Atmospheric & Oceanic Science Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/1596

Formerly known as the Department of Meteorology.

Browse

Search Results

Now showing 1 - 9 of 9
  • Thumbnail Image
    Item
    Understanding the Effects of Aerosols on Electrification and Lightning Polarity in an Idealized Supercell Thunderstorm via Model Emulation
    (Wiley, 2023-12-29) Sun, Mengyu; Li, Zhanqing; Wang, Tao; Mansell, Edward R.; Qie, Xiushu; Shan, Siyu; Liu, Dongxia; Cribb, Maureen
    Aerosol effects on the lightning intensity and polarity of a continental supercell storm were investigated using a three-dimensional lightning scheme within the Weather Research and Forecasting model. We find that both intra-cloud (IC) and cloud-to-ground (CG) flashes are enhanced by the increasing number of cloud condensation nuclei (CCN), especially the percentage of positive CG (+CG) strokes peaking at 42%. Electrical characteristics of the storm varied in different aerosol scenarios through microphysical processes. Added aerosols increase the number of cloud droplets and ice-phase hydrometeors. The greater ice-crystal concentration and larger graupel size ensure sufficient charge separation, leading to higher charge density and more lightning discharges. In addition, an inverted polarity charge structure with a strong positive-charge region in the mid-levels was formed mainly due to the positively charged graupel in the presence of higher supercooled cloud water content. Positive lightning channels originating from this positive-charge region propagated to the ground, producing more +CG strokes. When the aerosol concentration was low, the charge density in the upper positive-charge region was much lower due to smaller ice-particle content. Consequently, there were barely any +CG strokes. Most of the negative CG flashes deposited positive charge in the lower negative-charge region.
  • Thumbnail Image
    Item
    Evaluation of Stratocumulus Evolution Under Contrasting Temperature Advections in CESM2 Through a Lagrangian Framework
    (Wiley, 2024-02-16) Zhang, Haipeng; Zheng, Youtong; Li, Zhanqing
    This study leveraged a Lagrangian framework to examine the evolution of stratocumulus clouds under cold and warm advections (CADV and WADV) in the Community Earth System Model 2 (CESM2) against observations. We found that CESM2 simulates a too rapid decline in low-cloud fraction (LCF) and cloud liquid water path (CLWP) under CADV conditions, while it better aligns closely with observed LCF under WADV conditions but overestimates the increase in CLWP. Employing an explainable machine learning approach, we found that too rapid decreases in LCF and CLWP under CADV conditions are related to overestimated drying effects induced by sea surface temperature, whereas the substantial increase in CLWP under WADV conditions is associated with the overestimated moistening effects due to free-tropospheric moisture and surface winds. Our findings suggest that overestimated drying effects of sea surface temperature on cloud properties might be one of crucial causes for the high equilibrium climate sensitivity in CESM2.
  • Thumbnail Image
    Item
    Hygroscopicity of Different Types of Aerosol Particles: Case Studies Using Multi-Instrument Data in Megacity Beijing, China
    (MDPI, 2020-03-01) Wu, Tong; Li, Zhanqing; Chen, Jun; Wang, Yuying; Wu, Hao; Jin, Xiao'ai; Liang, Chen; Li, Shangze; Wang, Wei; Cribb, Maureen
    Water uptake by aerosol particles alters its light-scattering characteristics significantly. However, the hygroscopicities of different aerosol particles are not the same due to their different chemical and physical properties. Such differences are explored by making use of extensive measurements concerning aerosol optical and microphysical properties made during a field experiment from December 2018 to March 2019 in Beijing. The aerosol hygroscopic growth was captured by the aerosol optical characteristics obtained from micropulse lidar, aerosol chemical composition, and aerosol particle size distribution information from ground monitoring, together with conventional meteorological measurements. Aerosol hygroscopicity behaves rather distinctly for mineral dust coarse-mode aerosol (Case I) and non-dust fine-mode aerosol (Case II) in terms of the hygroscopic enhancement factor, 𝑓𝛽(𝑅𝐻,𝜆532), calculated for the same humidity range. The two types of aerosols were identified by applying the polarization lidar photometer networking method (POLIPHON). The hygroscopicity for non-dust aerosol was much higher than that for dust conditions with the 𝑓𝛽(𝑅𝐻,𝜆532) being around 1.4 and 3.1, respectively, at the relative humidity of 86% for the two cases identified in this study. To study the effect of dust particles on the hygroscopicity of the overall atmospheric aerosol, the two types of aerosols were identified and separated by applying the polarization lidar photometer networking method in Case I. The hygroscopic enhancement factor of separated non-dust fine-mode particles in Case I had been significantly strengthened, getting closer to that of the total aerosol in Case II. These results were verified by the hygroscopicity parameter, κ (Case I non-dust particles: 0.357 ± 0.024; Case II total: 0.344 ± 0.026), based on the chemical components obtained by an aerosol chemical speciation instrument, both of which showed strong hygroscopicity. It was found that non-dust fine-mode aerosol contributes more during hygroscopic growth and that non-hygroscopic mineral dust aerosol may reduce the total hygroscopicity per unit volume in Beijing.
