Animal & Avian Sciences Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/2741

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Item
    COORDINATED TRAFFICKING OF HEME TRANSPORTERS BY CARGO SORTING COMPLEXES IS ESSENTIAL FOR ORGANISMAL HEME HOMEOSTASIS
    (2025) Dutt, Sohini; Hamza, Iqbal IH; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Heme, an iron-containing organic ring, is a vital cofactor responsible for diverse biologicalfunctions and is the major source of bioavailable iron in the human diet. As a hydrophobic and cytotoxic cofactor, heme must be transported in a highly controlled manner through membranes via specific intra- and inter-cellular pathways. However, the genes and pathways responsible for heme trafficking remain poorly understood. Unlike other metazoans, Caenorhabditis elegans cannot synthesize heme but requires heme for sustenance. Thus, C. elegans is an ideal animal model to identify heme trafficking pathways as it permits organismal heme homeostasis to be directly manipulated by controlling environmental heme. Heme is imported apically into the intestine by HRG-1-related permeases and exported basolaterally by MRP-5/ABCC5 to extra- intestinal tissues. Loss of mrp-5 causes embryonic lethality that can be suppressed by dietary heme supplementation raising the possibility that MRP-5-independent heme export pathways must exist. Here we show, by performing a forward genetic screen in mrp-5 null mutants, that loss of the vesicular cargo sorting Adaptor Protein complexes (AP-3) fully rescues mrp-5 lethality and restores heme homeostasis. Remarkably, intestinal heme accumulation due to mrp-5-deficiency causes a concomitant deficit in the lysosomal heme importer HRG-1 abundance and localization. Loss of both MRP-5 and AP-3 subunits resurrects HRG-1 levels and localization, thus underscoring the crucial role of HRG-1 in dictating mrp-5 mutant phenotypes. In the absence of MRP-5, heme is exported by SLC49A3 homolog, a previously uncharacterized transporter. Live- cell imaging reveals vesicular coalescence that facilitates heme transfer between the importers and exporters at the interface of lysosomal-related organelle. These results define a mechanistic model for metazoan heme trafficking and identifies SLC49A3 as a promising candidate for heme export in mammals.
  • Thumbnail Image
    Item
    Genetic Suppressors of mrp-5 Lethality in C. elegans
    (2016) Beardsley, Simon; Hamza, Iqbal; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Heme is an essential cofactor in numerous proteins, but is also cytotoxic. Thus, directed pathways must exist for regulating heme homeostasis. C. elegans is a powerful genetic animal model for elucidating these pathways because it is a heme auxotroph. Worms acquire dietary heme though HRG-1-related importers, and intestinal export was demonstrated to be mediated by the ABC transporter MRP-5. Loss of mrp-5 results in embryonic lethality. Although heme transporters have been identified, there are significant gaps in our understanding for the heme trafficking beyond HRG-1 and MRP-5. To identify additional components, we conducted a forward genetic screen utilizing the null allele mrp-5(ok2067). Screening of 160,000 haploid genomes yielded thirty-two mrp-5(ok2067) suppressor mutants. Deep-sequencing variant analysis revealed three of the suppressors subunits of adapter protein complex 3 (AP-3). We now seek to identify mechanisms for how adaptor protein deficiencies bypass a defect in MRP-5-mediated heme export.
  • Thumbnail Image
    Item
    LONG-RANGE SIGNALING AT THE INTESTINAL-NEURAL AXIS PROMOTES ORGANISMAL HEME HOMEOSTASIS IN C. ELEGANS
    (2014) Sinclair, Jason Wallace; Hamza, Iqbal; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Metazoans synthesize and regulate intracellular heme in a cell autonomous manner although genetic evidence in vertebrates suggests that cell non-autonomous mechanisms may exist at the organismal level. In C. elegans, a heme auxotroph, extraintestinal tissues are intrinsically dependent on the intestine, which acquires dietary heme for sustenance, supporting the concept that intestinal heme status must be coordinated at the systemic level to regulate whole-organism heme homeostasis. Here we show, by conducting a functional genome-wide RNAi screen in an intestinal-restricted heme sensor worm, that an interorgan heme signaling pathway exists and that >30% of the genes identified from the RNAi screen altered heme homeostasis in the intestine even though these genes are not expressed in the intestine. The biological basis for this signaling is underscored by HRG-7, a cathepsin protease-like protein secreted by the intestine and internalized by distally-located neurons. HRG-7 is specifically secreted from the intestine during heme limitation and hrg-7 depletion causes embryonic lethality concomitant with a heme deficiency response. Reciprocally, neuron-to-intestine heme signaling is mediated by the bone morphogenic protein homolog DBL-1, which recapitulates hrg-7 deficiency when depleted. Remarkably, depletion of both genes simultaneously results in markedly enhanced growth and heme deficiency phenotypes, suggesting that bidirectional signaling between the intestine and neurons mediates systemic heme homeostasis. Our results have uncovered an unexpected role for a protease family member in long-range communication between organs at the intestinal-neural axis to regulate systemic heme homeostasis in metazoa. As humans have over thirty cathepsin and cathepsin-like proteases, several of which are secreted, we anticipate that these proteins may play analogous roles in mammalian biology.
