Materials Science & Engineering Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/2792

Browse

Search Results

Now showing 1 - 10 of 36
  • Thumbnail Image
    Item
    INTERFACES IN THIN-FILM SOLID-STATE BATTERIES
    (2024) Castagna Ferrari, Victoria; Rubloff, Gary GWR; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The lack of a diagnostics approach to monitor interface kinetics in solid-state batteries (SSBs) results in an incomplete knowledge of the mechanisms affecting device performance. In this study, a new protocol for process control of SSB interface formation and their evolution during operation is presented. Thin-film SSBs and diagnostic test devices that are composed by a permutation of isolated layers were simultaneously fabricated using sequential sputtering deposition and in-situ patterning using shadow masks. Physics-based electric circuit models were designed for deconvolution of impedance profiles, which enabled an evaluation of bulk properties and space-charge layers at interfaces individually and during operation under different states-of-charge. Relative permittivity values of fundamental battery components (cathode, electrolyte and anode) were calculated as a function of the frequency and the applied voltage. Interfacial impedances, as well as space-charge layers formed at heterojunctions during charge and discharge processes, were successfully deconvoluted using the diagnostic test devices and electric circuit modeling. The cathode-electrolyte interphase was kinetically stable under a voltage window of 0 – 3.6 V vs Cu, and it had an estimated ionic conductivity of the order of 10-9 S/cm, hence it is a localized limiting factor for Li+ transfer. The anode-electrolyte interphase was thermodynamically stable upon completion of the fabrication process, but it became kinetically unstable during charge and discharge cycles. Hence, the proposed diagnostics protocol enlightened the necessity of implementing interfacial engineering on these interphases in the future for improvement of cyclability and stability of SSBs and ionic devices.
  • Thumbnail Image
    Item
    Materials modeling by ab initio methods and machine learning interatomic potentials: a critical assessment
    (2023) Liu, Yunsheng; Mo, Yifei; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Atomistic modeling is a crucial research technique in materials science to simulate physical phenomena based on the interactions of atoms. Density functional theory (DFT) calculation has been the standard technique for evaluating atom interactions, but their applications are limited due to high computation cost. Classical interatomic potential, as another widely adopted technique, provides an alternative by enabling large-scale simulations that are computationally inexpensive. However, the employment of classical potentials for cheap atomistic simulations is achieved in exchange of accurately evaluating atom interactions and the transferability to different chemistries. Most recently, machine learning interatomic potential (MLP) emerges as a new computation technique to bridge the gap between first-principles computation and classical potentials.I first utilized the atomistic modeling based on DFT calculations to find novel Li superionic conductor, a key component of the emerging all-solid-state Li-ion battery technology. I performed a systematic study on the Li-ion conduction of lithium chloride materials system and predicted a dozen potential Li superionic conductors. I revealed that the Li-ion migration in the materials is greatly impacted by the Li content, the cation configuration, and the cation concentrations. I further demonstrated tuning these three factors in designing new chloride Li-ion conductors. Then, I studied the atomistic dynamics predicted by MLPs in comparison to DFT calculations to answer the open question whether MLPs can accurately reproduce dynamical phenomena and related physical properties in molecular dynamics simulations. I examined the current state-of-the-art MLPs and uncovered a number of discrepancies related to atomistic dynamics, defects, and rare events compared to DFT methods. I found that testing averaged errors of MLPs are insufficient and developed evaluation metrics that better indicate the accurate prediction of related properties by MLPs in MD simulations. I further demonstrated that the MLPs optimized by the proposed evaluation metrics have improved prediction in multiple properties. I also study the performance of MLPs in assessing the elemental orderings in a large variety of phases across composition range in alloy system. Using the Li-Al alloy system as a case study, I trained MLPs using only a few phases and the trained MLP demonstrated good performances over a number of existing and other hypothetical materials in- and out- of the training data across the Li-Al binary alloy system. We developed several new evaluation metrics on energy rankings to evaluate the elemental ordering, which is critical for studying the phase stabilities of materials. I tested MLP transferability to other phases and the limits of MLP applications on commonly performed simulations. I also studied the effect of diverse training data on MLP performances. With these efforts evaluating MLP performances for a number of properties, metrics, prediction errors, and dynamical phenomena, I constructed a dataset with a large number of MLPs and their performances and performed an empirical analysis to identify the challenging properties to be predicted by the MLPs. Further, I identified pairs of properties that are challenging to predict. This series of works demonstrated that atomistic modeling is an effective computation technique for studying atomistic dynamic mechanisms, evaluating materials thermodynamics, and guiding materials discovery. As an emerging computational technique, MLPs show good performance on many materials and have great potential to enhance the materials research, but the results show that critical assessments are needed to examine their capabilities to accurately reproduce physical phenomena and understand their limits of performing reliable simulations. My thesis evaluates MLP performances on a number of critical issues related to materials simulations and provides guidance to improve MLPs for future studies.
