Fischell Department of Bioengineering Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/6628
Browse
18 results
Search Results
Item Blueprinting Self-Assembled Soft Matter: An `Easy' Approach to Advanced Material Synthesis in Drug Delivery and Wound Healing(2010) Dowling, Matthew Burke; Raghavan, Srinivasa R; Bioengineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)From Jello to mayonnaise to silly putty to biological cells, our world is replete with "soft matter" - materials that behave as soft, deformable solids or highly viscoelastic liquids. Living systems, in particular, can be thought of as extremely sophisticated `soft' machines, with each cellular unit representing a touchstone for the functional potential of soft materials built via self-assembly. Drawing inspiration from biology, we blueprint soft biomaterial designs which rely upon self-assembly to achieve enhanced functionality. As opposed to complex synthesis schemes often used to develop improved biomaterials, we take an `easy' approach by allowing relatively simple molecules orchestrate themselves into advanced machines. In this dissertation, we describe four separate "soft" systems, all constructed by self-assembly of amphiphilic molecules under designed and/or triggered conditions in aqueous media. These systems revolve around a common theme: the structural tandem of (1) vesicles and (2) biopolymers, and the resulting interactions between the two. Our blueprints show promise in several important biomedical applications including controlled drug release, tissue engineering, and wound care. In the first part of this study, we blueprint a biopolymer gel that entraps pH-sensitive vesicles. The vesicles are formed by the self-assembly of a single-tailed fatty acid surfactant. We show that the gel has pH-responsive properties imparted upon it via the embedded vesicle nanostructures. Specifically, when the gel is brought in contact with a high pH buffer, the diffusion of buffer into the gel disrupts the vesicles and transforms them into micelles. Accordingly, a vesicle-micelle front moves through the gel, and this can be visually seen by a difference in color. The disruption of vesicles means that their encapsulated solutes are released into the bulk gel, and in turn these solutes can rapidly diffuse out of the gel. Thus, we can use pH to tune the release rate of model drug molecules from these vesicle-loaded gels into the external solution. In the second part, we have blueprinted hybrid biopolymer capsules containing drug-loaded vesicles by means of a one-step self-assembly process. These capsules are called "motherships" as each unit features a larger container, the polymer capsule, carrying a payload of smaller vesicular containers, or "babyships," within its lumen. These motherships are self-assembled via electrostatic interactions between oppositely charged polymers/surfactants at the interface of the droplet. Capsule size is simply dictated by drop size, and capsules of sizes 200-5000 µm are produced here. Lipid vesicles, i.e. the babyships, are retained inside motherships due to the diffusional barrier created by the capsule shell. The added transport barrier provided by the vesicle bilayer in addition to the capsule shell provides sustained drug release from the motherships. Furthermore, this one-step drop method allows for the rapid synthesis of soft materials exhibiting structural features over a hierarchy of length scales, from nano-, to micro- to macro-. Thirdly, we have therapeutically functionalized biopolymer films by simply passing a solution of vesicles over the film surface. We deposit films of an associating biopolymer onto patterned solid substrates. Subsequently, these polymer films are able to spontaneously capture therapeutically-loaded vesicles from solution; this is demonstrated both for surfactant as well as lipid vesicles (liposomes). Importantly, it is verified that the vesicles are intact - this is shown both by direct visualization of captured vesicles (via optical and cryo-transmission electron microscopy) as well as through the capture and subsequent disruption of drug filled vesicles. Such therapeutically-functionalized films may be of use in the treatment of chronic wounds and burns. Lastly, we have demonstrated that the addition of a certain biopolymer transforms a suspension of whole blood into a gel. This blueprint is inspired from previous research in our group on the biopolymer-induced gelation of vesicles, which are structurally similar to cells. Upon mixture with heparinized human whole blood, this amphilic biopolymer rapidly forms into an "artificial clot." These mixtures have highly elastic character, with the mixtures able to hold their own