Atmospheric & Oceanic Science Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/1596

Formerly known as the Department of Meteorology.

Browse

Search Results

Now showing 1 - 8 of 8
  • Thumbnail Image
    Item
    A Study of the Oklahoma City Urban Heat Island Effect Using a WRF/Single-Layer Urban Canopy Model, a Joint Urban 2003 Field Campaign, and MODIS Satellite Observations
    (MDPI, 2017-09-07) Zhang, Hengyue; Jin, Menglin S.; Leach, Martin
    The urban heat island effect (UHI) for inner land regions was investigated using satellite data, ground observations, and simulations with an Single-Layer Urban Canopy Parameterization (SLUCP) coupled into the regional Weather Research Forecasting model (WRF, http://wrf-model.org/index.php). Specifically, using the satellite-observed surface skin temperatures (Tskin), the intensity of the UHI was first compared for two inland cities (Xi’an City, China, and Oklahoma City (OKC)), which have different city populations and building densities. The larger population density and larger building density in Xi’an lead to a stronger skin-level UHI by 2 °C. However, the ground observed 2 m surface air temperature (Tair) observations showed an urban cooling island effect (UCI) over the downtown region in OKC during the daytime of 19 July 2003, from a DOE field campaign (Joint Urban 2003). To understand this contrast between satellite-based Tskin and ground-based Tair, a sensitivity study using WRF/SLUCP was analyzed. The model reproduced a UCI in OKC. Furthermore, WRF/Noah/SLUCM simulations were also compared with the Joint Urban 2003 ground observations, including wind speeds, wind directions, and energy fluxes. Although the WRF/SLUCM model failed to simulate these variables accurately, it reproduced the diurnal variations of surface temperatures, wind speeds, wind directions, and energy fluxes reasonably well.
  • Thumbnail Image
    Item
    Assessing Coastal SMAP Surface Salinity Accuracy and Its Application to Monitoring Gulf of Maine Circulation Dynamics
    (MDPI, 2018-08-06) Grodsky, Semyon A.; Vandemark, Douglas; Feng, Hui
    Monitoring the cold and productive waters of the Gulf of Maine and their interactions with the nearby northwestern (NW) Atlantic shelf is important but challenging. Although remotely sensed sea surface temperature (SST), ocean color, and sea level have become routine, much of the water exchange physics is reflected in salinity fields. The recent invention of satellite salinity sensors, including the Soil Moisture Active Passive (SMAP) radiometer, opens new prospects in regional shelf studies. However, local sea surface salinity (SSS) retrieval is challenging due to both cold SST limiting salinity sensor sensitivity and proximity to land. For the NW Atlantic, our analysis shows that SMAP SSS is subject to an SST-dependent bias that is negative and amplifies in winter and early spring due to the SST-related drop in SMAP sensor sensitivity. On top of that, SMAP SSS is subject to a land contamination bias. The latter bias becomes noticeable and negative when the antenna land contamination factor (LC) exceeds 0.2%, and attains maximum negative values at LC = 0.4%. Coastward of LC = 0.5%, a significant positive land contamination bias in absolute SMAP SSS is evident. SST and land contamination bias components are seasonally dependent due to seasonal changes in SST/winds and terrestrial microwave properties. Fortunately, it is shown that SSS anomalies computed relative to a satellite SSS climatology can effectively remove such seasonal biases along with the real seasonal cycle. SMAP monthly SSS anomalies have sufficient accuracy and applicability to extend nearer to the coasts. They are used to examine the Gulf of Maine water inflow, which displayed important water intrusions in between Georges Banks and Nova Scotia in the winters of 2016/17 and 2017/18. Water intrusion patterns observed by SMAP are generally consistent with independent measurements from the European Soil Moisture Ocean Salinity (SMOS) mission. Circulation dynamics related to the 2016/2017 period and enhanced wind-driven Scotian Shelf transport into the Gulf of Maine are discussed.
  • Thumbnail Image
    Item
    Tidal Mixing Signatures in the Hong Kong Coastal Waters from Satellite-Derived Sea Surface Temperature
    (MDPI, 2018-12-20) Susanto, R. Dwi; Pan, Jiayi; Devlin, Adam T.