  • Thumbnail Image
    Item
    FUNCTIONAL INSIGHTS INTO HRG-1-MEDIATED HEME TRANSPORT
    (2012) Yuan, Xiaojing; Hamza, Iqbal; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Heme is an essential cofactor involved in various biological processes including oxygen transport, xenobiotic detoxification, oxidative metabolism, gas sensing, circadian rhythm, signal transduction, microRNA processing and thyroid hormone synthesis. Heme is also an essential nutrient for parasites and is the major dietary iron source for humans. Despite our extensive understanding of the mechanisms of heme synthesis and degradation in eukaryotes, little is known as to how heme is transported and trafficked in eukaryotes. Recently, CeHRG-1 and CeHRG-4 were identified as the first bona fide heme importers/transporters using the heme auxotroph, Caenorhabditis elegans. To gain mechanistic insights into the heme transport function of HRG-1-related proteins, we conducted a structure-function analysis of CeHRG-1 and CeHRG-4 by exploiting yeast mutants that are genetically defective in heme synthesis. Our studies reveal that HRG-1-related proteins transport heme across membranes through the coordinated actions of strategically placed amino acids that are topologically conserved in both, the worm and human proteins. To further dissect the functional elements that dictate their intracellular localization, we generated a series of chimeras by swapping the amino and carboxy terminal segments of CeHRG-1 and CeHRG-4. Our analysis in yeast and mammalian cells demonstrate that the C-terminal domains are essential for membrane localization of the protein, while the N-terminal domains are important for proper function, and plausibly multimerization of HRG-1-related proteins. Currently, there are no pharmacological means to aid in the study of the cellular and physiological roles of eukaryotic heme transporters. We, for the first time, developed and executed a high-throughput screen of 233,360 compounds, to identify potential antagonists of HRG-1-related proteins by utilizing parasite heme transporters as the primary screening bait. Subsequent study in parasites will provide novel drug candidates against helminths that infect humans, livestock, and plants, as well as against genetic disorders of heme and iron metabolism in humans. Taken together, results from our studies will significantly advance novel functional and therapeutic insights into HRG-1 mediated heme transport in health and disease.
  • Thumbnail Image
    Item
    DELINEATING THE ROLES OF C. ELEGANS HEME RESPONSIVE GENES HRG-2 AND HRG-3 IN HEME HOMEOSTASIS
    (2009) Chen, Caiyong; Hamza, Iqbal; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Heme is an essential cofactor for diverse biological processes such as oxygen transport, xenobiotic detoxification, and circadian clock control. Since free heme is hydrophobic and cytotoxic, we hypothesize that within eukaryotic cells, specific trafficking pathways exist for the delivery of heme to different subcellular destinations where hemoproteins reside. To identify molecules that may be involved in heme homeostasis, we conducted a C. elegans microarray experiment on RNA extracted from worms grown at different concentrations of heme in axenic liquid medium. Analysis of the microarrays revealed that the mRNA levels of heme-responsive gene-2 (hrg-2) and hrg-3 increased more than 70 fold when worms were grown at 4 µM compared to 20 µM heme. hrg-2 is expressed in hypodermal tissues in the worm, and the protein localizes to the endoplasmic reticulum and the apical plasma membrane. In vitro hemin agarose pull-down experiments indicate that HRG-2 binds heme. Deletion of hrg-2 in C. elegans leads to reduced growth rate at low heme. Moreover, expression of HRG-2 in hem1δ, a heme-deficient yeast strain, results in growth rescue at submicromolar concentrations of exogenous heme. These results indicate that HRG-2 may either directly participate in heme uptake or facilitate heme delivery to another protein. Unlike hrg-2, hrg-3 is exclusively expressed in the worm intestine under heme deficiency. Following its synthesis, HRG-3 is secreted into the body cavity pseudocoelom. Deletion of hrg-3 results in increased heme levels in the worm intestine, suggesting that HRG-3 may function in intercellular heme transport in C. elegans. To identify the functional network or pathways for HRG-2 and HRG-3, we performed a genome-wide microarray analysis using RNA samples prepared from the worms grown at different concentrations of heme and oxygen. The results showed that a total of 446 genes were transcriptionally altered by heme and/or oxygen. Among them, 41 and 29 genes exhibited similar expression profiles to hrg-2 and hrg-3, respectively. We postulate that these genes may function in conjunction with hrg-2 and hrg-3. Taken together, we have identified two novel heme-responsive genes in metazoa that may play critical roles in modulating organismal heme homeostasis in C. elegans.
  • Thumbnail Image
    Item
    Identification and characterization of a heme responsive element in the hrg-1 promoter
    (2008) Sinclair, Jason; Hamza, Iqbal; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Despite its biological significance, little is known about how animals sense and respond to heme to maintain homeostasis. C. elegans is a heme auxotroph, which makes it an excellent model to identify and dissect heme homeostasis pathways. Using C. elegans we have identified HRG-1, a vesicular heme transporter that is transcriptionally upregulated when environmental heme is low. The current study seeks to address how hrg-1 is regulated by heme. Here, we show that a putative 23 base pair (bp) heme-responsive element (HRE) and GATA-binding motifs are necessary for heme-dependent regulation of hrg-1. The HRE comprises both enhancer and repressor elements and works in conjunction with ELT-2 to regulate hrg-1 expression. We propose that the HRE could be used as a molecular tool in C. elegans to tightly regulate internal gene expression by modulating environmental heme. Our ultimate goal is to identify the trans-acting factor to eventually create a whole animal sensor for monitoring organismal heme homeostasis.