Environmental Science & Technology Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/1601
Browse
7 results
Search Results
Item Urbanization Altered Bacterial and Archaeal Composition in Tidal Freshwater Wetlands Near Washington DC, USA, and Buenos Aires, Argentina(MDPI, 2019-03-06) Gonzalez Mateu, Martina; Park, Cedric Evan; McAskill, Cullen Patrick; Baldwin, Andrew H.; Yarwood, Stephanie A.Urban expansion causes coastal wetland loss, and environmental stressors associated with development can lead to wetland degradation and loss of ecosystem services. This study investigated the effect of urbanization on prokaryotic community composition in tidal freshwater wetlands. Sites in an urban, suburban, and rural setting were located near Buenos Aires, Argentina, and Washington D.C., USA. We sampled soil associated with two pairs of functionally similar plant species, and used Illumina sequencing of the 16S rRNA gene to examine changes in prokaryotic communities. Urban stressors included raw sewage inputs, nutrient pollution, and polycyclic aromatic hydrocarbons. Prokaryotic communities changed along the gradient (nested PerMANOVA, Buenos Aires: p = 0.005; Washington D.C.: p = 0.001), but did not differ between plant species within sites. Indicator taxa included Methanobacteria in rural sites, and nitrifying bacteria in urban sites, and we observed a decrease in methanogens and an increase in ammonia-oxidizers from rural to urban sites. Functional profiles in the Buenos Aires communities showed higher abundance of pathways related to nitrification and xenobiotic degradation in the urban site. These results suggest that changes in prokaryotic taxa across the gradient were due to surrounding stressors, and communities in urban and rural wetlands are likely carrying out different functions.Item Effects of Detritus on the Mosquito Culex pipiens: Phragmites and Schedonorus (Festuca) Invasion Affect Population Performance(MDPI, 2019-10-25) Leisnham, Paul T.; Scott, Brandon; Baldwin, Andrew H.; LaDeau, Shannon L.Species interactions that influence the performance of the exotic mosquito Culex pipiens can have important effects on the transmission risk of West Nile virus (WNV). Invasive plants that alter the vegetation communities of ephemeral ground pools may facilitate or resist the spread of C. pipiens (L.) by altering allochthonous inputs of detritus in those pools. To test this hypothesis, we combined field surveys of roadside stormwater ditches with a laboratory microcosm experiment to examine relationships between C. pipiens performance and water quality in systems containing detritus from invasive Phragmites australis (Cav.) Trin. Ex Steud., introduced Schedonorus arundinaceus (Schreb.) Dumort., or native Juncus effusus L. or Typha latifolia L. In ditches, C. pipiens abundance was unrelated to detritus species but female C. pipiens were significantly larger from ditches with S. arundinaceus and smaller with J. effusus. Larger and smaller C. pipiens were also produced in microcosms provisioned with S. arundinaceus and J. effusus, respectively, yet the per capita rate of population of change did not vary. Larger females from habitats with S. arundinaceus were likely caused by faster decay rates of S. arundinaceus and resultant increases in microbial food, but lower survival as a result of fouling and higher tannin-lignin concentrations resulted in little changes to overall population performance. Larger female mosquitoes have been shown to have greater potential for transmitting arboviruses. Our findings suggest that changed community-level interactions from plant invasions in urban ephemeral ground pools can affect the fitness of C. pipiens and possibly increase WNV risk.Item Loss of Coastal Wetlands in Lake Burullus, Egypt: A GIS and Remote-Sensing Study(MDPI, 2022-04-21) Keshta, Amr E.; Riter, J. C. Alexis; Shaltout, Kamal H.; Baldwin, Andrew H.; Kearney, Michael; Sharaf El-Din, Ahmed; Eid, Ebrahem M.Lake Burullus is the second largest lake at the northern edge of the Nile Delta, Egypt, and has been recognized as an internationally significant wetland that provides a habitat for migrating birds, fish, herpetofauna, and mammals. However, the lake is experiencing severe human impacts including drainage and conversion to agricultural lands and fish farms. The primary goal of this study was to use multispectral, moderate-spatial-resolution (30 m2) Landsat satellite imagery to assess marsh loss in Lake Burullus, Egypt, in