Electrical & Computer Engineering Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/1658
Browse
2 results
Search Results
Item VLSI CAD Tool Protection by Birthmarking Design Solutions(IEEE, 2005-04) Yuan, Lin; Qu, Gang; Srivastava, AnkurMany techniques have been proposed in the past for the protection of VLSI design IPs (intellectual property). CAD tools and algorithms are intensively used in all phases of modern VLSI designs; however, little has been done to protect them. Basically, given a problem P and a solution S, we want to be able to determine whether S is obtained by a particular tool or algorithm. We propose two techniques that intentionally leave some trace or birthmark, which refers to certain easy detectable properties, in the design solutions to facilitate CAD tool tracing and protection. The pre-processing technique provides the ideal protection at the cost of losing control of solution’s quality. The post-processing technique balances the level of protection and design quality. We conduct a case study on how to protect a timing-driven gate duplication algorithm. Experimental results on a large set of MCNC benchmarks confirm that the pre-processing technique results in a significant reduction (about 48%) of the optimization power of the tool, while the post-processing technique has almost no penalty (less than 2%) on the tool’s performance.Item VLSI Design IP Protection: Solutions, New Challenges, and Opportunities(IEEE, 2006-06) Yuan, Lin; Qu, GangIt has been a decade since the need of VLSI design intellectual property (IP) protection was identified [1,2]. The goals of IP protection are 1) to enable IP providers to protect their IPs against unauthorized use, 2) to protect all types of design data used to produce and deliver IPs, 3) to detect the use of IPs, and 4) to trace the use of IPs [3]. There are significant advances from both industry and academic towards these goals. However, do we have solutions to achieve all these goals? What are the current state-of-the-art IP protection techniques? Do they meet the protection requirement designers sought for? What are the (new) challenges and is there any feasible answer to them in the foreseeable future? This paper addresses these questions and provides possible solutions mainly from academia point of view. Several successful industry practice and ongoing efforts are also discussed briefly.