  • Thumbnail Image
    Item
    Wildfire Smoke Particle Properties and Evolution, from Space-Based Multi-Angle Imaging
    (MDPI, 2020-02-26) Noyes, Katherine Junghenn; Kahn, Ralph; Sedlacek, Arthur; Kleinman, Lawrence; Limbacher, James; Li, Zhanqing
    Emitted smoke composition is determined by properties of the biomass burning source and ambient ecosystem. However, conditions that mediate the partitioning of black carbon (BC) and brown carbon (BrC) formation, as well as the spatial and temporal factors that drive particle evolution, are not understood adequately for many climate and air-quality related modeling applications. In situ observations provide considerable detail about aerosol microphysical and chemical properties, although sampling is extremely limited. Satellites offer the frequent global coverage that would allow for statistical characterization of emitted and evolved smoke, but generally lack microphysical detail. However, once properly validated, data from the National Aeronautics and Space Administration (NASA) Earth Observing System’s Multi-Angle Imaging Spectroradiometer (MISR) instrument can create at least a partial picture of smoke particle properties and plume evolution. We use in situ data from the Department of Energy’s Biomass Burning Observation Project (BBOP) field campaign to assess the strengths and limitations of smoke particle retrieval results from the MISR Research Aerosol (RA) retrieval algorithm. We then use MISR to characterize wildfire smoke particle properties and to identify the relevant aging factors in several cases, to the extent possible. The RA successfully maps qualitative changes in effective particle size, light absorption, and its spectral dependence, when compared to in situ observations. By observing the entire plume uniformly, the satellite data can be interpreted in terms of smoke plume evolution, including size-selective deposition, new-particle formation, and locations within the plume where BC or BrC dominates.
  • Thumbnail Image
    Item
    The Urban–Rural Heterogeneity of Air Pollution in 35 Metropolitan Regions across China
    (MDPI, 2020-07-19) Han, Wenchao; Li, Zhanqing; Guo, Jianping; Su, Tianning; Chen, Tianmeng; Wei, Jing; Cribb, Maureen
    Urbanization and air pollution are major anthropogenic impacts on Earth’s environment, weather, and climate. Each has been studied extensively, but their interactions have not. Urbanization leads to a dramatic variation in the spatial distribution of air pollution (fine particles) by altering surface properties and boundary-layer micrometeorology, but it remains unclear, especially between the centers and suburbs of metropolitan regions. Here, we investigated the spatial variation, or inhomogeneity, of air quality in urban and rural areas of 35 major metropolitan regions across China using four different long-term observational datasets from both ground-based and space-borne observations during the period 2001–2015. In general, air pollution in summer in urban areas is more serious than in rural areas. However, it is more homogeneously polluted, and also more severely polluted in winter than that in summer. Four factors are found to play roles in the spatial inhomogeneity of air pollution between urban and rural areas and their seasonal differences: (1) the urban–rural difference in emissions in summer is slightly larger than in winter; (2) urban structures have a more obvious association with the spatial distribution of aerosols in summer; (3) the wind speed, topography, and different reductions in the planetary boundary layer height from clean to polluted conditions have different effects on the density of pollutants in different seasons; and (4) relative humidity can play an important role in affecting the spatial inhomogeneity of air pollution despite the large uncertainties.
