Mechanical Engineering Theses and Dissertations
Permanent URI for this collection
Browse
Browsing Mechanical Engineering Theses and Dissertations by Title
Now showing 1 - 20 of 1102
Results Per Page
Sort Options
Item Access Scheduling and Controller Design in Networked Control Systems(2005-10-05) Zhang, Lei; Hristu-Varsakelis, Dimitrios; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)A Networked Control System (NCS) is a control system in which the sensors and actuators are connected to a feedback controller via a shared communication medium. In an NCS, the shared medium can only provide a limited number of simultaneous connections for the sensors and actuators to communicate with the controller. As a consequence, the design of an NCS involves not only the specification of a feedback controller but also that of a communication policy that schedules access to the shared communication medium. Up to now, this task has posed a significant challenge, due in large part to the modeling complexity of existing NCS architectures, under which the control and communication design problems are tightly intertwined. This thesis proposes an alternative NCS architecture, whereby the plant and controller choose to ``ignore'' the actuators and sensors that are not actively communicating. This new architecture leads to simpler NCS models in which the design of feedback controller and communication polices can be effectively decoupled. In that setting, we propose a set of medium access scheduling strategies and accompanying controller design methods that address a broad range of stabilization, estimation, and optimization problems for a general class of NCSs. The performance of the proposed methods is illustrated through a set of simulations and hardware experiments.Item ACOUSTIC EMISSION-BASED STRUCTURAL HEALTH MANAGEMENT AND PROGNOSTICS SUBJECT TO SMALL FATIGUE CRACKS(2014) Keshtgar, Azadeh; Modarres, Mohammad; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)One of the major concerns in structural health management (SHM) is the early detection of growing crack. Using this, future consequential damage due to crack propagation can be reduced or eliminated by scheduling maintenance which can prevent costly downtime. Early crack detection can also be used to predict the remaining useful life of a system. Acoustic Emission (AE) is a non-destructive testing (NDT) method with potential applications for locating and monitoring fatigue cracks during SHM and prognosis. The research presented in this dissertation focuses on the structural health monitoring using AE. In this research a correlation between AE signal characteristics and crack growth behavior is established, and a probabilistic model of fatigue crack length distribution based on certain AE signal features is developed. In order to establish the AE signal feature versus the fatigue crack growth model and study the consistency and accuracy of the model, several standard fatigue experiments have been performed using standard test specimens subjected to cyclic loading with different amplitude and frequencies. Bayesian analysis inference is used to estimate the parameters of the model and associated model error. The results indicate that the modified AE crack growth model could be used to predict the crack growth rate distribution at different test conditions. In the second phase of this research, an AE signal analysis approach was proposed in order to detect the time of crack initiation and assess small crack lengths, which happen during the early stages of damage accumulation. Experimental investigation from uniform cyclic loading tests indicated that initiation of crack could be identified through the statistical analysis of AE signals. A probabilistic AE-based model was developed and the uncertainties of the model were assessed. In addition, a probabilistic model validation approach was implemented to validate the results. The developed models were properly validated and the results were accurate. It was shown that the updated model can be used for detection of crack initiation as well as prediction of small crack growth in early stages of propagation. It was found that the novel AE monitoring technique facilitates early detection of fatigue crack, allows for the original life predictions to be updated and helps to extend the service life of the structure. Finally, a quantification framework was proposed to evaluate probability of failure of structural integrity using the observed initial crack length. The outcome of this research can be used to assess the reliability of structural health by estimating the probability density function of the length of a detected crack and quantifying the probability of failure at a specified number of cycles. The proposed method has applications in on-line monitoring and evaluation of structural health and shows promise for use in fatigue life assessment.Item ACTIVE ACOUSTIC METAMATERIAL(2015) Althamer, Saeed; Baz, Amr; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)A class of active acoustic metamaterial (AAMM) is presented. The proposed AAMM consists of an acoustic transmission line connected in parallel to an array of Helmholtz resonators that are provided with actively controlled boundaries. In this manner, the AAMM is in effect an assembly of periodic cells, each of which consists of a Helmholtz resonator connected in parallel to two sections of the transmission line. The two sections meet the Helmholtz resonator at its neck. The local control