Animal & Avian Sciences Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/1600

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Item
    Identification of QTL controlling meat quality traits in an F2 cross between two chicken lines selected for either low or high growth rate
    (Springer Nature, 2007-06-08) Nadaf, Javad; Gilbert, Hélène; Pitel, Frédérique; Berri, Cécile M; Feve, Katia; Beaumont, Catherine; Duclos, Michel J; Vignal, Alain; Porter, Tom E; Simon, Jean; Aggrey, Samuel E; Cogburn, Larry A; Le Bihan-Duval, Elisabeth
    Meat technological traits (i.e. meat pH, water retention and color) are important considerations for improving further processing of chicken meat. These quality traits were originally characterized in experimental lines selected for high (HG) and low (LG) growth. Presently, quantitative trait loci (QTL) for these traits were analyzed in an F2 population issued from the HG × LG cross. A total of 698 animals in 50 full-sib families were genotyped for 108 microsatellite markers covering 21 linkage groups. The HG and LG birds exhibit large differences in body weight and abdominal fat content. Several meat quality traits [pH at 15 min post-slaughter (pH15) and ultimate pH (pHu), breast color-redness (BCo-R) and breast color-yellowness (BCo-Y)] were lower in HG chickens. In contrast, meat color-lightness (BCo-L) was higher in HG chickens, whereas meat drip loss (DL) was similar in both lines. HG birds were more active on the shackle line. Association analyses were performed using maximum-likelihood interval mapping in QTLMAP. Five genome-wide significant QTLs were revealed: two for pH15 on GGA1 and GGA2, one for DL on GGA1, one for BCo-R and one for BCo-Y both on GGA11. In addition, four suggestive QTLs were identified by QTLMAP for BCo-Y, pHu, pH15 and DL on GGA1, GGA4, GGA12 and GGA14, respectively. The QTL effects, averaged on heterozygous families, ranged from 12 to 31% of the phenotypic variance. Further analyses with QTLExpress confirmed the two genome-wide QTLs for meat color on GGA11, failed to identify the genome-wide QTL for pH15 on GGA2, and revealed only suggestive QTLs for pH15 and DL on GGA1. However, QTLExpress qualified the QTL for pHu on GGA4 as genome-wide. The present study identified genome-wide significant QTLs for all meat technological traits presently assessed in these chickens, except for meat lightness. This study highlights the effects of divergent selection for growth rate on some behavioral traits, muscle biochemistry and ultimately meat quality traits. Several QTL regions were identified that are worthy of further characterization. Some QTLs may in fact co-localize, suggesting pleiotropic effects for some chromosomal regions.
  • Thumbnail Image
    Item
    Term-tissue specific models for prediction of gene ontology biological processes using transcriptional profiles of aging in drosophila melanogaster
    (Springer Nature, 2008-02-28) Zhang, Wensheng; Zou, Sige; Song, Jiuzhou
    Predictive classification on the base of gene expression profiles appeared recently as an attractive strategy for identifying the biological functions of genes. Gene Ontology (GO) provides a valuable source of knowledge for model training and validation. The increasing collection of microarray data represents a valuable source for generating functional hypotheses of uncharacterized genes. This study focused on using support vector machines (SVM) to predict GO biological processes from individual or multiple-tissue transcriptional profiles of aging in Drosophila melanogaster. Ten-fold cross validation was implemented to evaluate the prediction. One-tail Fisher's exact test was conducted on each cross validation and multiple testing was addressed using BH FDR procedure. The results showed that, of the 148 pursued GO biological processes, fifteen terms each had at least one model with FDR-adjusted p-value (Adj.p) <0.05 and six had the values between 0.05 and 0.25. Furthermore, all these models had the prediction sensitivity (SN) over 30% and specificity (SP) over 80%. We proposed the concept of term-tissue specific models indicating the fact that the major part of the optimized prediction models was trained from individual tissue data. Furthermore, we observed that the memberships of the genes involved in all the three pursued children biological processes on mitochondrial electron transport could be predicted from the transcriptional profiles of aging (Adj.p < 0.01). This finding may be important in biology because the genes of mitochondria play a critical role in the longevity of C. elegans and D. melanogaster.
  • Thumbnail Image
    Item
    Principal component tests: applied to temporal gene expression data
    (Springer Nature, 2009-01-30) Zhang, Wensheng; Fang, Hong-Bin; Song, Jiuzhou
    Clustering analysis is a common statistical tool for knowledge discovery. It is mainly conducted when a project still is in the exploratory phase without any priori hypotheses. However, the statistical significance testing between the clusters can be meaningful in helping the researchers to assess if the classification results from implementing a clustering algorithm need to be improved, even after the cluster number has been determined by a well-established criterion. This is important when we want to identify highly-specific patterns through classification. We proposed to use a principal component (PC) test, which is an implementation of an exact F statistic for the measures at multiple endpoints based on elliptical distribution theory, to assess the statistical significance between clusters. A challenge in the implementation is the choice of the number (q) of principal components to be considered, which can severely influence the statistical power of the method. We optimized the determination via validation according to a permutation test based on the clustering to be evaluated. The method was applied to a public dataset in classifying genes according to their temporal gene expression profiles. The results demonstrated that the PC testing were useful for determining the optimal number of clusters.