weight upon vial inversion. Moreover, the biopolymer shows significant hemorrhage-controlling efficacy in animal injury models. Such biopolymer-cell gelation processes are shown to be reversed via introduction of an amphiphilic supramolecule, thus introducing the novel concept of the "revesible hemostat." Such a hemostatic functionality may be of large and unprecedented use in clinical the treatment of problematic hemorrhage both in trauma and routine surgeries.Item A biophysical evaluation of cell-substrate interactions during spreading, migration and neuron differentiation(2010) Norman, Leann Lynn; Aranda-Espinoza, Helim; Bioengineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The development of engineered scaffolds has become a popular current avenue to treat numerous traumas and disease. In order to optimize the efficiency of these treatments, it is necessary to have a more thorough understanding of how cells interact with their substrate and how these interactions directly affect cellular behavior. Cell spreading is a critical component of numerous biological phenomena, including embryonic development, cancer metastasis, immune response, and wound healing. Along with spreading, cell adhesion and migration are all strongly dependent on the interactions between the cell and its substrate. Cell-substrate interactions can affect critical cellular mechanisms including internal cellular signaling, protein synthesis, differentiation, and replication and also influence the magnitude of adherence and motility. In an effort to better understand cell-substrate interactions we characterize the initial stages of cell spreading and blebbing using cell-substrate specific microscopy techniques, and identify the effects of cytoskeletal disruption and membrane modification on surface interactions and spreading. We identify that blebs appear after a sharp change in cellular tension, such as following rapid cell-substrate detachment with trypsin. An increased lag phase of spreading appears with increased blebbing; however, blebbing can be tuned by supplying the cell with more time to perform plasma membrane recycling. We developed software algorithms to detect individual bleb dynamics from TIRF and IRM images, and characterize three types of bleb-adhesion behaviors. Overall, we show that blebs initially create the first adhesion sites for the cell during spreading; however, their continuous protrusion and retraction events contribute to the slow spreading period prior to fast growth. In addition, we identify the elastic modulus of the rat cortex and characterize a polyacrylamide gel system that evaluates the effects of substrate stiffness on cortical outgrowth. Remarkably, we illustrate that cortical neuron differentiation and outgrowth are insensitive to substrate stiffness, and observe only morphological differences between laminin versus PDL-coated substrates. Together, this research identifies cell-specific behaviors critical to spreading and migration. The thorough evaluations of spreading and migration behavior presented here contribute to the understanding of critical cellular phenomena and suggest potential therapeutic targets for treatment of cardiovascular disease and neurological disorders.Item Noninvasive neural decoding of overt and covert hand movement(2010) Bradberry, Trent Jason; Contreras-Vidal, José L.; Bioengineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)It is generally assumed that the signal-to-noise ratio and information content of neural data acquired noninvasively via magnetoencephalography (MEG) or scalp electroencephalography (EEG) are insufficient to extract detailed information about natural, multi-joint movements of the upper limb. If valid, this assumption could severely limit the practical usage of noninvasive signals in brain-computer interface (BCI) systems aimed at continuous complex control of arm-like prostheses for movement impaired persons. Fortunately this dissertation research casts doubt on the veracity of this assumption by extracting continuous hand kinematics from MEG signals collected during a 2D center-out drawing task (Bradberry et al. 2009, NeuroImage, 47:1691-700) and from EEG signals collected during a 3D center-out reaching task (Bradberry et al. 2010, Journal of Neuroscience, 30:3432-7). In both studies, multiple regression was performed to find a matrix that mapped past and current neural data from multiple sensors to current hand kinematic data (velocity). A novel method was subsequently devised that incorporated the weights of the mapping matrix and the standardized low resolution electromagnetic tomography (sLORETA) software to reveal that the brain sources that encoded hand kinematics in the MEG