action at each Helmholtz resonator of a unit cell is generated by using a Proportional and Derivative (PD) as well as Fractional Derivative (FD) controllers. The controllers that rely in their operation on the measurement of the flow resulting from the deflection of the resonator boundary and the flow rates inside the two transmission line sections before and after the resonator. Such a single local control action is shown to be capable of controlling the local effective density and elasticity of each unit cell. Lumped-parameter models are developed to model the dynamics and control characteristics of the AAMM under different gains for the PD controller and exponents of the FD controller. The models are exercised to demonstrate the ability of the FD controller in generating metamaterials with double negative effective density and elasticity over broad frequency ranges as compared to conventional Proportional and Derivative (PD) controllers. With such capabilities, the development of AAM with FD control action may provide viable means for generating desirable spatial distributions of density and elasticity over broad frequency band using a small number of control actuators.Item ACTIVE CONTROL OF NON-RECIPROCAL ACOUSTIC METAMATERIAL WITH A DYNAMIC CONTROLLER(2019) Raval, Suraj; Baz, Amr; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Reciprocity is one of the fundamental properties in the field of wave propagation. In acoustics, this property helps in various practical applications. But, breaking this reciprocity also has useful applications. As a result of which, many researchers have tried to break the reciprocity in acoustics, which is comparatively difficult, unlike in fields such as electro-magnetics. Majority of these proposed methods to break the reciprocity are hard-wired systems, which work for a very limited frequency range. Thus, we have introduced a non-reciprocal metamaterial having boundary control with the help of piezoelectric sensors and actuators. A theoretical model is introduced to induce the nonreciprocal behavior, and it is backed up by providing experimental evidence. Our setup consists of a cylindrical cell made up of acrylic, filled with water, having four piezo sensors/actuators, two on each end. The idea is to excite the piezo cell through an actuator on one side, collect the resulting signal from the piezo sensor on the other side, and perform appropriate mathematical operations on this signal to produce a feedback/control signal via a specially designed dynamic control action. This control signal affects the propagation of pressure waves through the water medium inside the cell as it introduces a virtual gyroscopic effect of controlled magnitude and direction. Thus, this is how non-reciprocity is introduced and controlled into the metamaterial cell. The obtained theoretical and experimental results demonstrate the effectiveness of the dynamic controller in breaking the acoustic reciprocity. Extension of this work to multi-cell metamaterial configuration is natural extension to be pursued.Item Active Control of Sound Transmission Into Three-Dimensional Enclosures(2004-05-12) Al-Bassyiouni, Moustafa; Balachandran, Balakumar; Mechanical EngineeringThe aim of this dissertation work is to understand active control of sound fields inside a three-dimensional rectangular enclosure into which noise is transmitted through a flexible boundary. To this end, analytical and numerical studies have been conducted. In the modeling efforts, a spherical wave excitation, which is generated by a noise source located in the near field of the flexible panel, is considered. Piezoelectric patches, which are bonded symmetrically to the top and bottom surfaces of the panel, are used as actuators. Microphones located inside and outside the enclosure serve as pressure sensors. The efforts account for panel interactions with both the external sound field and the enclosed sound field, and this feature makes it appealing for model-based active control schemes. The feasibility of implementing two zero spillover schemes for active structural-acoustic control systems has been studied through analysis and experiments. These schemes have been developed to ensure that spillover does not occur outside the control bandwidth. The numerical results are found to be in good agreement with the corresponding experimental observations; attenuations ranging up to 18.1 dB are experimentally obtained for narrowband disturbances and an attenuation of 8.3 dB is obtained for broadband excitation in the frequency range of 40 Hz £ f £ 230 Hz. The following contributions have resulted from this work: i) an analytical model capable of predicting the external pressure fields due to both the noise source and structural?acoustic interactions and that accounts for the general case of spherical wave propagation, ii) development of zero spillover, active structural-acoustic control schemes for controlling three?dimensional sound fields, and iii) a new relaxed zero spillover control scheme to ensure that the controlled response is bounded over the entire frequency range.Item AN ACTIVE NON-INTRUSIVE SYSTEM IDENTIFICATION APPROACH FOR CARDIOVASCULAR HEALTH MONITORING(2014) Fazeli, Nima; Hahn, Jin-Oh; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In this study a novel active non-intrusive system identification paradigm is developed for the purpose of cardiovascular health monitoring. The proposed approach seeks to utilize a collocated actuator sensor unit