  • Thumbnail Image
    Item
    Gene expression responses in male fathead minnows exposed to binary mixtures of an estrogen and antiestrogen
    (Springer Nature, 2009-07-13) Garcia-Reyero, Natàlia; Kroll, Kevin J; Liu, Li; Orlando, Edward F; Watanabe, Karen H; Sepúlveda, María S; Villeneuve, Daniel L; Perkins, Edward J; Ankley, Gerald T; Denslow, Nancy D
    Aquatic organisms are continuously exposed to complex mixtures of chemicals, many of which can interfere with their endocrine system, resulting in impaired reproduction, development or survival, among others. In order to analyze the effects and mechanisms of action of estrogen/anti-estrogen mixtures, we exposed male fathead minnows (Pimephales promelas) for 48 hours via the water to 2, 5, 10, and 50 ng 17α-ethinylestradiol (EE2)/L, 100 ng ZM 189,154/L (a potent antiestrogen known to block activity of estrogen receptors) or mixtures of 5 or 50 ng EE2/L with 100 ng ZM 189,154/L. We analyzed gene expression changes in the gonad, as well as hormone and vitellogenin plasma levels. Steroidogenesis was down-regulated by EE2 as reflected by the reduced plasma levels of testosterone in the exposed fish and down-regulation of genes in the steroidogenic pathway. Microarray analysis of testis of fathead minnows treated with 5 ng EE2/L or with the mixture of 5 ng EE2/L and 100 ng ZM 189,154/L indicated that some of the genes whose expression was changed by EE2 were blocked by ZM 189,154, while others were either not blocked or enhanced by the mixture, generating two distinct expression patterns. Gene ontology and pathway analysis programs were used to determine categories of genes for each expression pattern. Our results suggest that response to estrogens occurs via multiple mechanisms, including canonical binding to soluble estrogen receptors, membrane estrogen receptors, and other mechanisms that are not blocked by pure antiestrogens.
  • Thumbnail Image
    Item
    Analysis of recent segmental duplications in the bovine genome
    (Springer Nature, 2009-12-01) Liu, George E; Ventura, Mario; Cellamare, Angelo; Chen, Lin; Cheng, Ze; Zhu, Bin; Li, Congjun; Song, Jiuzhou; Eichler, Evan E
    Duplicated sequences are an important source of gene innovation and structural variation within mammalian genomes. We performed the first systematic and genome-wide analysis of segmental duplications in the modern domesticated cattle (Bos taurus). Using two distinct computational analyses, we estimated that 3.1% (94.4 Mb) of the bovine genome consists of recently duplicated sequences (≥ 1 kb in length, ≥ 90% sequence identity). Similar to other mammalian draft assemblies, almost half (47% of 94.4 Mb) of these sequences have not been assigned to cattle chromosomes. In this study, we provide the first experimental validation large duplications and briefly compared their distribution on two independent bovine genome assemblies using fluorescent in situ hybridization (FISH). Our analyses suggest that the (75-90%) of segmental duplications are organized into local tandem duplication clusters. Along with rodents and carnivores, these results now confidently establish tandem duplications as the most likely mammalian archetypical organization, in contrast to humans and great ape species which show a preponderance of interspersed duplications. A cross-species survey of duplicated genes and gene families indicated that duplication, positive selection and gene conversion have shaped primates, rodents, carnivores and ruminants to different degrees for their speciation and adaptation. We identified that bovine segmental duplications corresponding to genes are significantly enriched for specific biological functions such as immunity, digestion, lactation and reproduction. Our results suggest that in most mammalian lineages segmental duplications are organized in a tandem configuration. Segmental duplications remain problematic for genome and assembly and we highlight genic regions that require higher quality sequence characterization. This study provides insights into mammalian genome evolution and generates a valuable resource for cattle genomics research.
  • Item
    CeHR Axenic Liquid Medium for C. elegans growth
    (2005-02-24T14:24:16Z) Hamza, Iqbal
    CeHR medium was originally formulated by Dr. Eric Clegg at the United States Army Center for Environmental Health Research to grow worms in an axenic liquid media. (http://usacehr.detrick.army.mil/CleggLab.html) We are thankful to Eric for his invaluable help and advice through all the modifications we have since made to optimize CeHR medium to suit our research goals. We modified CeHR medium (mCeHR) because of our interests in defining the individual micronutrient components in order to identify the cellular and molecular components of metal homeostasis using C. elegans as a model multicellular eukaryote.