Animal & Avian Sciences Research Works

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 5 of 67
  • Item
    Coding and noncoding genes involved in atrophy and compensatory muscle growth in Nile Tilapia
    (MDPI, 2022-08-12) Ali, Ali; Shaalan, Walaa M.; Al-Tobasei, Rafet; Salem, Mohamed
    Improvements in growth-related traits reduce fish time and production costs to reach market size. Feed deprivation and refeeding cycles have been introduced to maximize aquaculture profits through compensatory growth. However, the molecular compensatory growth signature is still uncertain in Nile tilapia. In this study, fish were subjected to two weeks of fasting followed by two weeks of refeeding. The growth curve in refed tilapia was suggestive of a partial compensatory response. Transcriptome profiling of starved and refed fish was conducted to identify genes regulating muscle atrophy and compensatory growth. Pairwise comparisons revealed 5009 and 478 differentially expressed (differential) transcripts during muscle atrophy and recovery, respectively. Muscle atrophy appears to be mediated by the ubiquitin-proteasome and autophagy/lysosome systems. Autophagy-related 2A, F-box and WD repeat domain containing 7, F-box only protein 32, miR-137, and miR-153 showed exceptional high expression suggesting them as master regulators of muscle atrophy. On the other hand, the muscle compensatory growth response appears to be mediated by the continuous stimulation of muscle hypertrophy which exceeded normal levels found in control fish. For instance, genes promoting ribosome biogenesis or enhancing the efficiency of translational machinery were upregulated in compensatory muscle growth. Additionally, myogenic microRNAs (e.g., miR-1 and miR-206), and hypertrophy-associated microRNAs (e.g., miR-27a-3p, miR-29c, and miR-29c) were reciprocally expressed to favor hypertrophy during muscle recovery. Overall, the present study provided insights into the molecular mechanisms regulating muscle mass in fish. The study pinpoints extensive growth-related gene networks that could be used to inform breeding programs and also serve as valuable genomic resources for future mechanistic studies.
  • Item
    Loss of Elp1 disrupts trigeminal ganglion neurodevelopment in a model of familial dysautonomia
    (eLife Sciences Publications Ltd, 2022-06-17) Leonard, Carrie E.; Quiros, Jolie; Lefcort, Frances; Taneyhill, Lisa A.
    Familial dysautonomia (FD) is a sensory and autonomic neuropathy caused by mutations in elongator complex protein 1 (ELP1). FD patients have small trigeminal nerves and impaired facial pain and temperature perception. These signals are relayed by nociceptive neurons in the trigeminal ganglion, a structure that is composed of both neural crest- and placode-derived cells. Mice lacking Elp1 in neural crest derivatives (‘Elp1 CKO’) are born with small trigeminal ganglia, suggesting Elp1 is important for trigeminal ganglion development, yet the function of Elp1 in this context is unknown. We demonstrate that Elp1, expressed in both neural crest- and placode-derived neurons, is not required for initial trigeminal ganglion formation. However, Elp1 CKO trigeminal neurons exhibit abnormal axon outgrowth and deficient target innervation. Developing nociceptors expressing the receptor TrkA undergo early apoptosis in Elp1 CKO, while TrkB- and TrkC-expressing neurons are spared, indicating Elp1 supports the target innervation and survival of trigeminal nociceptors. Furthermore, we demonstrate that specific TrkA deficits in the Elp1 CKO trigeminal ganglion reflect the neural crest lineage of most TrkA neurons versus the placodal lineage of most TrkB and TrkC neurons. Altogether, these findings explain defects in cranial gangliogenesis that may lead to loss of facial pain and temperature sensation in FD.
  • Item
    Are CD45RO+ and CD45RA- genuine markers for bovine memory T cells?
