Atmospheric & Oceanic Science Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/1596

Formerly known as the Department of Meteorology.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Seasonal and Interannual Variability of Tidal Mixing Signatures in Indonesian Seas from High-Resolution Sea Surface Temperature
    (MDPI, 2022-04-16) Susanto, Raden Dwi; Ray, Richard D.
    With their complex narrow passages and vigorous mixing, the Indonesian seas provide the only low-latitude pathway between the Pacific and Indian Oceans and thus play an essential role in regulating Pacific-Indian Ocean exchange, regional air-sea interaction, and ultimately, global climate phenomena. While previous investigations using remote sensing and numerical simulations strongly suggest that this mixing is tidally driven, the impacts of monsoon and El Niño Southern Oscillation (ENSO) on tidal mixing in the Indonesian seas must play an important role. Here we use high-resolution sea surface temperature from June 2002 to June 2021 to reveal monsoon and ENSO modulations of mixing. The largest spring-neap (fortnightly) signals are found to be localized in the narrow passages/straits and sills, with more vigorous tidal mixing during the southeast (boreal summer) monsoon and El Niño than that during the northwest (boreal winter monsoon) and La Niña. Therefore, tidal mixing, which necessarily responds to seasonal and interannual changes in stratification, must also play a feedback role in regulating seasonal and interannual variability of water mass transformations and Indonesian throughflow. The findings have implications for longer-term variations and changes of Pacific–Indian ocean water mass transformation, circulation, and climate.
  • Thumbnail Image
    Item
    On Investigating the Dynamical Factors Modulating Surface Chlorophyll-a Variability along the South Java Coast
    (MDPI, 2022-04-05) Mandal, Samiran; Susanto, Raden Dwi; Ramakrishnan, Balaji
    Twelve years of remotely sensed all-sat merged chlorophyll-a concentration unveils strong signatures of chlorophyll-a blooms along the south Java coast. An unprecedented three-times increase in chlorophyll-a concentration is significantly observed along the south Java coast during the southeast monsoon (June–October) than the northwest monsoon (December–April). The multiple regression analysis of dynamic factors evidently indicates that seasonal upwelling is predominantly controlled by the seasonally evolving coastal eddies associated with the seasonally reversing south Java coastal currents (SJCC) and Ekman mass transport (EMT), followed by the relative roles of sea surface temperature (SST) and wind stress curl. The eddy-induced upwelling and EMT-induced coastal upwelling lead to chlorophyll-a blooms during southeast monsoon, well-supported by the entrainment of cold and saline waters (thermocline doming) with low spiciness. On the other hand, the coastal eddies associated with SJCC and SST anomalies play a significant role in modulating the interannual surface chlorophyll-a variability in the domain. Intense chlorophyll-a blooms are observed during the positive IOD years, whereas the least chlorophyll-a concentration is observed during the negative IOD years. The unprecedentedly least chlorophyll-a concentrations during 2010 and 2016 are attributed to the intense and prolonged surface marine heatwaves.