and EEG studies were corroborated by more traditional studies that required averaging across trials and/or subjects. Encouraged by the favorable results of these off-line decoding studies, a BCI system was developed for on-line decoding of covert movement intentions that provided users with real-time visual feedback of the decoder output. Users were asked to use only their thoughts to move a cursor to acquire one of four targets on a computer screen. With only one training session, subjects were able to accomplish this task. The promising results of this dissertation research significantly advance the state-of-the-art in noninvasive BCI systems.Item Lipid-Hydrogel Nanoparticles: Synthesis Methods and Characterization(2009) Hong, Jennifer S.; Raghavan, Srinivasa R; Bioengineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This dissertation focuses on the directed self-assembly of nanoscale soft matter particles using methods based on liposome-templating. Nanoscale liposomes, nano-sized hydrogel particles ("nanogels"), and hybrids of the two have enormous potential as carriers in drug delivery and nanotoxicity studies, and as nanovials for enzyme encapsulation and single molecule studies. Our goal is to develop assembly methods that produce stable nanogels or hybrid lipid-polymer nanoparticles, using liposomes as size and shape templates. First we describe a bulk method that employs liposomes to template relatively monodisperse nanogels composed of the biopolymer, alginate, which is a favorable material for nanogel formation because it uses a gentle ionic crosslinking mechanism that is suitable for the encapsulation of cells and biomolecules. Liposomes encapsulating sodium alginate are suspended in aqueous buffer containing calcium chloride, and thermal permeabilization of the lipid membrane facilitates transmembrane diffusion of Ca2+ ions from the surrounding buffer into the intraliposomal space, ionically crosslinking the liposome core. Subsequent lipid removal results in bare calcium alginate nanogels with a size distribution consistent with that of their liposome template. The second part of our study investigates the potential for microfluidic-directed formation of lipid-alginate hybrid nanoparticles by adapting the above bulk self-assembly procedure within a microfluidic device. Specifically we investigated the size control of alginate nanogel self-assembly under different flow conditions and concentrations. Finally, we investigate the microfluidic directed self-assembly of lipid-polymer hybrid nanoparticles, using phospholipids and an N-isopropylacrylamide monomer as the liposome and hydrogel precursors, respectively. Microfluidic hydrodynamic focusing is used to control the convective-diffusive mixing of the two miscible nanoparticle precursor solutions to form nanoscale vesicles with encapsulated hydrogel precursor. The encapsulated hydrogel precursor is polymerized off-chip and the resultant hybrid nanoparticle size distributions are highly monodisperse and precisely controlled across a broad range relevant to the targeted delivery and controlled release of encapsulated therapeutic agents. Given the ability to modify liposome size and surface properties by altering the lipid components and the many polymers of current interest for nanoparticle synthesis, this approach could be adapted for a variety of hybrid nanoparticle systems.Item Automated quantification and classification of human kidney microstructures obtained by optical coherence tomography(2009) Li, Qian; Chen, Yu; Bioengineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Optical coherence tomography (OCT) is a rapidly emerging imaging modality that can non-invasively provide cross-sectional, high-resolution images of tissue morphology such as kidney in situ and in real-time. Because the viability of a donor kidney is closely correlated with its tubular morphology, and a large amount of image datasets are expected when using OCT to scan the entire kidney, it is necessary to develop automated image analysis methods to quantify the spatially-resolved morphometric parameters such as tubular diameter, and to classify various microstructures. In this study, we imaged the human kidney in vitro, quantified the diameters of hollow structures such as blood vessels and uriniferous tubules, and classified those structures automatically. The quantification accuracy was validated. This work can enable studies to determine the clinical utility of OCT for kidney imaging, as well as studies to evaluate kidney morphology as a biomarker for assessing kidney's viability prior to transplantation.Item Design of a Novel Portable Flow Meter for Measurement of Average and Peak Inspiratory