Animal & Avian Sciences Research Works

Permanent URI for this collection


Recent Submissions

Now showing 1 - 5 of 65
  • Item
    Are CD45RO+ and CD45RA- genuine markers for bovine memory T cells?
    (Springer Nature, 2022-10-11) Anmol, Kandel; Akanksha, Hada; Zhengguo, Xiao
    Effective vaccination induces memory T cells, which protect the host against pathogen re-infections. Therefore, detection of memory T cells is essential for evaluating vaccine efficacy, which was originally dependent on cytokine induction assays. Currently, two isoforms of CD45 tyrosine phosphatase, CD45RO expression and CD45RA exclusion (CD45RO+/ CD45RA-) are used extensively for detecting memory T cells in cattle. The CD45RO+/CD45RA- markers were first established in humans around three decades ago, and were adopted in cattle soon after. However, in the last two decades, some published data in humans have challenged the initial paradigm, and required multiple markers for identifying memory T cells. On the contrary, memory T cell detection in cattle still mostly relies on CD45RO+/CD45RA- despite some controversial evidence. In this review, we summarized the current literature to examine if CD45RO+/CD45RA- are valid markers for detecting memory T cells in cattle. It seems CD45RA and CD45RO (CD45RA/RO) as markers for identifying bovine memory T cells are questionable.
  • Item
    Comparative transcriptome in large-scale human and cattle populations
    (Springer Nature, 2022-08-22) Yao, Yuelin; Liu, Shuli; Xia, Charley; Gao, Yahui; Pan, Zhangyuan; Canela-Xandri, Oriol; Khamseh, Ava; Rawlik, Konrad; Wang, Sheng; Li, Bingjie; Zhang, Yi; Pairo-Castineira, Erola; D’Mellow, Kenton; Li, Xiujin; Yan, Ze; Li, Cong-jun; Yu, Ying; Zhang, Shengli; Ma, Li; Cole, John B.; Ross, Pablo J.; Zhou, Huaijun; Haley, Chris; Liu, George E.; Fang, Lingzhao; Tenesa, Albert
    Cross-species comparison of transcriptomes is important for elucidating evolutionary molecular mechanisms underpinning phenotypic variation between and within species, yet to date it has been essentially limited to model organisms with relatively small sample sizes. Here, we systematically analyze and compare 10,830 and 4866 publicly available RNA-seq samples in humans and cattle, respectively, representing 20 common tissues. Focusing on 17,315 orthologous genes, we demonstrate that mean/median gene expression, inter-individual variation of expression, expression quantitative trait loci, and gene co-expression networks are generally conserved between humans and cattle. By examining large-scale genome-wide association studies for 46 human traits (average n = 327,973) and 45 cattle traits (average n = 24,635), we reveal that the heritability of complex traits in both species is significantly more enriched in transcriptionally conserved than diverged genes across tissues. In summary, our study provides a comprehensive comparison of transcriptomes between humans and cattle, which might help decipher the genetic and evolutionary basis of complex traits in both species.
  • Item
    Neurogenin 2 and Neuronal Differentiation 1 control proper development of the chick trigeminal ganglion and its nerve branches
    (2022) Bina, Parinaz; Taneyhill, Lisa; Taneyhill, Lisa
    The trigeminal ganglion contains the cell bodies of sensory neurons comprising cranial nerve V, which relays information related to pain, touch, and temperature from the face and head to the brain. Like other cranial ganglia, the trigeminal ganglion is composed of neuronal derivatives of two critical em-bryonic cell types, neural crest and placode cells. Neurogenesis within the cranial ganglia is promoted by Neurogenin 2 (hereafter referred to as Neurog2), which is expressed in trigeminal placode cells and their neuronal derivatives and transcriptionally activates neuronal differentiation genes like Neuronal Differentiation 1 (NeuroD1). Little is known, however, about the role of Neurog2 and NeuroD1 dur-ing chick trigeminal gangliogenesis. To address this, we depleted Neurog2 and NeuroD1 from trigemi-nal placode cells with morpholinos and demonstrated that Neurog2 and NeuroD1 influence trigeminal ganglion development. While knockdown of both Neurog2 and NeuroD1 affected innervation of the eye, Neurog2 and NeuroD1 had opposite effects on ophthalmic nerve branch organization. Taken to-gether, our results highlight, for the first time, functional roles for Neurog2 and NeuroD1 during chick trigeminal gangliogenesis. These studies shed new light on the molecular mechanisms underlying tri-geminal ganglion formation and may also provide insight into general cranial gangliogenesis and dis-eases of the peripheral nervous system.