devised from the common blood pressure cuff to simultaneously 1) produce rich transmural blood pressure waves that propagate through the cardiovascular system and 2) to make measurements of these rich peripheral transmural blood pressures utilizing the pressure oscillations produced within the cuffs bladder in order to reproduce the central aortic blood pressure accurately. To achieve this end a mathematical model of the cardiovascular system is developed to model the wave propagation dynamics of the external (excitation applied by the cuff) and internal (excitation produced by the heart) blood pressure waveforms through the cardiovascular system. Next a system identification protocol is developed in which rich transmural blood pressures are recorded and used to identify the parameters characterizing the model. The peripheral blood pressures are used in tandem with the characterized model to reconstruct the central aortic blood pressure waveform. The results of this study indicate the developed protocol can reliably and accurately reproduced the central aortic blood pressure and that it can outperform its intrusive passive counterpart (the Individualized Transfer Function methodology). The root-mean-square error in waveform reproduction, pulse pressure error and systolic pressure errors were evaluated to be 3.31 mmHg, 1.36 mmHg and 0.06 mmHg respectively for the active nonintrusive methodology while for the passive intrusive counterpart the same errors were evaluated to be 4.12 mmHg, 1.59 mmHg and 2.67 mmHg indicating the superiority of the proposed approach.Item ACTIVE NON-RECIPROCAL ACOUSTIC METAMATERIALS(2022) Zhou, Han; Baz, Amr AM; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)This dissertation presents different configurations of active Acoustic MetaMaterials (AMM) which are proposed in order to control the flow of vibration and acoustic wave propagations in various applications. Distinct among these configurations is a 1-dimensional (1D) periodic array which consists of an assembly of active acoustic unit cells which are provided with programmable piezoelectric elements. By tuning the structural properties of these cells, the 1D array can impede the wave propagation over specific frequency ranges. In order to achieve non-reciprocal acoustic wave transmission of the AMMs, three different methodologies are introduced including active control of the piezoelectric elements using virtual gyroscopic control actions, eigenstructure shaping controller, and finally spatial-temporal modulation algorithm.Theoretical models are developed to investigate the fundamentals and the underlying physical phenomena associated with all the considered three AMM configurations. Experimental prototypes of all these AMM configurations are built and tested to demonstrate their effectiveness in controlling the propagation of vibration and noise through these materials. Furthermore, the experimental results are used to validate the developed theoretical models. The developed theoretical and experimental approaches are envisioned to be valuable tools in the design of arrays of AMM for various applications which are only limited by our imagination.Item ACTIVE NONRECIPROCAL ACOUSTIC METAMATERIALS(2017) Baqai, Bilal; Baz, Amr M; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In this thesis, the emphasis is placed on the development of a class of active acoustic diodes and metamaterials in an attempt to control the flow and distribution of acoustic energy in acoustic cavities and systems. Such development departs radically from the currently available approaches where the non-reciprocities are generated by hard-wired designs, favoring one transmission direction which is dictated by the arrangement of the hardware and hence it cannot be reversed, or without the presentation of rigorous control theory analysis. The proposed active nonreciprocal acoustic metamaterial (ANAM) cell consists of only one-dimensional acoustic cavity provided with active flexible boundaries. These boundaries are made from piezoelectric bimorphs with the inner layers which interact directly with cavity acting as sensors for monitoring the pressures of the propagating acoustic waves. The outer layers of the bimorphs provide the necessary control actions by direct application of the appropriate control voltage on each layer or by proper connection of nonlinearly activated shunted networks of electrical components such as the switching resistor networks. The control of the switching is carried out using the robust Sliding Mode Control (SMC) strategy. In this strategy, a lumped-parameter model of the ANAM cell is developed to control the strength of the nonreciprocal characteristics of the cell by proper selection of the slope of the switching surfaces. Appropriate optimization strategies are developed to enable a rational selection of the characteristics of the switching surfaces. Numerical examples are presented to demonstrate the effectiveness of the proposed ANAM in tuning and programming the directivity, flow, and distribution of acoustic energy propagating though the metamaterial. Experimental demonstration of the proposed ANAM is presented and includes a comprehensive investigation of the effect of the parameters of the SMC on the system performance. Such investigations are carried out in an attempt to validate the capabilities of ANAM in controlling the non-reciprocity in magnitude and direction. The presented theoretical and experimental techniques provide invaluable