  • Thumbnail Image
    Item
    Radiation-Induced Modification of Aramid Fibers: Optimizing Crosslinking Reactions and Indirect Grafting of Nanocellulose for Body Armor Applications
    (2022) Gonzalez Lopez, Lorelis; Al-Sheikhly, Mohamad; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The goal of this dissertation was to design, synthesize, and analyze novel aramid fibers by covalently grafting nanocellulose through electron beam irradiation. These nanocellulose functionalized fibers showed enhanced strength and larger surface areas, which improves their performance and applicability in fiber-reinforced composites. Unmodified aramid fibers have smooth and chemically inert surfaces, which results in poor adhesion to many types of resins. Nanocellulose was chosen as the ideal filler to functionalize the fibers due to its reactive surface and high strength-to-weight ratio. Aramid fibers were further modified by radiation-induced crosslinking reactions as a means to avoid scission of the polymeric backbone and to further increase the fiber strength.An indirect radiation-induced grafting approach was used for synthesizing these novel nanocellulose-grafted aramid fibers while avoiding the irradiation of nanocellulose. The fibers were irradiated using the e-beam linear accelerator (LINAC) at the Medical Industrial Radiation Facility (MIRF) at the National Institute of Standards and Technology (NIST). After the irradiation, the fibers were kept in an inert atmosphere and then mixed with a nanocellulose solution for grafting. The grafted fibers were evaluated by gravimetric analysis, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and nuclear magnetic resonance (NMR) spectroscopy. The mechanical properties of the synthesized fibers were studied by single fiber tensile tests. Aramid fibers were also irradiated at the MIRF in the presence of acetylene gas and triacrylate solution as a means to induce crosslinking reactions. These fibers were irradiated at both low doses and high dose rates at room temperature. A mechanism for the crosslinking of aramid fibers was proposed in this dissertation. Mechanical testing of the fibers after crosslinking showed an increase in the strength of the fibers of up to 15%. Ultra-high molecular weight polyethylene (UHMWPE) fibers were also studied, but due to an issue of entanglement of the fibers during the grafting process, their mechanical properties could not be analyzed. Future work will focus on using a better set up to avoid entanglement of these fibers. To complete the study of the radiation effects on polymers, this thesis explored the radiation-induced degradation of aromatic polyester-based resins. The composition of the resins studied included phenyl groups and epoxies, which complicate radiation-induced grafting and crosslinking reactions. Unlike aramid and polyethylene fibers, polyester-based resins have a C-O-C bond that is susceptible to degradation. The resins were irradiated at high doses in the presence of oxygen. The scission of the polymeric backbone of the polymers was studied using Electron Paramagnetic Resonance (EPR) analysis. EPR showed the formation of alkoxyl radicals and C-centered radicals as the primary intermediate products of the C-O-C scissions. The degradation mechanisms of the resins in the presence of different solvents were proposed. Changes in the Tg of the polymers after irradiation, as an indication of degradation, were studied by Dynamic Mechanical Analysis (DMA). The results obtained from this work show that irradiation of these resins results in continuous free radical-chain reactions that lead to the formation of recyclable oligomers.