  • Item
    Investigation of rumen long noncoding RNA before and after weaning in cattle
    (Springer Nature, 2022-07-20) Marceau, Alexis; Gao, Yahui; Baldwin VI, Ransom L.; Li, Cong-jun; Jiang, Jicai; Liu, George E.; Ma, Li
    This study aimed to identify long non-coding RNA (lncRNA) from the rumen tissue in dairy cattle, explore their features including expression and conservation levels, and reveal potential links between lncRNA and complex traits that may indicate important functional impacts of rumen lncRNA during the transition to the weaning period. A total of six cattle rumen samples were taken with three replicates from before and after weaning periods, respectively. Total RNAs were extracted and sequenced with lncRNA discovered based on size, coding potential, sequence homology, and known protein domains. As a result, 404 and 234 rumen lncRNAs were identified before and after weaning, respectively. However, only nine of them were shared under two conditions, with 395 lncRNAs found only in pre-weaning tissues and 225 only in post-weaning samples. Interestingly, none of the nine common lncRNAs were differentially expressed between the two weaning conditions. LncRNA averaged shorter length, lower expression, and lower conservation scores than the genome overall, which is consistent with general lncRNA characteristics. By integrating rumen lncRNA before and after weaning with large-scale GWAS results in cattle, we reported significant enrichment of both pre- and after-weaning lncRNA with traits of economic importance including production, reproduction, health, and body conformation phenotypes. The majority of rumen lncRNAs are uniquely expressed in one of the two weaning conditions, indicating a functional role of lncRNA in rumen development and transition of weaning. Notably, both pre- and post-weaning lncRNA showed significant enrichment with a variety of complex traits in dairy cattle, suggesting the importance of rumen lncRNA for cattle performance in the adult stage. These relationships should be further investigated to better understand the specific roles lncRNAs are playing in rumen development and cow performance.
  • Item
    Genome-wide recombination map construction from single sperm sequencing in cattle
    (Springer Nature, 2022-03-05) Yang, Liu; Gao, Yahui; Li, Mingxun; Park, Ki-Eun; Liu, Shuli; Kang, Xiaolong; Liu, Mei; Oswalt, Adam; Fang, Lingzhao; Telugu, Bhanu P.; Sattler, Charles G.; Li, Cong-jun; Cole, John B.; Seroussi, Eyal; Xu, Lingyang; Yang, Lv; Zhou, Yang; Li, Li; Zhang, Hongping; Rosen, Benjamin D.; Van Tassell, Curtis P.; Ma, Li; Liu, George E.
    Meiotic recombination is one of the important phenomena contributing to gamete genome diversity. However, except for human and a few model organisms, it is not well studied in livestock, including cattle. To investigate their distributions in the cattle sperm genome, we sequenced 143 single sperms from two Holstein bulls. We mapped meiotic recombination events at high resolution based on phased heterozygous single nucleotide polymorphism (SNP). In the absence of evolutionary selection pressure in fertilization and survival, recombination events in sperm are enriched near distal chromosomal ends, revealing that such a pattern is intrinsic to the molecular mechanism of meiosis. Furthermore, we further validated these findings in single sperms with results derived from sequencing its family trio of diploid genomes and our previous studies of recombination in cattle. To our knowledge, this is the first large-scale single sperm whole-genome sequencing effort in livestock, which provided useful information for future studies of recombination, genome instability, and male infertility.