Electrical & Computer Engineering Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/1658
Browse
Search Results
Item System Synthesis of Synchronous Multimedia Applications(IEEE, 1999-11) Qu, Gang; Mesarina, Malena; Potkonjak, MiodragModern system design is being increasingly driven by applications such as multimedia and wireless sensing and communications, which all have intrinsic quality of service (QoS) requirements, such as throughput, error-rate, and resolution. One of the most crucial QoS guarantees that the system has to provide is the timing constraints among the interacting media (synchronization) and within each media (latency). We have developed the first framework for systems design with timing QoS guarantees, latency and synchronization. In particular, we address how to design system-on-chip with minimal silicon area to meet timing constraints. We propose the two-phase design methodology. In the first phase, we select an architecture which facilitates the needs of synchronous low latency applications well. In the second phase, for a given processor configuration, we use our new scheduler in such a way that storage requirements are minimized. We have develop scheduling algorithms that solve the problem optimally for a-priori specified applications. The algorithms have been implemented and their effectiveness demonstrated on a set of simulated MPEG streams from popular movies.Item Power Minimization using System-Level Partitioning of Applications with Quality of Service Requirements(1999-11) Qu, Gang; Potkonjak, MiodragDesign systems to provide various quality of service (QoS) guarantees has received a lot of attentions due to the increasing popularity of real-time multimedia and wireless communication applications. Meanwhile, low power consumption is always one of the goals for system design, especially for battery-operated systems. With the design trend of integrating multiple processor cores and memory on a single chip, we address the problem of how to partition a set of applications among processors, such that all the individual QoS requirements are met and the total energy consumption is minimized. We exploit the advantages provided by the variable voltage design methodology to choose the voltage for each application on the same processor optimally for this purpose. We also discuss how to partition applications among the processors to achieve the same goal. We formulate the problem on an abstract QoS model and present how to allocate resources (e.g., CPU time) and determine the voltage profile for every single processor. Experiments on media benchmarks have also been studied.Item Energy Minimization of System Pipelines Using Multiple Voltages(IEEE, 1999-05) Qu, Gang; Kirovski, Darko; Potkonjak, Miodrag; Srivastava, Mani B.Modem computer and communication system design has to consider the timing constraints imposed by communication and system pipelines, and minimize the energy consumption. We adopt the recent proposed model for communication pipeline latency[23] and address the problem of how to minimize the power consumption in system-level pipelines under the latency constraints by selecting supply voltage for each pipeline stage using the variable voltage core-based system design methodology[l 11. We define the problem, solve it optimally under realistic assumptions and develop algorithms for power minimization of system pipeline designs based on our theoretical results. We apply this new approach on the 4- stage Myrinet GAM pipeline, with the appropriate voltage profiles, we achieve 93.4%, 91.3% and 26.9% power reduction on three pipeline stages over the traditional design.Item Quality of Service and System Design(IEEE, 1999-04) Kornegay, Kevin T.; Qu, Gang; Potkonjak, MiodragQuality of Service (QoS) of the implementation of an application can be defined as a function of the properties of the application and its implementation as observed by the user and/or the environment. Typical application and implementation properties include latency, throughput, jitter, and the level of resolution. Many of the current and pending most popular applications, such as multimedia, wireless sensing and communications, security and PEBBs, have intrinsic relevant QoS components. Recently, quality of service attracted a great of deal of attention in a number of research and development communities, and in particular, in the network and multimedia literature. However, until now synthesis and CAD research did not addressed how to design systems with quantitative QoS requirements. Our goal in this paper is to outline foundations and framework in which QoS system design trade-offs and optimization can be addressed. We first identify and state in synthesis-usable way two currently most popular approaches to Quality of Service treatment: Q-RAM and DScurve (demand/service). We discuss advantages and limitations of the two approaches. Next, we show how these two approaches can be combined in a new more comprehensive QoS framework. We also explain and illustrate using examples interaction between QoS and synthesis and compilation tasks. We conclude by identifying and discussing the future directions related to synthesis of QoS-sensitive systems.