the last 35 years (1985–2020). Iterative Self-Organizing Data Analyses (ISODATA) unsupervised techniques were applied to the Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager–Thermal Infrared Sensor (OLI–TIRS) satellite images for classification of the Lake Burullus area into four main land-use classes: water, marsh, unvegetated land surfaces (roads, paths, sand sheets and dunes), and agricultural lands and fish farms. The overall classification accuracy was estimated to be 96% and the Kappa index was 0.95. Our results indicated that there is a substantial loss (44.8% loss) in the marsh aerial coverage between 1985 and 2020. The drainage and conversion of wetlands into agricultural lands and/or fish farms is concentrated primarily in the western and southern part of the lake where the surface area of the agricultural lands and/or fish farms doubled (103.2% increase) between 2000 and 2020. We recommend that land-use-policy makers and environmental government agencies raise public awareness among the local communities of Lake Burullus of the economic and environmental consequences of the alarming loss of marshland, which will likely have adverse effects on water quality and cause a reduction in the invaluable wetland-ecosystem services.Item Variation in Plant Community Composition and Biomass to Macro and Micronutrients and Salinity across Egypt’s Five Major Coastal Lakes(MDPI, 2022-05-19) Keshta, Amr E.; Shaltout, Kamal H.; Baldwin, Andrew H.; Sharaf El-Din, Ahmed; Eid, Ebrahem M.To better assess the relationship between excess nutrient runoff and plant species diversity in the Egyptian northern coastal lakes, the relationships between aboveground biomass, species diversity, and both micro and macronutrient concentrations in sediment, water, and plant materials were investigated. A total of 38 sampling sites were established for the five Egyptian northern lakes (8 for Bardawil, 10 for Manzala, 8 for Burullus, and 6 for each of Edku and Mariut). Sediment, water, and plant materials were collected and analyzed for both micro and macronutrients including nitrogen (N), phosphorus (P), sulfur (S), magnesium (Mg), calcium (Ca), potassium (K), iron (Fe), boron (B), sodium (Na), and aluminum (Al). Based on the Sørensen similarity index, Burullus and Mariut lakes were very similar (0.70) in their vegetation composition, while Bardawil Lake had no similarity with the rest of the lakes. In sediment, Mariut Lake had the highest total P concentrations (1.3 g kg−1), while Bardawil Lake had the lowest (0.3 g kg−1). Bardawil, a hypersaline lake, had the highest concentrations for both Na and B (9.6 and 0.1 g kg−1, respectively). Among the deltaic lakes, Mariut Lake water bodies had the lowest plant species richness. The current study indicated that the excessive agricultural and industrial nutrient runoff had a greater impact on the nutrient distribution pattern and negatively impacted plant species diversity at the Egyptian coastal lakes. An integrated management plan, including establishing more pretreatment facilities for runoff and wastewater, should be implemented to reduce the nutrient loads from the main industrial and agricultural runoff sources. Moreover, periodic monitoring and assessment for nutrient runoff reaching the lakes are necessary to help reduce eutrophication levels.Item Loss of Coastal Wetlands in Lake Burullus, Egypt: A GIS and Remote-Sensing Study(MDPI, 2022-04-21) Keshta, Amr E.; Riter, J. C. Alexis; Shaltout, Kamal H.; Baldwin, Andrew H.; Kearney, Michael; El-Din, Ahmed Sharaf; Eid, Ebrahem M.Lake Burullus is the second largest lake at the northern edge of the Nile Delta, Egypt, and has been recognized as an internationally significant wetland that provides a habitat for migrating birds, fish, herpetofauna, and mammals. However, the lake is experiencing severe human impacts including drainage and conversion to agricultural lands and fish farms. The primary goal of this study was to use multispectral, moderate-spatial-resolution (30 m2) Landsat satellite imagery to assess marsh loss in Lake Burullus, Egypt, in the last 35 years (1985–2020). Iterative Self-Organizing Data Analyses (ISODATA) unsupervised techniques were applied to the Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager–Thermal Infrared Sensor (OLI–TIRS) satellite images for classification of the Lake Burullus area into four main land-use classes: water, marsh, unvegetated land surfaces (roads, paths, sand sheets