  • Thumbnail Image
    Item
    Understanding the effect of fabrication conditions on the structural, electrical, and mechanical properties of composite materials containing carbon fillers
    (2022) Morales, Madeline Antonia; Salamanca-Riba, Lourdes G; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Carbon structures are commonly used as the reinforcement phase in composite materials toimprove the electrical, mechanical, and/or thermal properties of the matrix material. The structural diversity of carbon in its various forms (graphene, carbon nanotubes, graphite fibers, for example) makes it a useful reinforcement phase, as the properties of the composite material can be tailored for a specific application depending on the structure and properties of the carbon structure used. In this work, the incorporation of graphene/graphitic carbon into an aluminum metal matrix by an electrocharging assisted process (EAP) was investigated to create a composite material with enhanced electrical conductivity and yield strength. The increased electrical conductivity makes the composite suitable for application in more efficient power transmission lines. The increased strength makes it useful as a lightweight structural material in aerospace applications. The EAP involves applying a direct current to a mixture of molten aluminum and activated carbon to induce the crystallization of graphitic sheets/ribbons that extend throughout the matrix. The effect of processing conditions (current density, in particular) on the graphitic carbon structure, electrical properties, and mechanical properties of the composite material was investigated. The effect of porosity/voids and oxide formation was discussed with respect to the measured properties, and updates to the EAP system were made to mitigate their detrimental effects. It was found that the application of current results in some increase in graphitic carbon crystallite size calculated from Raman spectra, but many areas show the same crystallite size as the activated carbon starting material. It is likely that the current density used during processing was too low to see significant crystallization of graphitic carbon. There was no increase in electrical conductivity compared to a baseline sample with no added carbon, most likely due to porosity/voids in the samples. The mechanical characterization results indicated that the graphitic carbon clusters formed by the process did not act as an effective reinforcement phase, with no improvement in hardness and a decrease in elastic modulus measured by nanoindentation. The decreased elastic modulus was a result of compliant carbon clusters and porosity in the covetic samples. The porosity/voids were not entirely eliminated by the updates to the system, thus the electrical conductivity still did not improve. Additionally, a multifunctional composite structure consisting of a carbon-fiber reinforced polymer (CFRP) laminate with added copper mesh layers was investigated for use in aerospace applications as a structural and electromagnetic interference (EMI) shielding component. The CFRP provides primarily a structural function, while the copper mesh layers were added to increase EMI shielding effectiveness (SE). Nanoindentation was used to study the interfacial mechanical properties of the fiber/polymer and Cu/polymer interfaces, as the interfacial strength dictates the overall mechanical performance of the composite. Further, a finite element model of EMI SE was made to predict SE in the radiofrequency to microwave range for different geometry and configurations of the multifunctional composite structure. The model was used to help determine the optimum design of the multifunctional composite structure for effective shielding of EM radiation. It was found from nanoindentation near the fiber/polymer and Cu/polymer interfaces that the carbon fibers act as an effective reinforcement phase with hardness in the matrix increasing in the interphase region near the carbon fibers due to strong interfacial adhesion. In contrast, the Cu/polymer interface did not exhibit an increase in hardness, indicating poor interfacial adhesion. The EMI SE model indicated that the combination of CFRP layers, which primarily shields EMI by absorption, and Cu mesh, which predominantly shields by reflection, provided adequate SE over a wider frequency range than the individual components alone. Further, it was found that the SE of the CFRP layers were improved by including multiple plies with different relative fiber orientations.
