perinkulam S.; ISR; CDCSS
    This paper addresses the problem of computability pertaining to the Scherpen(1994) theory and procedure for balancing of nonlinear systems. In contrastto Moore's (1981) balancing method for linear systems, the Scherpen procedurefor nonlinear balancing is not immediately amenable to computationalimplementation. For example, the controllability energy function correspondsto the value function for a nonlinear optimal control problem. Also, theMorse-Palais lemma guarantees the existence of a local coordinatetransformation under which the controllability energy function takes acanonical quadratic form, but provides no constructive procedure for obtainingit. Thus, tools have not yet appeared for computing balanced realizations fornonlinear systems, and the procedure has not yet been applied as a tool formodel reduction.

    First, we consider the problem of computing the controllability energyfunction without numerically solving the family of optimal control problems,or the associated Hamilton-Jacobi-Bellman equation, implied in its definition.Stochastically excited systems play a major role in our methodology. Wepresent a stochastic method for computing an estimate of the controllabilityfunction, and show that in certain situations the method provides an exactsolution. The procedure is tested on applications via Monte-Carlo experiments.

    Then, we address the problem of numerically determining a Morse transformationfor a function with non-degenerate critical point at 0. We develop analgorithm for computing the desired nonlinear transformation and estimatingthe neighborhood on which the transformed controllability function isquadratic.

    In the literature, examples of applied nonlinear balancing have been limited topseudo-balancing of 2-dimensional gradient systems and noting that in the caseof linear systems the energy functions approach reduces to the usual setting ofgramians. We apply our approach to numerically derive, for the first time,balanced representations of nonlinear state-space models. In particular, wepresent applications to a forced damped pendulum system and a forced dampeddouble pendulum system.

    The research and scientific content in this material has been published in theProceedings of the 14th International Symposium on Mathematical Theory of Networks and Systems, Perpignan, France, June 19-23, 2000.
  • Thumbnail Image
    Item
    Experimenting with Hybrid Control
    (2000) Brockett, Roger W.; Hristu, Dimitrios; ISR; CDCSS
    There is a growing realization among educators andemployers that students of automatic control should be encouraged tothink of the subject in broader terms. The systems approach shouldembrace communication requirements, signal processing, data logging,etc. all the way up to and including the level of complexity suggestedby the phrase "enterprise control." Designing a controlexperiment that is illustrative and instructional in this broadersense presents a number of challenges beyond those discussedabove. The systems under consideration must be very flexible. Ofcourse the hardware must continue to be reliable and relatively easyto understand at an intuitive level. They should also reflect thecomplexity of purpose and the possibility of multi-modal operationthat one expects to find in complex systems. With these qualities inmind, we have assembled and extensively exercised an experimentalhybrid control system for use in an instructional/research laboratoryat Harvard. Our goal with this paper is to describe for others thestructure of the system and to present a sample of the experimentsthat were facilitated by it.

    An important feature of the facility we describe is that it uses severaltypes of sensing modalities including position sensing, tactile sensingand more conventional vision sensing. It can interact with objectsof different complexity and is subject to communication constraints arising in a completelynatural and generic way. In constructing it we have used off-the-shelfcomponents wherever possible and made choices with an eye towardflexibility and reliability.

    The research and scientific content in this material has been submitted to the IEEE Control Systems Magazine.
  • Thumbnail Image
    Item
    Generalized Inverses for Finite-Horizon Tracking
    (2000) Hristu, Dimitrios; ISR; CDCSS
    Control and communication issues aretraditionally "decoupled" in discussions of decision and controlproblems, as this simplifies the analysis and generally works well forclassical models. This fundamental assumption deserves re-examinationas control applications spread into new areas where system complexityis significant. Such areas include the coordinated control of aerialvehicles (UAVs), MEMS devices, multi-joint manipulators and othersettings where many systems must share the attention of adecision-maker. We consider a new class ofsampled-data systems (termed "computer-controlled systems") thatoffer the possibility of jointly optimizing between control andcommunication goals. Computer-controlled LTI systems can be viewed aslinear operators between appropriate inner-product spaces. Thegeneralized inverses of these operators are used to solve a class offinite-horizon tracking problems.

    This work was presented at the IEEE Conf. on Decision and Control, Dec. 1999.
  • Thumbnail Image
    Item
    The Dynamics of a Forced Sphere-Plate Mechanical System
    (2000) Hristu, Dimitrios; ISR; CDCSS
    We study the dynamics and explore thecontrollability of a family of sphere-plate mechanical systems. Theseare nonholonomic systems with a five-dimensional configuration spaceand three independent velocities. They consist of a sphere rollingin contact with two horizontal plates. Kinematic models ofsphere-plate systems have played an important role in the controlsystems literature addressing the kinematics of rolling bodies, aswell as in discussions of nonholonomic systems. However, kinematicanalysis falls short of allowing one to understand the dynamicbehavior of such systems. In this work we formulate and study adynamic model for a class of sphere-plate systems in order to answerthe question: "Is it possible to impart a net angular momentum to asphere which rolls without slipping between two plates, given thatthe position of the top plate is subject to exogenousforces?"

    The research and scientific content in this material will appearin IEEE Transactions on Automatic Control.
  • Thumbnail Image
    Item
    An Object-Oriented Programming Approach to Implement Global Spectral Methods: Application to Dynamic Simulation of a Chemical Infiltration Process
    (2000) Huang, Jiefei; Adomaitis, Raymond A.; ISR
    Boundary-value problems (BVPs) in relatively simple geometriescan be solved using global spectral methods. These discretizationmethods are applicable to a wide range of problems and are suitablefor a "rapid prototyping" approach to simulator development forcomplex systems.

    Object-Oriented Programming techniques for solvingBVPs are introduced in this work. Object classes are created toencapsulate trial function sequences, discretized differential andquadrature operators, and other data structures used for spectraldiscretization and projection operations. Operator/functionoverloading subsequently is used to numerically implement theGalerkin projection method. Emphasis is placed on developingnumerical methods suitable for discretizing 2- and 3-dimensionalproblems, integrating the resulting ODE/AE systems in time, andreconstructing the solutions in the physical space. A detailed model of anisothermal carbon-carbon chemical vapor infiltration (CVI) systemwas studied as a true test of the ability of the numerical methods.

  • Thumbnail Image
    Item
    Randomized Difference Two-Timescale Simultaneous Perturbation Stochastic Approximation Algorithms for Simulation Optimization of Hidden Markov Models
    (2000) Bhatnagar, Shalabh; Fu, Michael C.; Marcus, Steven I.; Bhatnagar, Shashank; Marcus, Steven I.; Fu, Michael C.; ISR
    We proposetwo finite difference two-timescale simultaneous perturbationstochastic approximation (SPSA)algorithmsfor simulation optimization ofhidden Markov models. Stability and convergence of both thealgorithms is proved.

    Numericalexperiments on a queueing model with high-dimensional parameter vectorsdemonstrate orders of magnitude faster convergence using thesealgorithms over related $(N+1)$-Simulation finite difference analoguesand another two-simulation finite difference algorithm that updates incycles.