  • Thumbnail Image
    Item
    Wildfire Smoke Particle Properties and Evolution, From Space-Based Multi-Angle Imaging II: The Williams Flats Fire during the FIREX-AQ Campaign
    (MDPI, 2020-11-21) Junghenn Noyes, Katherine T.; Kahn, Ralph A.; Limbacher, James A.; Li, Zhanqing; Fenn, Marta A.; Giles, David M.; Hair, Johnathan W.; Katich, Joseph M.; Moore, Richard H.; Robinson, Claire E.; Sanchez, Kevin J.; Shingler, Taylor J.; Thornhill, Kenneth L.; Wiggins, Elizabeth B.; Winstead, Edward L.
    Although the characteristics of biomass burning events and the ambient ecosystem determine emitted smoke composition, the conditions that modulate the partitioning of black carbon (BC) and brown carbon (BrC) formation are not well understood, nor are the spatial or temporal frequency of factors driving smoke particle evolution, such as hydration, coagulation, and oxidation, all of which impact smoke radiative forcing. In situ data from surface observation sites and aircraft field campaigns offer deep insight into the optical, chemical, and microphysical traits of biomass burning (BB) smoke aerosols, such as single scattering albedo (SSA) and size distribution, but cannot by themselves provide robust statistical characterization of both emitted and evolved particles. Data from the NASA Earth Observing System’s Multi-Angle Imaging SpectroRadiometer (MISR) instrument can provide at least a partial picture of BB particle properties and their evolution downwind, once properly validated. Here we use in situ data from the joint NOAA/NASA 2019 Fire Influence on Regional to Global Environments Experiment-Air Quality (FIREX-AQ) field campaign to assess the strengths and limitations of MISR-derived constraints on particle size, shape, light-absorption, and its spectral slope, as well as plume height and associated wind vectors. Based on the satellite observations, we also offer inferences about aging mechanisms effecting downwind particle evolution, such as gravitational settling, oxidation, secondary particle formation, and the combination of particle aggregation and condensational growth. This work builds upon our previous study, adding confidence to our interpretation of the remote-sensing data based on an expanded suite of in situ measurements for validation. The satellite and in situ measurements offer similar characterizations of particle property evolution as a function of smoke age for the 06 August Williams Flats Fire, and most of the key differences in particle size and absorption can be attributed to differences in sampling and changes in the plume geometry between sampling times. Whereas the aircraft data provide validation for the MISR retrievals, the satellite data offer a spatially continuous mapping of particle properties over the plume, which helps identify trends in particle property downwind evolution that are ambiguous in the sparsely sampled aircraft transects. The MISR data record is more than two decades long, offering future opportunities to study regional wildfire plume behavior statistically, where aircraft data are limited or entirely lacking.
  • Thumbnail Image
    Item
    The Impact of Urbanization on Mesoscale Convective Systems in the Yangtze River Delta Region of China: Insights Gained From Observations and Modeling
    (Wiley, 2023-01-17) Xian, Tian; Guo, Jianping; Zhao, Runze; Su, Tianning; Li, Zhanqing
    Urbanization is an important factor that may influence the formation and development of clouds and precipitation. In this study, we focus on studying the influence of urbanization on mesoscale convective systems (MCS) over the Yangtze River Delta region in China under different synoptic conditions using a combination of radiosonde, meteorological station, and satellite observations. It demonstrates that synoptic forcing can be used to distinguish the effect of land cover and land use on MCS. When the synoptic-scale forcing is weak, the urban heat island (UHI) is the main factor affecting the vertical development of clouds. The UHI decreases atmospheric stability and enhances horizontal convergence, invigorating clouds over and downwind of cities. On the other hand, when strong synoptic-scale forcing is present, buildings in cities cause clouds to bifurcate upwind of cities, moving around them, primarily through their dynamic effects. The heights of cloud tops in central and downwind parts of cities thus drop. Using the Weather Research and Forecasting model simulations of different atmospheric forcings also demonstrate similar patterns around major urban areas. The joint analyses of observations and model simulations provide new insights into the net effects of urbanization on cloud systems.