  • Thumbnail Image
    Item
    COMBINATORIAL EXPLORATION OF PHASE TRANSFORMATION IN NiTi-BASED THIN FILM LIBRARIES FOR SHAPE MEMORY ALLOY APPLICATIONS
    (2020) Al Hasan, Naila; Takeuchi, Ichiro; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Ni-Ti based shape memory alloys (SMAs) have found widespread use in the last 70 years but improving their functional stability remains a key quest for more robust and advanced applications. Named for their ability to retain their shape via a reversible martensitic phase transformation (PT), they are sensitive to compositional variations. Tuning the SMA lattice parameters, transformation temperature and thermal hysteresis (DeltaT) by alloying with ternary and quaternary elements, therefore, is a challenging materials exploration effort. Combinatorial materials science streamlines synthesis, characterization and data management processes from multiple high-throughput techniques. In this dissertation, composition spreads of Ni-Ti-X (X = Co, Hf, Pd, V) and Ni-Ti-Cu-Y (where Y = Co, Fe, Pd, V) thin film libraries were synthesized by magnetron co-sputtering to probe a substantial composition space with different stoichiometries under identical conditions. Composition-dependent PT temperature, microstructure and thermal conductivity were investigated using high-throughput wavelength dispersive spectroscopy (WDS), temperature-dependent resistance R(T), synchrotron x-ray diffraction (XRD) and scanning hot probe (SHP) microscopy measurements. Through case studies of ternary Ni-Ti-Co and quaternary Ni-Ti-Cu-V systems, I discuss phase determination and how functional properties correlate with composition and local microstructure using composition-structure-property maps. In the Ni-Ti-Co library, a new, expanded composition space having PT with small thermal hysteresis and c(Co) >10 at.% was identified. Of the 177 compositions, 31 had stable PT with near-zero DeltaT in four. Elemental range for SMA compositions was 25.8 at.% < c(Ni) < 70.5 at.%, 21.4 at.% < c(Ti) < 64.3 at.%, and 5.5 at.% < c(Co) < 26.4 at.%. Crystallographic evidence points to a cubic Pm3m structure present as single or mixed with hexagonal or orthorhombic structures for all these compositions. In the Ni-Ti-Cu-V library, PT was observed in 32 compositions (21.3 at.% < c(Ni) < 30.9 at.%, 49.4 at.% < c(Ti) < 57.5 at.%, 13.8 at.% < c(Cu) < 21.6 at.% and 4.1 at.% < c(V) < 6.2 at.%), predominantly in the Ti-rich region, with zero or near-zero DeltaT in five. Increasing V up to 6 at.% stabilized the mixture of transforming cubic and tetragonal phases. These newly identified composition regions provide flexibility in and expand the operating temperature window for their application in different technologies. Lastly, a novel application of SMAs as phase change materials is briefly investigated through high-throughput determination of their thermal conductivity using scanning hot probe microscopy. Binary, ternary and quaternary thin film libraries of Ni-Ti, Ni-Ti-V and Ni-Ti-Cu-V were evaluated as a benchmarking exercise.
  • Thumbnail Image
    Item
    Electron Beam Induced Current in Wide Bandgap Semiconductors using Scanning Transmission Electron Microscopy
    (2020) Warecki, Zoey; Cumings, John; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Wide bandgap semiconductors are those with a larger bandgap than silicon; this property allows them to operate at higher voltages, higher driving frequencies, and higher operating temperatures. Gallium nitride (GaN) in particular is attractive for its high critical electric field and thus high breakdown strength allowing for the design of a thinner drift region for a given blocking voltage. It is for these same reasons that GaN is also more radiation resistant than Si, and thus is attractive for satellite or space applications. With the recent commercial availability of free standing GaN substrates, there are many fundamental properties of GaN-on-GaN devices that are still not understood. One of the main characterization techniques used to classify GaN device quality is the measurement of the minority carrier diffusion length via electron beam induced current (EBIC). One of the main limitations of the traditional scanning electron microscopy (SEM) EBIC technique is due to the size of the electron beam/specimen interaction volume at > 5 kV, as well as large collection losses due to carrier recombination at the surface at < 5 kV. This dissertation addresses the previous issues of SEM EBIC with a non-traditional bulk scanning transmission electron microscopy (STEM) EBIC technique which allows for high resolution measurements of the hole diffusion length in n-GaN/Ni Schottky diodes. A reproducible, non-invasive bulk STEM sample preparation technique for n-GaN/Ni Schottky diodes is developed for the use of collecting bulk STEM EBIC micrographs. Despite the large interaction volume in this system at 100-200 kV, quantitative bulk STEM EBIC imaging is possible due to the small STEM probe beam diameter and sustained collimation of the incident electron beam in the sample. Using a combination of experimental bulk STEM EBIC measurements, Monte Carlo simulations, and numerical simulations, a hole diffusion length of 250 ± 15 nm was determined for homoepitaxial n-GaN samples with a threading dislocation of approximately 10^6 cm^-2. In-situ reverse biasing measurements allowed for the measurement of depletion region growth with increasing bias. Furthermore, accumulated electron irradiation damage was studied at 200 kV. An accumulated dose of 24 x 10^16 electrons cm^-2 caused a 35% reduction in the minority carrier diffusion length which is attributed to knock-on damage of the N sublattice. Additionally, the design and development of a custom STEM holder for in-situ liquid cell electrochemical microscopy is discussed.