tools for designing and predicting the performance of this class of ANAM.Item Adaptive Gradient Assisted Robust Optimization with Applications to LNG Plant Enhancement(2012) Mortazavi, Amir Hossein; Azarm, Shapour; Radermacher, Reinhard K; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)About 8% of the natural gas feed to a Liquefied Natural Gas (LNG) plant is consumed for liquefaction. A significant challenge in optimizing engineering systems, including LNG plants, is the issue of uncertainty. To exemplify, each natural gas field has a different gas composition, which imposes an important uncertainty in LNG plant design. One class of optimization techniques that can handle uncertainty is robust optimization. A robust optimum is one that is both optimum and relatively insensitive to the uncertainty. For instance, a mobile LNG plant should be both energy efficient and its performance be insensitive to the natural gas composition. In this dissertation to enhance the energy efficiency of the LNG plants, first, several new options are investigated. These options involve both liquefaction cycle enhancements and driver cycle (i.e., power plant) enhancements. Two new liquefaction cycle enhancement options are proposed and studied. For enhancing the diver cycle performance, ten novel driver cycle configurations for propane pre-cooled mixed refrigerant cycles are proposed, explored and compared with five different conventional driver cycle options. Also, two novel robust optimization techniques applicable to black-box engineering problems are developed. The first method is called gradient assisted robust optimization (GARO) that has a built-in numerical verification scheme. The other method is called quasi-concave gradient assisted robust optimization (QC-GARO). QC-GARO has a built-in robustness verification that is tailored for problems with quasi-concave functions with respect to uncertain variables. The performance of GARO and QC-GARO methods is evaluated by using seventeen numerical and engineering test problems and comparing their results against three previous methods from the literature. Based on the results it was found that, compared to the previous considered methods, GARO was the only one that could solve all test problems but with a higher computational effort compared to QC-GARO. QC-GARO's computational cost was in the same order of magnitude as the fastest previous method from the literature though it was not able to solve all the test problems. Lastly the GARO robust optimization method is used to devise a refrigerant for LNG plants that is relatively insensitive to the uncertainty from natural gas mixture composition.Item ADAPTIVE SAMPLING METHODS FOR TESTING AUTONOMOUS SYSTEMS(2018) Mullins, Galen Edward; Gupta, Satyandra K; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In this dissertation, I propose a software-in-the-loop testing architecture that uses adaptive sampling to generate test suites for intelligent systems based upon identifying transitions in high-level mission criteria. Simulation-based testing depends on the ability to intelligently create test-cases that reveal the greatest information about the performance of the system in the fewest number of runs. To this end, I focus on the discovery and analysis of performance boundaries. Locations in the testing space where a small change in the test configuration leads to large changes in the vehicle's behavior. These boundaries can be used to characterize the regions of stable performance and identify the critical factors that affect autonomous decision making software. By creating meta-models which predict the locations of these boundaries we can efficiently query the system and find informative test scenarios. These algorithms form the backbone of the Range Adversarial Planning Tool (RAPT): a software system used at naval testing facilities to identify the environmental triggers that will cause faults in the safety behavior of unmanned underwater vehicles (UUVs). This system was used to develop UUV field tests which were validated on a hardware platform at the Keyport Naval Testing Facility. The development of test cases from simulation to deployment in the field required new analytical tools. Tools that were capable of handling uncertainty in the vehicle's performance, and the ability to handle large datasets with high-dimensional outputs. This approach has also been applied to the generation of self-righting plans for unmanned ground vehicles (UGVs) using topological transition graphs. In order to create these graphs, I had to develop a set of manifold sampling and clustering algorithms which could identify paths through stable regions of the configuration space. Finally, I introduce an imitation learning approach for generating surrogate models of the target system's control policy. These surrogate agents can be used in place of the true autonomy to enable faster than real-time simulations. These novel tools for experimental design and behavioral modeling provide a new way of analyzing the performance of robotic and intelligent systems, and provide a designer with actionable feedback.Item Adaptive Superposition of Finite Element Meshes in Linear and Nonlinear Dynamic Analysis(2005-12-05) Yue, Zhihua; Robbins, Donald; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The numerical analysis of transient phenomena in solids, for instance, wave propagation and structural dynamics, is a very important and active area of study in engineering. Despite