Electrical & Computer Engineering Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/1658

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Effects of Aging on Cortical Representations of Continuous Speech
    (2022) Karunathilake, I.M Dushyanthi; Simon, Jonathan Z.
    Understanding speech in a noisy environment is crucial in day-to-day interactions, and yet becomes more challenging with age, even for healthy aging. Age-related changes in the neural mechanisms that enable speech-in-noise listening have been investigated previously; however, the extent to which age affects the timing and fidelity of encoding of target and interfering speech streams are not well understood. Using magnetoencephalography (MEG), we investigated how continuous speech is represented in auditory cortex in the presence of interfering speech, in younger and older adults. Cortical representations were obtained from neural responses that time-locked to the speech envelopes using speech envelope reconstruction and temporal response functions (TRFs). TRFs showed three prominent peaks corresponding to auditory cortical processing stages: early (~50 ms), middle (~100 ms) and late (~200 ms). Older adults showed exaggerated speech envelope representations compared to younger adults. Temporal analysis revealed both that the age-related exaggeration starts as early as ~50 ms, and that older adults needed a substantially longer integration time window to achieve their better reconstruction of the speech envelope. As expected, with increased speech masking, envelope reconstruction for the attended talker decreased and all three TRF peaks were delayed, with aging contributing additionally to the reduction. Interestingly, for older adults the late peak was delayed, suggesting that this late peak may receive contributions from multiple sources. Together these results suggest that there are several mechanisms at play compensating for age-related temporal processing deficits at several stages, but which are not able to fully reestablish unimpaired speech perception.
  • Item
    Bilaterally Reduced Rolandic Beta Band Activity in Minor Stroke Patients - Dataset
    (2022) Kulasingham, Joshua; Brodbeck, Christian; Khan, Sheena; Simon, Jonathan; Marsh, Elisabeth
    Stroke patients with hemiparesis display decreased beta band (13–25Hz) rolandic activity, correlating to impaired motor function. However, clinically, patients without significant weakness, with small lesions far from sensorimotor cortex, exhibit bilateral decreased motor dexterity and slowed reaction times. We investigate whether these minor stroke patients also display abnormal beta band activity. Magnetoencephalographic (MEG) data were collected from nine minor stroke patients (NIHSS < 4) without significant hemiparesis, at ~1 and ~6 months postinfarct, and eight age-similar controls. Rolandic relative beta power during matching tasks and resting state, and Beta Event Related (De)Synchronization (ERD/ERS) during button press responses were analyzed. Regardless of lesion location, patients had significantly reduced relative beta power and ERS compared to controls. abnormalities persisted over visits, and were present in both ipsi- and contra-lesional hemispheres, consistent with bilateral impairments in motor dexterity and speed. Minor stroke patients without severe weakness display reduced rolandic beta band activity in both hemispheres, which may be linked to bilaterally impaired dexterity and processing speed, implicating global connectivity dysfunction affecting sensorimotor cortex independent of lesion location. Findings not only illustrate global network disruption after minor stroke, but suggest rolandic beta band activity may be a potential biomarker and treatment target, even for minor stroke patients with small lesions far from sensorimotor areas.
  • Item
    Cortical Processing of Arithmetic and Simple Sentences in an Auditory Attention Task - Dataset
    (2021) Kulasingham, Joshua P.; Joshi, Neha H.; Rezaeizadeh, Mohsen; Simon, Jonathan Z.
    Cortical processing of arithmetic and of language rely on both shared and task-specific neural mechanisms, which should also be dissociable from the particular sensory modality used to probe them. Here, spoken arithmetical and non-mathematical statements were employed to investigate neural processing of arithmetic, compared to general language processing, in an attention-modulated cocktail party paradigm. Magnetoencephalography (MEG) data were recorded from 22 human subjects listening to audio mixtures of spoken sentences and arithmetic equations while selectively attending to one of the two speech streams. Short sentences and simple equations were presented diotically at fixed and distinct word/symbol and sentence/equation rates. Critically, this allowed neural responses to acoustics, words, and symbols to be dissociated from responses to sentences and equations. Indeed, the simultaneous neural processing of the acoustics of words and symbols were observed in auditory cortex for both streams. Neural responses to sentences and equations, however, were predominantly to the attended stream, originating primarily from left temporal, and parietal areas, respectively. Additionally, these neural responses were correlated with behavioral performance in a deviant detection task. Source-localized Temporal Response Functions revealed distinct cortical dynamics of responses to sentences in left temporal areas and equations in bilateral temporal, parietal, and motor areas. Finally, the target of attention could be decoded from MEG responses, especially in left superior parietal areas. In short, the neural responses to arithmetic and language are especially well segregated during the cocktail party paradigm, and the correlation with behavior suggests that they may be linked to successful comprehension or calculation.
  • Item
    Post-Stroke Acute Dysexecutive Syndrome, a Disorder Resulting from Minor Stroke due to Disruption of Network Dynamics - Dataset
    (2020) Marsh, Elisabeth B.; Brodbeck, Christian; Llinas, Rafael H.; Mallick, Dania; Kulasingham, Joshua P.; Llinas, Rodolfo R.; Simon, Jonathan Z.
    Stroke patients with small CNS infarcts often demonstrate an acute dysexecutive syndrome characterized by difficulty with attention, concentration, and processing speed, independent of lesion size or location. We use magnetoencephalography (MEG) to show that disruption of network dynamics may be responsible. Nine patients with recent minor stroke and 8 age-similar controls underwent cognitive screening using the Montreal Cognitive Assessment (MoCA) and MEG to evaluate differences in cerebral activation patterns. During MEG, subjects participated in a visual picture-word matching task. Task complexity was increased as testing progressed. Cluster based permutation tests determined differences in activation patterns within the visual cortex, fusiform gyrus, and lateral temporal lobe. At visit 1, MoCA scores were significantly lower for patients than controls (median (IQR)=26.0 (4) versus 29.5 (3), p=0.005), and patient reaction times were increased. The amplitude of activation was significantly lower after infarct and demonstrated a pattern of temporal dispersion independent of stroke location. Differences were prominent in the fusiform gyrus and lateral temporal lobe. The pattern suggests that distributed network dysfunction may be responsible. Additionally, controls were able to modulate their cerebral activity based on task difficulty. In contrast, stroke patients exhibited the same low-amplitude response to all stimuli. Group differences remained, to a lesser degree, six months later; while MoCA scores and reaction times improved for patients. This study suggests that function is a globally distributed property beyond area-specific functionality, and illustrates the need for longer-term follow-up studies to determine whether abnormal activation patterns ultimately resolve or another mechanism underlies continued recovery.