Flow(2009) Jamshidi, Shaya; Johnson, Arthur T; Bioengineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The maximum tolerable physical effort that workers can sustain is of significance across many industrial sectors. These limits can be determined by assessing physiological responses to maximal workloads. Respiratory response is the primary metric to determine energy expenditure in industries that use respirator masks to protect against airborne contaminants. Current studies fail to evaluate endurance under conditions that emulate employee operating environments. Values obtained in artificial laboratory settings may be poor indicators of respiratory performance in actual work environments. To eliminate such discrepancies, equipment that accurately measures peak respiratory flows in situ is needed. This study provides a solution in the form of a novel portable flow meter design that accurately measures average and peak inspiratory flow of a user wearing an M40A1 respirator mask.Item ENZYME INHIBITION IN MICROFLUIDICS FOR RE-ENGINEERING BACTERIAL SYNTHESIS PATHWAYS(2009) LARIOS BERLIN, DEAN EDWARD; RUBLOFF, GARY W; Bioengineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Enzyme-functionalized biological microfluidic (EF-BioMEMS) systems are an emerging class of lab-on-chip devices that manipulate enzymatic pathways by localizing reaction sites in a microfluidic network. An EF-BioMEM system was fabricated to demonstrate biochemical enzyme inhibition. Further, design optimizations to the EF-BioMEM system have been proposed which improve system sensitivity and performance. The pfs enzyme is part of the quorum-sensing pathway that ultimately produces the bacterial signaling molecule AI-2. An EF-BioMEM system was fabricated to investigate the pfs conversion activity in the presence of a transition state analogue inhibitor. A reduction in enzyme conversion was measured in microfluidics for increasing inhibitor concentration that was comparable to the response expected on a larger scale. This EF-BioMEMS testbed is capable of investigating other compounds that inhibit quorum sensing. Design improvements were demonstrates that improve overall system responsiveness by minimizing unintended reactions from non-specifically bound enzyme. EF-BioMEMS signal-to-background performance increased from 0.72 to 2.43.Item ORBITAL FLOOR REGENERATION USING CYCLIC ACETAL HYDROGELS THROUGH ENHANCED OSTEOGENIC CELL SIGNALING OF MESENCHYMAL STEM CELLS(2009) Betz, Martha Wheaton; Fisher, John P; Bioengineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Orbital floor fractures are a serious consequence of craniofacial trauma and account for approximately 60-70% of all orbital fractures. Unfortunately, the body's natural response to orbital floor defects generally does not restore proper function and facial aesthetics which is complicated by the thin bone and adjacent sinuses. We propose using a tissue engineering strategy to regenerate orbital floor bone. To this end, a functional biomaterial was investigated to enhance orbital floor regeneration. First, a bone marrow stromal cell population was isolated and differentiation assessed via coculture with chondrocytes and osteogenic media supplements. A cyclic acetal biomaterial composed of the cyclic acetal monomer 5-ethyl-5-(hydroxymethyl)-β,β-dimethyl-1,3-dioxane-2-ethanol diacrylate (EHD) and poly(ethylene glycol) diacrylate (PEGDA) was then developed for cell encapsulation. The previously investigated bone marrow stromal cells were then used to determine the effects of the ammonium persulfate/N,N,N',N'-tetramethylethylenediamine initiator system used to crosslink the EH-PEG hydrogels on cell viability, metabolic activity, and osteogenic differentiation. Next, EH-PEG hydrogels were implanted into orbital floor defects with bone morphogenetic protein-2, where tissue response and surrounding bone growth was analyzed. To improve surrounding tissue interaction and cell infiltration, macroporous EH-PEG hydrogels were created using porogen-leaching. These hydrogels were characterized using optical coherence tomography for pore size, porosity, and cell viability. In addition, these macroporous hydrogels were created with varying architecture to analyze the effects on osteogenic signaling and differentiation. This work outlines the potential application of EH-PEG hydrogels for use in orbital floor repair.Item Novel Statistical Pattern Recognition and 3D Machine Vision Technologies for Automated Food Quality Inspection(2008-12-02) Zhu, Bin; Tao, Yang; Fischell Department of Bioengineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Machine vision technologies have received a lot of attention for automated food quality inspection. This