and dunes), and agricultural lands and fish farms. The overall classification accuracy was estimated to be 96% and the Kappa index was 0.95. Our results indicated that there is a substantial loss (44.8% loss) in the marsh aerial coverage between 1985 and 2020. The drainage and conversion of wetlands into agricultural lands and/or fish farms is concentrated primarily in the western and southern part of the lake where the surface area of the agricultural lands and/or fish farms doubled (103.2% increase) between 2000 and 2020. We recommend that land-use-policy makers and environmental government agencies raise public awareness among the local communities of Lake Burullus of the economic and environmental consequences of the alarming loss of marshland, which will likely have adverse effects on water quality and cause a reduction in the invaluable wetland-ecosystem services.Item Effects of Detritus on the Mosquito Culex pipiens: Phragmites and Schedonorus (Festuca) Invasion Affect Population Performance(MDPI, 2019-10-25) Leisnham, Paul T.; Scott, Brandon; Baldwin, Andrew H.; LaDeau, Shannon L.Species interactions that influence the performance of the exotic mosquito Culex pipiens can have important effects on the transmission risk of West Nile virus (WNV). Invasive plants that alter the vegetation communities of ephemeral ground pools may facilitate or resist the spread of C. pipiens (L.) by altering allochthonous inputs of detritus in those pools. To test this hypothesis, we combined field surveys of roadside stormwater ditches with a laboratory microcosm experiment to examine relationships between C. pipiens performance and water quality in systems containing detritus from invasive Phragmites australis (Cav.) Trin. Ex Steud., introduced Schedonorus arundinaceus (Schreb.) Dumort., or native Juncus effusus L. or Typha latifolia L. In ditches, C. pipiens abundance was unrelated to detritus species but female C. pipiens were significantly larger from ditches with S. arundinaceus and smaller with J. effusus. Larger and smaller C. pipiens were also produced in microcosms provisioned with S. arundinaceus and J. effusus, respectively, yet the per capita rate of population of change did not vary. Larger females from habitats with S. arundinaceus were likely caused by faster decay rates of S. arundinaceus and resultant increases in microbial food, but lower survival as a result of fouling and higher tannin-lignin concentrations resulted in little changes to overall population performance. Larger female mosquitoes have been shown to have greater potential for transmitting arboviruses. Our findings suggest that changed community-level interactions from plant invasions in urban ephemeral ground pools can affect the fitness of C. pipiens and possibly increase WNV risk.Item Urbanization Altered Bacterial and Archaeal Composition in Tidal Freshwater Wetlands Near Washington DC, USA, and Buenos Aires, Argentina(MDPI, 2019-03-06) Gonzalez Mateu, Martina; Park, Cedric Evan; McAskill, Cullen Patrick; Baldwin, Andrew H.; Yarwood, Stephanie A.Urban expansion causes coastal wetland loss, and environmental stressors associated with development can lead to wetland degradation and loss of ecosystem services. This study investigated the effect of urbanization on prokaryotic community composition in tidal freshwater wetlands. Sites in an urban, suburban, and rural setting were located near Buenos Aires, Argentina, and Washington D.C., USA.We sampled soil associated with two pairs of functionally similar plant species, and used Illumina sequencing of the 16S rRNA gene to examine changes in prokaryotic communities. Urban stressors included raw sewage inputs, nutrient pollution, and polycyclic aromatic hydrocarbons. Prokaryotic communities changed along the gradient (nested PerMANOVA, Buenos Aires: p = 0.005; Washington D.C.: p = 0.001), but did not differ between plant species within sites. Indicator taxa included Methanobacteria in rural sites, and nitrifying bacteria in urban sites, and we observed a decrease in methanogens and an increase in ammonia-oxidizers from rural to urban sites. Functional profiles in the Buenos Aires communities showed higher abundance of pathways related to nitrification and xenobiotic degradation in the urban site. These results suggest that changes in prokaryotic taxa across the gradient were due to surrounding stressors, and communities in urban and rural wetlands are likely carrying out different functions.