    Tidal mixing in the coastal waters of Hong Kong was investigated using a combination of in situ observations and high-resolution satellite-derived sea surface temperature (SST) data. An indicator of tide-induced mixing is a fortnightly (spring-neap cycle) signature in SST due to nonlinear interactions between the two principal diurnal and the two principal semi-diurnal tides. Both semi-diurnal and diurnal tides have strong tidal amplitudes and currents near Hong Kong. As a result, both the near-fortnightly (Mf) and fortnightly (MSf) tides are enhanced due to nonlinear tidal signal interactions. In addition, these fortnightly tidal signals are modulated by seasonal variability, with the maximum seasonal modulation of fortnightly tides occurring during the monsoon transition periods in May and October. The largest fortnightly signals are found in the southwestern part of the Pearl River estuary. Tidal constituent properties vary by space and depth, and high-resolution SST plays a pivotal role in resolving the spatial characteristics of tidal mixing.
  • Thumbnail Image
    Item
    Validation and Improvement of the WRF Building Environment Parametrization (BEP) Urban Scheme
    (MDPI, 2019-09-10) Gohil, Kanishk; Jin, Menglin S.
    The building environment parameterization scheme (BEP) is a built-in “urban physics” scheme in the weather research and forecasting (WRF) model. The urbanized College Park (CP) in Maryland state (MD) in the United States (US) covers an approximate land area of 14.8 km2 and has a population of 32,000 (reported by The United States Census Bureau, as of 2017). This study was an effort to validate and improve the BEP urban physics scheme for a small urban setting, College Park, MD. Comparing the WRF/BEP-simulated two-meter air temperatures with the local rooftop WeatherBug® observations and with the airport observations, systemic deficiencies in BEP for urban heat island effect simulation are evident. Specifically, WRF/BEP overestimates the two-meter air temperature by about 10 °F during clear summer nights and slightly underestimates it during noon of the same days by about 1–3 °F. Similar deficiencies in skin temperature simulations are also evident in WRF/BEP. Modification by adding an anthropogenic heat flux term resulted in better estimates for both skin and two-meter air temperatures on diurnal and seasonal scales.
  • Thumbnail Image
    Item
    Towards a Unified and Coherent Land Surface Temperature Earth System Data Record from Geostationary Satellites
    (MDPI, 2019-06-12) Pinker, Rachel T.; Ma, Yingtao; Chen, Wen; Hulley, Glynn; Borbas, Eva; Islam, Tanvir; Hain, Chris; Cawse-Nicholson, Kerry; Hook, Simon; Basara, Jeff
    Our objective is to develop a framework for deriving long term, consistent Land Surface Temperatures (LSTs) from Geostationary (GEO) satellites that is able to account for satellite sensor updates. Specifically, we use the Radiative Transfer for TOVS (RTTOV) model driven with Modern-Era Retrospective Analysis for Research and Applications (MERRA-2) information and Combined ASTER and MODIS Emissivity over Land (CAMEL) products. We discuss the results from our comparison of the Geostationary Operational Environmental Satellite East (GOES-E) with the MODIS Land Surface Temperature and Emissivity (MOD11) products, as well as several independent sources of ground observations, for daytime and nighttime independently. Based on a six-year record at instantaneous time scale (2004–2009), most LST estimates are within one std from the mean observed value and the bias is under 1% of the mean. It was also shown that at several ground sites, the diurnal cycle of LST, as averaged over six years, is consistent with a similar record generated from satellite observations. Since the evaluation of the GOES-E LST estimates occurred at every hour, day and night, the data are well suited to address outstanding issues related to the temporal variability of LST, specifically, the diurnal cycle and the amplitude of the diurnal cycle, which are not well represented in LST retrievals form Low Earth Orbit (LEO) satellites.