  • Thumbnail Image
    Item
    Microbial Induced Corrosion in Oil Pipelines
    (2020) Farzaneh, Azadeh; Al-Sheikhly, Mohamad MA; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Crude oil pipeline failure due to corrosion processes is a global issue with detrimental effects on the environment and economy. More than 10,000 oil spills occur in the United States alone, each year. These oil spills are so prevalent that they have become the rule rather than being a 1-time incident. Many of these oil spills happen as a result of pipeline failure due to corrosion. Microbial-Induced Corrosion (MIC) accounts for 20% of the total number of pipeline corrosion incidents. Therefore, the mechanisms involved and especially in the case of microbial corrosion must be studied and elucidated.Sulfate-Reducing Bacteria (SRB) are the main culprits of MIC. The first suggested mechanism in 1930’s related high corrosion rates in buried pipelines to SRB hydrogen utilization and depolarization of the cathodic area on the metal surface. Despite its numerous flaws, it remained the most widely accepted mechanism of MIC. In 2004, a new mechanism called direct electron uptake was suggested for MIC. It related corrosivity of bacteria to direct electron uptake from metallic iron. This mechanism is not fully understood hitherto. Only a few bacteria have been isolated so far that demonstrated direct electron uptake capabilities. Most of the research has been focused on these few isolates. However, if direct-electron uptake is the main MIC mechanism, other SRB strains should possess similar capabilities. This work investigated the possibility of direct electron uptake as the main MIC mechanism for SRB D. bastinii, which has not been studied before, and D. vulgaris, an organotrophic SRB. Both are common bacteria existing in crude oil pipelines. Studies including electrochemical measurements, immersion corrosion testing, metal surface monitoring via scanning electron microscope revealed direct-electron uptake capabilities for both strains. SRB strains were tested under 18 different environmental conditions. Extremely high cathodic current densities were observed in SRB cultures confirming electron transfer from the iron surface to bacteria cells. Finally, based on the large experimental dataset provided in this work, an artificial neural network model was developed to predict MIC. This model demonstrates high correlation coefficients comparable or higher than existing models for general corrosion prediction in the literature. Revealing the predominant mechanisms of MIC along with modeling capabilities enables us to design appropriate measures to eradicate pipe failure due to MIC. Additionally the investigated direct electron uptake ability of the specific SRB strains studied can be used in microbial fuel cells for enhancing the efficiency of biocathodes.  
  • Thumbnail Image
    Item
    TAILORING LOCALIZED SURFACE PLASMON RESONANCES IN METALLIC NANOANTENNAS
    (2020) Zhang, Kunyi; Rabin, Oded; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The strong localized electromagnetic field achievable with metallic nanoantennas provides new opportunities for harmonics generation and label-free chemical sensing. In this work, the localized surface plasmon resonances (LSPRs) of metallic nanoarcs on dielectric substrates have been systematically investigated with visible and infrared spectroscopy, with the goal of elucidating the relationship between the structural and material parameters of the nanoarcs and their resonances. The transmission spectra provide rich information regarding the fundamental and higher order LSPR modes. Experimental results and numerical simulations demonstrate that the LSPR wavelengths are governed by the mid-arc length of the nanoarcs, and the extinction cross-sections of the different order modes are controlled by the central angle of the nanoarc and the symmetry of the mode. The fundamental and second order LSPR wavelengths can be tuned independently through the design of a non-uniform arc-width profile. Several relationships between features of the LSPR modes and the geometric parameters of nanoarcs are also confirmed by transformation optics analysis. The newly found relationships are then utilized as guidelines for the realization of plasmonic nanoarc antennas exhibiting efficient second harmonic generation (SHG). In another application, strong coupling between LSPRs and molecular vibrations is evident in the IR spectra of plasmonic nanoarcs placed in contact with a thin film of polymer, a native oxide layer or a thiol monolayer, enhancing the vibrational mode signals. This observation suggests that by appropriately tuning the frequency of the LSPR modes, the localized electromagnetic field around nanoarcs can resonantly couple to another emitter to boost its far-field radiation, which could benefit applications requiring highly localized, sensitive and selective chemical detection.