    (Springer Nature, 2022-10-11) Anmol, Kandel; Akanksha, Hada; Zhengguo, Xiao
    Effective vaccination induces memory T cells, which protect the host against pathogen re-infections. Therefore, detection of memory T cells is essential for evaluating vaccine efficacy, which was originally dependent on cytokine induction assays. Currently, two isoforms of CD45 tyrosine phosphatase, CD45RO expression and CD45RA exclusion (CD45RO+/ CD45RA-) are used extensively for detecting memory T cells in cattle. The CD45RO+/CD45RA- markers were first established in humans around three decades ago, and were adopted in cattle soon after. However, in the last two decades, some published data in humans have challenged the initial paradigm, and required multiple markers for identifying memory T cells. On the contrary, memory T cell detection in cattle still mostly relies on CD45RO+/CD45RA- despite some controversial evidence. In this review, we summarized the current literature to examine if CD45RO+/CD45RA- are valid markers for detecting memory T cells in cattle. It seems CD45RA and CD45RO (CD45RA/RO) as markers for identifying bovine memory T cells are questionable.
  • Item
    Comparative transcriptome in large-scale human and cattle populations
    (Springer Nature, 2022-08-22) Yao, Yuelin; Liu, Shuli; Xia, Charley; Gao, Yahui; Pan, Zhangyuan; Canela-Xandri, Oriol; Khamseh, Ava; Rawlik, Konrad; Wang, Sheng; Li, Bingjie; Zhang, Yi; Pairo-Castineira, Erola; D’Mellow, Kenton; Li, Xiujin; Yan, Ze; Li, Cong-jun; Yu, Ying; Zhang, Shengli; Ma, Li; Cole, John B.; Ross, Pablo J.; Zhou, Huaijun; Haley, Chris; Liu, George E.; Fang, Lingzhao; Tenesa, Albert
    Cross-species comparison of transcriptomes is important for elucidating evolutionary molecular mechanisms underpinning phenotypic variation between and within species, yet to date it has been essentially limited to model organisms with relatively small sample sizes. Here, we systematically analyze and compare 10,830 and 4866 publicly available RNA-seq samples in humans and cattle, respectively, representing 20 common tissues. Focusing on 17,315 orthologous genes, we demonstrate that mean/median gene expression, inter-individual variation of expression, expression quantitative trait loci, and gene co-expression networks are generally conserved between humans and cattle. By examining large-scale genome-wide association studies for 46 human traits (average n = 327,973) and 45 cattle traits (average n = 24,635), we reveal that the heritability of complex traits in both species is significantly more enriched in transcriptionally conserved than diverged genes across tissues. In summary, our study provides a comprehensive comparison of transcriptomes between humans and cattle, which might help decipher the genetic and evolutionary basis of complex traits in both species.
  • Item
    Neurogenin 2 and Neuronal Differentiation 1 control proper development of the chick trigeminal ganglion and its nerve branches
    (2022) Bina, Parinaz; Taneyhill, Lisa; Taneyhill, Lisa
    The trigeminal ganglion contains the cell bodies of sensory neurons comprising cranial nerve V, which relays information related to pain, touch, and temperature from the face and head to the brain. Like other cranial ganglia, the trigeminal ganglion is composed of neuronal derivatives of two critical em-bryonic cell types, neural crest and placode cells. Neurogenesis within the cranial ganglia is promoted by Neurogenin 2 (hereafter referred to as Neurog2), which is expressed in trigeminal placode cells and their neuronal derivatives and transcriptionally activates neuronal differentiation genes like Neuronal Differentiation 1 (NeuroD1). Little is known, however, about the role of Neurog2 and NeuroD1 dur-ing chick trigeminal gangliogenesis. To address this, we depleted Neurog2 and NeuroD1 from trigemi-nal placode cells with morpholinos and demonstrated that Neurog2 and NeuroD1 influence trigeminal ganglion development. While knockdown of both Neurog2 and NeuroD1 affected innervation of the eye, Neurog2 and NeuroD1 had opposite effects on ophthalmic nerve branch organization. Taken to-gether, our results highlight, for the first time, functional roles for Neurog2 and NeuroD1 during chick trigeminal gangliogenesis. These studies shed new light on the molecular mechanisms underlying tri-geminal ganglion formation and may also provide insight into general cranial gangliogenesis and dis-eases of the peripheral nervous system.