the current evolutionary state of modern computer hardware, practical analysis of large scale, nonlinear transient problems requires the use of adaptive methods where computational resources are locally allocated according to the interpolation requirements of the solution form. Adaptive analysis of transient problems involves obtaining solutions at many different time steps, each of which requires a sequence of adaptive meshes. Therefore, the execution speed of the adaptive algorithm is of paramount importance. In addition, transient problems require that the solution must be passed from one adaptive mesh to the next adaptive mesh with a bare minimum of solution-transfer error since this form of error compromises the initial conditions used for the next time step. A new adaptive finite element procedure (s-adaptive) is developed in this study for modeling transient phenomena in both linear elastic solids and nonlinear elastic solids caused by progressive damage. The adaptive procedure automatically updates the time step size and the spatial mesh discretization in transient analysis, achieving the accuracy and the efficiency requirements simultaneously. The novel feature of the s-adaptive procedure is the original use of finite element mesh superposition to produce spatial refinement in transient problems. The use of mesh superposition enables the s-adaptive procedure to completely avoid the need for cumbersome multipoint constraint algorithms and mesh generators, which makes the s-adaptive procedure extremely fast. Moreover, the use of mesh superposition enables the s-adaptive procedure to minimize the solution-transfer error. In a series of different solid mechanics problem types including 2-D and 3-D linear elastic quasi-static problems, 2-D material nonlinear quasi-static problems, and 2-D transient problems for linear elastic and material nonlinear materials, the s-adaptive solution is compared to a solution obtained using a non-adaptive, uniform refined mesh. These comparisons clearly demonstrate that the s-adaptive method is capable of generating a solution with the same accuracy level as a non-adaptive, uniform refined mesh; however, the s-adaptive solution uses far fewer DOF and consequently executes much faster.Item ADAPTIVITY IN WALL-MODELED LARGE EDDY SIMULATION(2022) Kahraman, Ali Berk; Larsson, Johan; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)In turbulence-resolving simulations, smaller eddies account for most of the computational cost. This is especially true for a wall-bounded turbulent flow, where a wall-resolved large eddy simulation might use more than 99% of the computing power to resolve the inner 10% of the boundary layer in realistic flows.The solution is to use an approximate model in the inner 10% of the boundary layer where the turbulence is expected to exhibit universal behavior, a technique generally called wall-modeled large eddy simulation. Wall-modeled large-eddy simulation introduces a modeling interface (or exchange location) separating the wall-modeled layer from the rest of the domain. The current state-of-the-art is to rely on user expertise when choosing where to place this modeling interface, whether this choice is tied to the grid or not. This dissertation presents three post-processing algorithms that determine the exchange location systematically. Two algorithms are physics-based, derived based on known attributes of the turbulence in attached boundary layers. These algorithms are assessed on a range of flows, including flat plate boundary layers, the NASA wall-mounted hump, and different shock/boundary-layer interactions. These algorithms in general agree with what an experienced user would suggest, with thinner wall-modeled layers in nonequilibrium flow regions and thicker wall-modeled layers where the boundary layer is closer to equilibrium, but are completely ignorant to the cost of the simulation they are suggesting. The third algorithm is based on the sensitivity of the wall-model with the predicted wall shear stress and a model of the subsequent computational cost, finding the exchangelocation that minimizes a combination of the two. This algorithm is tested both a priori and a posteriori using an equilibrium wall model for the flow over a wall-mounted hump, a boundary layer in an adverse pressure gradient, and a shock/boundary-layer interaction. This third algorithm also produces exchange locations that mostly agree with what an experienced user would suggest, with thinner layers where the wall-model sensitivity is high and thicker layers where this sensitivity is low. This suggests that the algorithm should be useful in simulations of realistic and highly complex geometries.Item Additive Manufacturing of Microfluidic Technologies via In Situ Direct Laser Writing(2021) Alsharhan, Abdullah; Sochol, Ryan; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Innovations in microfluidic technologies hold great promise for a wide range of chemical, biomedical, and soft robotic applications. Unfortunately, key drawbacks associated with soft lithography-based microfabrication processes hinder such progress. To address these challenges, we advance a novel submicron-scale additive manufacturing (AM) strategy, termed “in situ direct laser writing (isDLW)”. IsDLW is an approach that benefits from the architectural versatility and length scales inherent to two-photon polymerization (2PP), while simultaneously supporting the micro-to-macro interfaces required for its effective