dissertation describes three techniques developed to improve the quality inspection of apple and poultry products. First, a Gabor feature-based kernel principal component analysis (PCA) method was introduced by combining Gabor wavelet representation of apple images and the kernel PCA method for apple quality inspection using near-infrared (NIR) imaging. Gabor wavelet decomposition was employed to extract appropriate Gabor features of whole apple NIR images. Then, the kernel PCA method with polynomial kernels was applied in the Gabor feature space to handle nonlinear separable features. The experimental results showed the effectiveness of the Gabor-based kernel PCA method. Using the proposed Gabor kernel PCA eliminated the need for local feature segmentation and also resolved the nonlinear separable problem in the Gabor feature space. An overall 90.5% detection rate was achieved. Second, a novel 3D-based apple near-infrared (NIR) data analysis strategy was utilized so that the apple stem-end/calyx could be identified, and hence differentiated from defects and normal tissue according to their different 3D shapes. Two automated 3D data processing approaches were developed in this research: 1) A 3D quadratic facet model fitting, which employed a small concave 3D patch to fit the 3D apple surface and the best fit could be found around stem-end/calyx area; and 2) A 3D shape enhanced transform (SET), which enhanced the apple stem-end/calyx area and made it easily detectable because of the 3D surface gradient difference between the stem-end/calyx and the apple surface. An overall 92.6% accuracy was achieved. Third, high resolution on-line laser 3D imaging was investigated for improving the 3D profile recovery for thickness compensation purposes. Parallel processing and memory management were also considered to improve the processing speed of the detection system. Multiple-lane coverage was fulfilled such that a wider conveyor could be used and overall throughput would be increased. To further improve the detection performance of the dual X-ray and laser imaging system, a dynamic thresholding approach was introduced to suppress the errors and noise involved by the imaging system. Unlike the traditional single threshold method, dynamic thresholding monitored the responses of the region of interest under a set of thresholds to determine the true physical contaminants, making it more tolerant to the noise than the single threshold method. An overall 98.6% detection rate was achieved.Item Controlled liposome formation and solute encapsulation with continuous-flow microfluidic hydrodynamic focusing(2008-12-11) Jahn, Andreas; DeVoe, Don L; Bioengineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Liposomes enable the compartmentalization of compounds making them interesting as drug delivery systems. A drug delivery system (DDS) is a transport vehicle for a drug for in vivo drug administration. Drugs can be encapsulated, bound, or otherwise tethered to the carrier which can vary in size from tens of nanometers to a few micrometers. Liposomal DDSs have shown their capability to deliver drugs in a new fashion, allowing exclusive sales of encapsulated drugs to be extended beyond the initial compound's patent expiration date. However, existing methods to form liposomes and encapsulate drugs are based on bulk mixing techniques with limited process control and the produced liposomes frequently require post-processing steps. In this dissertation, a new method is demonstrated to control liposome formation and compound encapsulation that pushes beyond existing benchmarks in liposome size homogeneity and adjustable encapsulation. The technology utilizes microfluidics for future pharmacy-on-a-chip applications. The microfluidic system allows for precise control of mixing via molecular diffusion with reproducible and controlled physicochemical conditions compared to traditional bulk-phase preparation techniques (i.e. test tubes and beakers). The laminar flow and facile fluidic control in microchannels enables reproducible self-assembly of lipids into liposomes in a sheathed flow-field. Confining a water-soluble compound to be encapsulated to the immediate vicinity where liposome formation is expected to occur reduces sample consumption without affecting liposome loading. The ability to alter the concentration and control the amount of encapsulated compounds within liposomes in a continuous-flow mode is another interesting feature towards tailored liposomal drug delivery. The liposome formation strategy demonstrated in this dissertation offers potential for point-of-care drug encapsulation, eliminating shelf-life limitations inherent to current liposome preparation techniques.