  • Thumbnail Image
    Item
    First Principles Computational Design of Solid Ionic Conductors through Ion Substitution
    (2019) Bai, Qiang; Mo, Yifei; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Solid ionic conductors are key components of energy storage and conversion devices. To achieve high efficiency in these energy devices, solid ionic conductors should demonstrate high ionic or electronic conductivity. While pristine materials often suffer from poor conductivity, substituting ions in materials can tailor their electronic and ionic transport to fulfill requirements of transport properties in energy devices. In this dissertation, I applied first-principles computational techniques to elucidate the effect of ion substitution on electronic and ionic transport properties of solid materials. Therefore, three representative materials SrCeO3, La2-x-ySrx+yLiH1-x+yO3-y, and Li6KTaO6 are investigated as model systems to elucidate how ion substitution can affect the transport of electron, anion, and cation, respectively. I studied SrCeO3 as a model material to uncover the effects of B-site dopants on electronic transport. Based on theoretical calculations, I confirmed a polaron mechanism, including polaron formation and hopping, contributed to the electronic conductivity of SrCeO3. I found different dopants exhibit distinct capabilities for localizing electron polarons, and therefore result in different electronic conductivities in doped SrCeO3. The study demonstrated the capabilities of first principles computation to design new materials with desired polaron formation and migration. I studied La2-x-ySrx+yLiH1-x+yO3-y oxyhydrides as a model material to investigate H- diffusion mechanism in a mixed anion system and its relationship with the cation substitution of Sr2+ to La3+. I found the substitution of Sr2+ to La3+ can alter the H- diffusion mechanism from 2D to 3D pathways. Increasing H- vacancies through Sr2+ to La3+ substitution can also expedite the H- conductivity of the oxyhydrides. Based on the new understanding, a number of promising dopants in Sr2LiH3O were predicted to enhance H- transport. Fast Li-ion conductor materials as solid electrolytes are crucial for the development of all-solid-state Li-ion batteries. I systematically studied Li+ diffusion mechanisms in Li6KTaO6 predicted by our computational study. I found that different carrier defects such as Li vacancies or interstitials can induce distinct Li+ transport mechanisms. In addition, I developed a computational workflow to predict a wide range of materials in a prototype structure. By employing the workflow, I computationally predicted a group of Li superionic conductors with good stabilities by substituting the Li6KTaO6 structure.
  • Thumbnail Image
    Item
    NEXT GENERATION ANODES FOR LITHIUM ION AND LITHIUM METAL BATTERIES
    (2019) Pastel, Glenn; Hu, Liangbing; Material Science and Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Engineering of specific battery components can yield incremental gains in performance, but sustained advancements are derived from an understanding of charge transfer, interphase formation, and ion storage in the system. In this dissertation, the next generation of lithium-ion and alkali metal anodes are integrated with promising flame retardant electrolyte systems for safe and energy-dense portable storage devices. The intent of this research is to bring safe lithium ion batteries to the market without compromising performance and, more specifically, volumetric energy density. The first part of this dissertation describes the invention and optimization of a silicon-based additive which employs a solution-based process to functionalize silicon nanoparticle precursors. The additive is thoroughly characterized by chemical and electrochemical methods and the electrolyte interphase is improved by the attachment of partially reduced graphene oxide and sacrificial additive species. The design principles developed for the silicon-based system deviate significantly from those used for other conventional intercalation and host electrodes. As a result, in the second part of this dissertation, three chemically separable electrolyte systems, selected for their flame retardant properties, are individually investigated and tailored for energy-dense pouch cells. The bulk transport and interfacial properties of each electrolyte system are adapted to meet the industry standards of portable electronic devices. Insights into the preferred species for stable solid electrolyte interphase formation are discussed with an emphasis on the impact of fluorinated solvents and sacrificial additives. In the last part of this dissertation, alkali metal hosts are also proposed for chemistries beyond lithium ion. Novel synthesis methods including rapid joule heating are explored to form the innovative host architectures which greatly mitigate the coulombic inefficiency of metal stripping and plating in half and full cell configurations. The design principles outlined in this dissertation reveal how to successfully engineer the charge transfer, interphase formation, and ion storage of high capacity electrodes with safe electrolyte for state-of-the-art portable energy storage devices.