utilization in microfluidic applications. In this dissertation, we explore isDLW strategies that enable passive and active 3D microfluidic technologies capable of enhancing “on-chip” autonomy and sophistication. Initially, we use poly(dimethylsiloxane) (PDMS)-based isDLW to fabricate microfluidic diodes that enable unidirectional rectification of fluid flow. We introduce a novel cyclic olefin polymer (COP)-based isDLW strategy to address several limitations related to structural adhesion and compatibility of PDMS microchannels. We use this COP-based approach to print microfluidic transistors comprising flexible and free-floating components that enable both “normally open” (NO) and “normally closed” (NC) functionalities—i.e., source-to-drain fluid flow (QSD) through the transistor is either permitted (NC) or obstructed (NO) when a gate input (PG) is applied. As an exemplar, we employ COP-based isDLW to print an integrated microfluidic circuit (IMC) comprised of soft microgrippers downstream of NC microfluidic transistors with distinct PG thresholds. All of these microfluidic circuit elements are printed within microchannels ≤ 40 μm in height, representing the smallest such components (to our knowledge). Theoretical and experimental results illustrate on the operational efficacy of these components as well as characterize their performance at different input conditions, while IMC experimental results demonstrate sequential actuation of the microrobotic components to realize target gripper operations with a single PG input. Furthermore, to investigate the utility of this strategy for static microfluidic technologies, we fabricate: (i) interwoven bioinspired microvessels (inner diameters < 10 μm) capable of effective isolation of distinct microfluidic flow streams, and (ii) deterministic lateral displacement (DLD) microstructures that enable continuous sorting of submicron particles (860 nm). In combination, these results suggest that the developed AM strategies offer a promising pathway for advancing state-of-the-art microfluidic technologies for various biological and soft robotic applications.Item Adhesion Strength Measurement of Multilayer Structures with Vertical Crack by Four Point Bending Test(2014) Kang, Stephen Junho; Han, Bongtae; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Current microelectronic packages consist of multilayer systems. Adhesion strength is one of the most important factors to the reliability of these systems. Previous studies have used four point bending tests as a method for characterizing the energy release rate to obtain the adhesion strength of bilayer systems. An extension of this work is proposed in this study, where a four point bending test of multilayer structures with a vertical crack is used to measure the adhesion strength, assisted by the presence of a predefined area. The predefined area allows for a weak adhesion horizontal accurate pre-crack which permits crack propagation under loading as well as reducing scatter within the values of critical loads. A numerical analysis is conducted to compute the energy release rate from the critical loads using the concept of the J-integral. Two sets of multilayer specimens were fabricated and tested in the study: one for investigating crack front behavior relative to the compliance change in the load-displacement profile by using transparent substrates, and the other using the previous set as a guideline for testing metal substrates under certain environmental conditions. Experimental results along with visual evidence support the consistent behavior between crack front behavior and compliance change. This correlation can be used as a baseline for testing other electronic packages for interfacial failure.Item ADVANCED ABSORPTION MATERIALS AND THEIR APPLICATION IN REFRIGERATION(2021) Zheng, Chaolun; Yang, Bao BY; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Absorption chillers, which utilize heat as the primary energy input, have been considered a more environment-friendly alternative to vapor-compression cooling systems. The thermodynamic properties of absorbent generally limit the performances of absorption chillers. In the first part of the dissertation, a new method to determine the molecular interaction energies is developed. The molecular interaction energies can be related to many macroscopic thermodynamic properties, such as desorption heat and hygroscopicity. From the studies on ionic liquid absorbents, it is found that a shorter alkyl group in anion would produce higher interaction energy with water, thus increasing the hygroscopicity. In contrast, the fluorination of anion would reduce its interaction energy with water, thus reducing the hygroscopicity. A new formula is also developed using interaction energies to predict the desorption heat of absorbents, which is an essential parameter for evaluating absorbent performances. The second part of the dissertation focuses on the development of a microemulsion-based absorption chiller consisting of an electrostatic desorber, a nozzle-based absorber, and an evaporator. Due to the tiny droplet size, it is thermodynamically challenging to regenerate the absorbed water in a liquid form from a microemulsion state. The electrostatic desorber would first utilize heat to transform the microemulsion absorbent into a macroemulsion state. The voltage is then applied to the absorbent to expedite the regeneration. Therefore, the electrostatic desorber can regenerate the absorbed water in a liquid