Electrical & Computer Engineering Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/1658

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Development of Broadband Underwater Radio Communication for Application in Unmanned Underwater Vehicles
    (MDPI, 2020-05-23) Smolyaninov, Igor I.; Balzano, Quirino; Young, Dendy
    This paper presents several novel designs of small form factor underwater radio antennas operating in the 2 MHz, 50 MHz and 2.4 GHz bands. These antennas efficiently excite surface electromagnetic waves (SEW) which propagate along the surface of seawater. The antenna operation is made possible due to implementation of an impedance matching enclosure, which is filled with de-ionized water. Enhanced coupling to surface electromagnetic waves is enabled by the enhancement of the electromagnetic field at the antenna apex. These features allow us to make antenna dimensions considerably smaller compared to typical free space designs. They also considerably improve coupling of electromagnetic energy to the surrounding seawater. Since SEW propagation length is considerably larger than the skin depth in seawater, this technique is useful for underwater broadband wireless communication. We conclude that the developed broadband underwater radio communication technique will be useful in networking of unmanned underwater vehicles.
  • Thumbnail Image
    Item
    Surface Electromagnetic Waves near a Black Hole Event Horizon and Their Observational Consequences
    (MDPI, 2022-06-07) Smolyaninov, Igor I.
    Localization phenomena in light, scattering from random fluctuations of matter fields and space–time metrics near a black hole horizon, were predicted to produce a pronounced peak in the angular distribution of second-harmonic light in the direction normal to the horizon. Therefore, the detection of second-harmonic generation may become a viable observational tool to study spacetime physics near event horizons of astronomical black holes. The light localization phenomena near the horizon may be facilitated by the existence of surface electromagnetic wave solutions. In this communication, we study such surface electromagnetic wave solutions near the horizon of a Schwarzschild metric, describing a black hole in vacuum. We demonstrate that such surface wave solutions must appear when quantum gravity effects are taken into account. Potential observational evidence of this effect is also discussed.