  • Thumbnail Image
    Item
    Differentiating the Contributions of Particle Concentration, Humidity, and Hygroscopicity to Aerosol Light Scattering at Three Sites in China
    (Wiley, 2022-11-23) Jin, Xiaoai; Li, Zhanqing; Wu, Tong; Wang, Yuying; Su, Tianning; Ren, Rongmin; Wu, Hao; Zhang, Dongmei; Li, Shangze; Cribb, Maureen
    The scattering of light by aerosol particles dictates atmospheric visibility, which is a straightforward indicator of air quality. It is affected by numerous factors, such as particle number size distribution, particle mass concentration (PM2.5), ambient relative humidity (RH), and chemical composition. The latter two factors jointly influence the aerosol liquid water content (ALWC). Here, the particle backscattering coefficient (βp) under ambient RH conditions is investigated to differentiate and quantify the contributions of aerosol properties and meteorology using comprehensive observational datasets acquired at three megacities in China, that is, Beijing (BJ), Nanjing (NJ), and Guangzhou (GZ). Overall, the temporal variations in βp under ambient RH conditions are consistent with those in ALWC at the three sites. The PM2.5 in BJ is systematically higher than in NJ and GZ, while ambient RH and aerosol hygroscopicity in NJ are much higher than in BJ and GZ. Notable differences in the variations of βp with related factors at the three sites are demonstrated. βp is more sensitive to particle hygroscopicity and mass in NJ and ambient RH in BJ. The relative contributions of these factors to βp at the three sites under different pollution conditions are differentiated and quantified. The factor with the largest impact on the variability in βp shifts from particle mass to ambient RH as air quality deteriorated to heavy pollution in BJ. The opposite is true in NJ. In GZ, the contributions of these factors to changes in βp under different pollution conditions are similar, both dominated by PM2.5.
  • Thumbnail Image
    Item
    Aircraft Observations of Dust and Pollutants over NE China: Insight into the Meteorological Mechanisms of Long-Range Transport
    (2006) Dickerson, Russell; Li, Can; Li, Zhanqing; Marufu, Lackson; Stehr, Jeffrey; Chen, H.; Wang, P; Xia, X.; Ban, X.; Gong, F.; Yaun, J.; Yang, J.
    Substantial concentrations of trace gases and aerosols are lofted and carried from Asia over the Pacific producing an inter-hemispheric impact on atmospheric chemistry and climate. The meteorological mechanism leading to this large-scale transport of dust and pollutants remains a major uncertainty in quantifying the global effects of emissions from the developing world. Models and downwind measurements have identified isentropic advection associated with wave cyclones (warm conveyor belt circulation) as an important mechanism. We present data from a case study conducted over Shenyang in NE China as part of EAST-AIRE in April 2005 in which upstream convection, rather than WCB lofting appears to dominate. Observations from instrumented aircraft flights, back trajectories, and satellite images of clouds (GOES) and aerosols (MODIS) are analyzed. In this heavily industrialized and populated region, the warm-sector PBL air ahead of a cold front was highly polluted. In the free troposphere, between ~1000 and 4000 m altitude, concentrations of trace gases and aerosols were lower, but well above background; we measured ~70 ppb O3, ~300 ppb CO, ~2 ppb SO2, and ~ 8x10-5 m-1 aerosol scattering. These observations show that dry (non-precipitating) convection can be an important mechanism for converting local air pollution problems into regional or global atmospheric chemistry problems. Climatological data indicate that spring (MAM) precipitation over NE China is low, about 90 mm compared to 290 mm over the NE US. Cloud cover, however, is similar with cumulus clouds reported about 7% of the time over NE China and about 9% of the time over the NE US suggesting that lofting in dry convective events may be common over NE Asia. Evaluation of models’ convective schemes and further observations near the source regions are called for.