Atmospheric & Oceanic Science Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/1596
Formerly known as the Department of Meteorology.
Browse
3 results
Search Results
Item Impact of Fire Emissions on U.S. Air Quality from 1997 to 2016–A Modeling Study in the Satellite Era(MDPI, 2020-03-12) Tao, Zhining; He, Hao; Sun, Chao; Tong, Daniel; Liang, Xin-ZhongA regional modeling system that integrates the state-of-the-art emissions processing (SMOKE), climate (CWRF), and air quality (CMAQ) models has been combined with satellite measurements of fire activities to assess the impact of fire emissions on the contiguous United States (CONUS) air quality during 1997–2016. The system realistically reproduced the spatiotemporal distributions of the observed meteorology and surface air quality, with a slight overestimate of surface ozone (O3) by ~4% and underestimate of surface PM2.5 by ~10%. The system simulation showed that the fire impacts on primary pollutants such as CO were generally confined to the fire source areas but its effects on secondary pollutants like O3 spread more broadly. The fire contribution to air quality varied greatly during 1997-2016 and occasionally accounted for more than 100 ppbv of monthly mean surface CO and over 20 µg m−3 of monthly mean PM2.5 in the Northwest U.S. and Northern California, two regions susceptible to frequent fires. Fire emissions also had implications on air quality compliance. From 1997 to 2016, fire emissions increased surface 8-hour O3 standard exceedances by 10% and 24-hour PM2.5 exceedances by 33% over CONUS.Item Validation of SO2 retrievals from the Ozone Monitoring Instrument (OMI) over NE China(American Geophysical Union (AGU), 2008) Krotkov, N. A.; McClure, B.; Dickerson, R. R.; Carn, S.; Li, C.; Bhartia, P. K.; Yang, K.; Krueger, A.; Li, Z.; Levelt, P. F.; Chen, Hongbin; Wang, Pucai; Lu, DarenThe Ozone Monitoring Instrument (OMI) launched on the NASA Aura satellite in July 2004 offers unprecedented spatial resolution, coupled with contiguous daily global coverage, for space-based UV measurements of sulfur dioxide (SO2). We present a first validation of the OMI SO2 data with in-situ aircraft measurements in NE China in April 2005. The study demonstrates that OMI can distinguish between background SO2 conditions and heavy pollution on a daily basis. The noise (expressed as the standard deviation, σ) in the PBL SO2 data is ~1.5DU (Dobson Unit, 2.691016 molecules/cm2) for instantaneous field of view (IFOV) data. By looking at the pristine South Pacific under optimal conditions we have determined that temporal and spatial averaging can improve the resolution of the instrument to σ ~ 0.3 DU; the long term average over this remote location was within 0.1 DU of zero. Under polluted conditions, however, Collection 2 data are higher than aircraft measurements by a factor of two in most cases. Parameterization of the airmass factor (AMF) appears to enhance the accuracy of the SO2 data. Improved calibrations of the radiance and irradiance data (Collection 3) result in better agreement with aircraft measurements on polluted days. The re-processed and AMF-corrected Collection 3 data still show positive bias and sensitivity to UV absorbing aerosols. The difference between the in situ data and the OMI daily PBL SO2 measurements within 30 km of the aircraft profiles was about 1 DU, equivalent to ~5 ppb from 0 to 3000 m altitude. Quantifying the SO2 profile and spectral dependence of aerosol absorption between 310 and 330 nm are critical for accurate estimates of SO2 from satellite UV measurements.Item The Sensitivity of Modeled Ozone to the Temporal Distribution of Point, Area, and Mobile Emissions in the Eastern US(Elsevier, 2009) Castellanos, Patricia; Ehrman, Sheryl H.; Stehr, Jeffrey W.; Dickerson, Russell R.Ozone remains one of the most recalcitrant air pollution problems in the US. Hourly emissions fields used in air quality models (AQMs) generally show less temporal variability than corresponding measurements. In order to understand how the daily cycle of estimated emissions affects modeled ozone, we analyzed the effects of altering all anthropogenic emissions’ temporal distributions by source group 2 on 2002 summer-long simulations of ozone using the Community Multi-Scale Air Quality Model (CMAQ) v4.5 and the carbon bond IV (CBIV) chemical mechanism with a 12 km grid. We find that when mobile source emissions were made constant over the course of a day, 8-hour maximum ozone predictions changed by ±7 parts per billion by volume (ppbv) in urban areas on days when ozone concentrations greater than 80 ppbv were simulated in the base case. Increasing the temporal variation of point sources resulted in ozone changes of +6 and –6 ppbv, but only for small areas near sources. Changing the daily cycle of mobile source emissions produces substantial changes in simulated ozone, especially in urban areas at night; implications for abatement strategy are discussed.