  • Thumbnail Image
    Item
    The College Park, Maryland, Tornado of 24 September 2001
    (MDPI, 2019-10-22) Pryor, Kenneth L.; Wawrzyniak, Tyler; Zhang, Da-Lin
    The 24 September 2001 College Park, Maryland, tornado was a long-track and strong tornado that passed within a close range of two Doppler radars. It was the third in a series of three tornadoes associated with a supercell storm that developed in Stafford County, Virginia, and initiated 3–4 km southwest of College Park and dissipated near Columbia, Howard County. The supercell tracked approximately 120 km and lasted for about 126 min. This study presents a synoptic and mesoscale overview of favorable conditions and forcing mechanisms that resulted in the severe convective outbreak associated with the College Park tornado. The results show many critical elements of the tornadic event, including a negative-tilted upper-level trough over the Ohio Valley, a jet stream with moderate vertical shear, a low-level warm, moist tongue of the air associated with strong southerly flow over south-central Maryland and Virginia, and significantly increased convective available potential energy (CAPE) during the late afternoon hours. A possible role of the urban heat island effects from Washington, DC, in increasing CAPE for the development of the supercell is discussed. Satellite imagery reveals the banded convective morphology with high cloud tops associated with the supercell that produced the College Park tornado. Operational WSR-88D data exhibit a high reflectivity “debris ball” or tornadic debris signature (TDS) within the hook echo, the evolution of the parent storm from a supercell structure to a bow echo, and a tornado cyclone signature (TCS). Many of the mesoscale features could be captured by contemporary numerical model analyses. This study concludes with a discussion of the effectiveness of the coordinated use of satellite and radar observations in the operational environment of nowcasting severe convection.
  • Thumbnail Image
    Item
    Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation
    (Science, 2018-09-07) Li, Yan; Kalnay, Eugenia; Motesharrei, Safa; Rivas, Jorge; Kucharski, Fred; Kirk-Davidoff, Daniel; Bach, Eviatar; Zeng, Ning
    Wind and solar farms offer a major pathway to clean, renewable energies. However, these farms would significantly change land surface properties, and, if sufficiently large, the farms may lead to unintended climate consequences. In this study, we used a climate model with dynamic vegetation to show that large-scale installations of wind and solar farms covering the Sahara lead to a local temperature increase and more than a twofold precipitation increase, especially in the Sahel, through increased surface friction and reduced albedo. The resulting increase in vegetation further enhances precipitation, creating a positive albedo–precipitation–vegetation feedback that contributes ~80% of the precipitation increase for wind farms. This local enhancement is scale dependent and is particular to the Sahara, with small impacts in other deserts.
  • Thumbnail Image
    Item
    Ozone production and its sensitivity to NOx and VOCs: results from the DISCOVER-AQ field experiment, Houston 2013
    (Copernicus Publications, 2016-11-22) Mazzuca, Gina M.; Ren, Xinrong; Loughner, Christopher P.; Estes, Mark; Crawford, James H.; Pickering, Kenneth E.; Weinheimer, Andrew J.; Dickerson, Russell R.
    An observation-constrained box model based on the Carbon Bond mechanism, version 5 (CB05), was used to study photochemical processes along the NASA P-3B flight track and spirals over eight surface sites during the September 2013 Houston, Texas deployment of the NASA Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign. Data from this campaign provided an opportunity to examine and improve our understanding of atmospheric photochemical oxidation processes related to the formation of secondary air pollutants such as ozone (O3). O3 production and its sensitivity to NOx and volatile organic compounds (VOCs) were calculated at different locations and times of day. Ozone production efficiency (OPE), defined as the ratio of the ozone production rate to the NOx oxidation rate, was calculated using the observations and the simulation results of the box and Community Multiscale Air Quality (CMAQ) models. Correlations of these results with other parameters, such as radical sources and NOx mixing ratio, were also evaluated. It was generally found that O3 production tends to be more VOC-sensitive in the morning along with high ozone production rates, suggesting that control of VOCs may be an effective way to control O3 in Houston. In the afternoon, O3 production was found to be mainly NOx-sensitive with some exceptions. O3 production near major emissions sources such as Deer Park was mostly VOC-sensitive for the entire day, other urban areas near Moody Tower and Channelview were VOC-sensitive or in the transition regime, and areas farther from downtown Houston such as Smith Point and Conroe were mostly NOx-sensitive for the entire day. It was also found that the control of NOx emissions has reduced O3 concentrations over Houston but has led to larger OPE values. The results from this work strengthen our understanding of O3 production; they indicate that controlling NOx emissions will provide air quality benefits over the greater Houston metropolitan area in the long run, but in selected areas controlling VOC emissions will also be beneficial.