form, which eliminates the latent heat requirement, offering the potential to improve energy efficiency. Inspired by the honeycomb shape, electrodes in the desorber are arranged in a multi-hexagon pattern, enabling a large desorber volume without increasing the voltage amplitude. The potential cooling power is improved by over 50 times compared to the original single-electrode desorber. The nozzle-based absorber&evaporator system utilizes nozzles to generate microemulsion absorbent and water in small droplet size to enhance the absorption and evaporation process. Combining the electrostatic desorber and the absorber&evaporator system, the complete absorption chiller could run continuously and achieve a cooling power of about 100 W.Item Advanced Adhesion Strength Testing Methods of Thin Film Multilayers in Electronic Packaging Systems(2016) Mahan, Kenneth Howard; Han, Bongtae; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)With the continued miniaturization and increasing performance of electronic devices, new technical challenges have arisen. One such issue is delamination occurring at critical interfaces inside the device. This major reliability issue can occur during the manufacturing process or during normal use of the device. Proper evaluation of the adhesion strength of critical interfaces early in the product development cycle can help reduce reliability issues and time-to-market of the product. However, conventional adhesion strength testing is inherently limited in the face of package miniaturization, which brings about further technical challenges to quantify design integrity and reliability. Although there are many different interfaces in today's advanced electronic packages, they can be generalized into two main categories: 1) rigid to rigid connections with a thin flexible polymeric layer in between, or 2) a thin film membrane on a rigid structure. Knowing that every technique has its own advantages and disadvantages, multiple testing methods must be enhanced and developed to be able to accommodate all the interfaces encountered for emerging electronic packaging technologies. For evaluating the adhesion strength of high adhesion strength interfaces in thin multilayer structures a novel adhesion test configuration called “single cantilever adhesion test (SCAT)” is proposed and implemented for an epoxy molding compound (EMC) and photo solder resist (PSR) interface. The test method is then shown to be capable of comparing and selecting the stronger of two potential EMC/PSR material sets. Additionally, a theoretical approach for establishing the applicable testing domain for a four-point bending test method was presented. For evaluating polymeric films on rigid substrates, major testing challenges are encountered for reducing testing scatter and for factoring in the potentially degrading effect of environmental conditioning on the material properties of the film. An advanced blister test with predefined area test method was developed that considers an elasto-plastic analytical solution and implemented for a conformal coating used to prevent tin whisker growth. The advanced blister testing with predefined area test method was then extended by employing a numerical method for evaluating the adhesion strength when the polymer’s film properties are unknown.Item Advanced Blister Test with Predefined Area(2014) Rosen, David Ian; Han, Bongtae; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)An advanced blister test using a predefined blister area is employed to determine the adhesion strength (energy release rate) as well as characterize the flexural modulus of polymer material. The predefined blister area allows for a low adhesion precrack area, defining an initial constant blister area and the modulus determined from each experiment negates the effect of uncertainties associated with the polymer modulus. Ideal specimens with epoxy coatings of various thickness are analyzed using the proposed setup. After measuring the properties at time zero the coatings are subjected to accelerated testing conditions (high temperature/ humidity storage) and the degradations of the coating properties are documented. The modulus increases significantly after thermal aging but the adhesion strength is determined accurately by accounting for the effect of the modulus quantitatively.Item Advanced FBG Sensor Technique to Measure Effective Chemical Shrinkage and Modulus Evolutions of Polymers with High Polymerization Exothermic Heat(2012) Kim, Yejin; Han, Bongtae; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)An advanced technique based on a fiber Bragg grating (FBG) sensor is proposed to measure the critical mechanical properties of polymeric materials during polymerization: effective chemical shrinkage and modulus evolutions. Based on the existing technique implemented with convection oven and two different specimen configurations using same size of FBG, challenges associated with implementation are identified and solutions are proposed. Challenges include temperature instability due to high exothermic heat generated during polymerization inside polymer substrate, temperature controllability due to limitations of convection oven, and mechanical constrain on polymer and fiber during measurement. The proposed system provides modifications to provide easier implementation with accurate results. Modifications such as fabrication of FBG on special fiber, enhancement of heating system, and optimization of system design are combined to provide a tool for rapid but accurate measurement of polymer properties. The proposed technique significantly improves the ability to characterize the mechanical properties of polymeric materials during polymerization which will enhance the accuracy of predictive modeling for design optimization of a microelectronics product at the conceptual stage of product development.Item Advanced Honeypot Architecture for Network Threats Quantification(2009) Berthier, Robin G; Cukier, Michel; Reliability Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Today's world is increasingly relying on computer networks. The increase in the use of network resources is followed by a rising volume of security problems. New threats and vulnerabilities are discovered everyday and affect users and companies at critical levels, from privacy issues to financial losses. Monitoring network activity is a mandatory step for researchers and security analysts to understand these threats and to build better protections. Honeypots were introduced to monitor unused IP spaces to learn about attackers. The advantage of honeypots over other monitoring solutions is to collect only suspicious activity. However, current honeypots are expensive to deploy and complex to administrate especially in the context of large organization networks. This study addresses the challenge of improving the scalability and flexibility of honeypots by introducing a novel hybrid honeypot architecture. This architecture is based on a Decision Engine and a Redirection Engine that automatically filter attacks and save resources by reducing the size of the attack data collection and allow researchers to actively specify the type of attack they want to collect. For a better integration into the organization network, this architecture was combined with network flows collected at the border of the production network. By offering an exhaustive view of all communications between internal and external hosts of the organization, network flows can 1) assist the configuration of honeypots, and 2) extend the scope of honeypot data analysis by providing a comprehensive profile of network activity to track attackers in the organization network. These capabilities were made possible through the development of a passive scanner and server discovery algorithm working on top of network flows. This algorithm and the hybrid honeypot architecture were deployed and evaluated at the University of Maryland, which represents a network of 40,000 computers. This study marks a major step toward leveraging honeypots into a powerful security solution. The contributions of this study will enable security analysts and network operators to make a precise assessment of the malicious activity targeting their network.Item Advanced methodologies for reliability-based design optimization and structural health prognostics(2010) Wang, Pingfeng; Youn, Byeng Dong; Mechanical Engineering; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Failures of engineered systems can lead to significant economic and societal losses. To minimize the losses, reliability must be ensured throughout the system's lifecycle in the presence of manufacturing variability and uncertain operational conditions. Many reliability-based design optimization (RBDO) techniques have been developed to ensure high reliability of engineered system design under manufacturing variability. Schedule-based maintenance, although expensive, has been a popular method to maintain highly reliable engineered systems under uncertain operational conditions. However, so far there is no cost-effective and systematic approach to ensure high reliability of engineered systems throughout their lifecycles while accounting for both the manufacturing variability and uncertain operational conditions. Inspired by an intrinsic ability of systems in ecology, economics, and other fields that is able to proactively adjust their functioning to avoid potential system failures, this dissertation attempts to adaptively manage engineered system reliability during its lifecycle by advancing two essential and co-related research areas: system RBDO and prognostics and health management (PHM). System RBDO ensures high reliability of an engineered system in the early design stage, whereas capitalizing on PHM technology enables the system to proactively avoid failures in its operation stage. Extensive literature reviews in these areas have identified four key research issues: (1) how system failure modes and their interactions can be analyzed in a statistical sense; (2) how limited data for input manufacturing variability can be used for RBDO; (3) how sensor networks can be designed to effectively monitor system health degradation under highly uncertain operational conditions; and (4) how accurate and timely remaining useful lives of systems can be predicted under highly uncertain operational conditions. To properly address these key research issues, this dissertation lays out four research thrusts in the following chapters: Chapter 3 - Complementary Intersection Method for System Reliability Analysis, Chapter 4 - Bayesian Approach to RBDO, Chapter 5 - Sensing Function Design for Structural Health Prognostics, and Chapter 6 - A Generic Framework for Structural Health Prognostics. Multiple engineering case studies are presented to demonstrate the feasibility and effectiveness of the proposed RBDO and PHM techniques for ensuring and improving the reliability of engineered systems within their lifecycles.