Astronomy Research Works
Permanent URI for this collection
Browse
Browsing Astronomy Research Works by Issue Date
Now showing 1 - 20 of 50
Results Per Page
Sort Options
Item Cross talk in 1872 Reticon diode arrays(University of Chicago Press, 1990) Walker, G. A. H.; Johnson, R.; Richardson, D.; Campbell, B.; Irwin, A. W.; Yang, S.Item Stellar Populations in Shell Galaxies(Copyright: American Astronomical Society, 1990-10) McGaugh, Stacy S.; Bothun, Gregory D.Item A Catalog of Low Surface Brightness Galaxies: List II(Copyright American Astronomical Society, 1992-04) SCHOMBERT, JAMES M.; BOTHUN, GREGORY D.; SCHNEIDER, STEPHEN E.; MCGAUGH, STACY S.Item Star Formation Thresholds in Low Surface Brightness Galaxies(Copyright: American Astronomical Society, 1993-08) VAN DER HULST, J. M.; SKILLMAN, E. D.; SMITH, T. R.; BOTHUN, G. D.; MCGAUGH, S. S.; DE BLOK, W. J. G.Item The Tully-Fisher Relation for Low Surface Brightness Galaxies - Implications for Galaxy Evolution(Blackwell, 1995) Zwaan, M. A.; van der Hulst, J. M.; de Blok, W. J. G.; McGaugh, S. S.Item HI Observations of Low Surface Brightness Galaxies: Probing Low Density Galaxies(Blackwell, 1996) de Blok, W.J.G.; McGaugh, S.S.; van der Hulst, J.M.We present Very Large Array (vla) and Westerbork Synthesis Radio Telescope (wsrt) 21-cm Hi observations of 19 late-type low surface brightness (LSB) galaxies. Our main findings are that these galaxies, as well as having low surface brightnesses, have low Hi surface densities, about a factor of ~ 3 lower than in normal late-type galaxies. We show that LSB galaxies in some respects resemble the outer parts of late-type normal galaxies, but may be less evolved. LSB galaxies are more gas-rich than their high surface brightness counterparts. The rotation curves of LSB galaxies rise more slowly than those of HSB galaxies of the same luminosity, with amplitudes between 50 and 120 km s−1, and are often still increasing at the outermost measured point. The shape of the rotation curves suggests that LSB galaxies have low matter surface densities. We use the average total mass surface density of a galaxy as a measure for the evolutionary state, and show that LSB galaxies are among the least compact, least evolved galaxies. We show that both MHI/LB and Mdyn/LB depend strongly on central surface brightness, consistent with the surface brightness–mass-to-light ratio relation required by the Tully-Fisher relation. LSB galaxies are therefore slowly evolving galaxies, and may well be low surface density systems in all respects.Item Orbital migration of the planetary companion of 51 Pegasi to its present location(Nature Publishing Group, 1996) Lin, D. N. C.; Bodenheimer, P.; Richardson, D. C.Item The Number, Luminosity, and Mass Density of Spiral Galaxies as a Function of Surface Brightness(Blackwell, 1996) McGaugh, Stacy S.Item The Dark and Baryonic Matter Content of Low Surface Brightness Galaxies(Blackwell, 1997) de Blok, W.J.G.; McGaugh, S.S.We present mass models of a sample of 19 low surface brightness (LSB) galaxies and compare the properties of their constituent mass components with those of a sample of high surface brightness (HSB) galaxies. We find that LSB galaxies are dark matter dominated. Their halo parameters are only slightly affected by assumptions on stellar mass-to-light ratios. Comparing LSB and HSB galaxies we find that mass models derived using the maximum disk hypothesis result in the disks of LSB galaxies having systematically higher stellar mass-to-light ratios than HSB galaxies of similar rotation velocity. This is inconsistent with all other available evidence on the evolution of LSB galaxies. We argue therefore that the maximum disk hypothesis does not provide a representative description of the LSB galaxies and their evolution. Mass models with stellar mass-to-light ratios determined by the colors and stellar velocity dispersions of galactic disks imply that LSB galaxies have dark matter halos that are more extended and less dense than those of HSB galaxies. Surface brightness is thus related to the halo properties. LSB galaxies are slowly evolving, low density and dark matter dominated galaxies.Item From Sir Isaac Newton to the Sloan survey: calculating the structure and chaos owing to gravity in the universe(Copyright: SIAM, 1997-01) Lake, George; Quinn, Thomas; Richardson, Derek C.Item 1620 GEOGRAPHOS AND 433 EROS: SHAPED BY PLANETARY TIDES?(University of Chicago Press, 1999) BOTTKE, W. F. JR.; RICHARDSON, D. C.; MICHEL, P.; LOVE, S. G.Until recently, most asteroids were thought to be solid bodies whose shapes were determined largely by collisions with other asteroids. Recent work by Burns and others has shown that many asteroids may be little more than rubble piles, held together by self-gravity ; this means that their shapes may be strongly distorted by tides during close encounters with planets. Here we report on numerical simulations of encounters between an ellipsoid-shaped rubble-pile asteroid and Earth. After an encounter, many of the simulated asteroids develop the same rotation rate and distinctive shape as 1620 Geographos (i.e., highly elongated with a single convex side, tapered ends, and small protuberances swept back against the rotation direction). Since our numerical studies show that these events occur with some frequency, we suggest that Geographos may be a tidally distorted object. In addition, our work shows that 433 Eros, which will be visited by the NEAR spacecraft in 1999, is much like Geographos, suggesting that it too may have been molded by tides in the past.Item Planetesimal clusters in a Keplerian disk I. gravitational evolution(EDP Sciences, 2002-08-30) Tanga, P.; Michel, P.; Richardson, D. C.It was recently demonstrated by numerical simulations that a turbulent flow in a rotating system is capable of efficiently concentrating passively advected particles having a density larger than the fluid – inside anti-cyclonic vortices. This process has important consequences on the distribution of solid particles in protoplanetary disks, since dust surface densities 1–2 orders of magnitude higher than the background are rapidly reached in vortex cores. However, until now, the role of self-gravitation of captured solids has been neglected. In this work we study the action of mutual gravitational interactions - after the gas has dissipated - over the dynamics of planetesimals inside clusters similar to those created in vortex cores. A comparison is made between the behavior of idealized clusters of planetesimals characterized by ad-hoc velocity profiles, and more complex initial conditions such as those obtained in previous hydrodynamical simulations. We show here that, within the explored interval of parameters, mutual scattering of particles can quickly disperse the cluster. Our results are demonstrated to be not dependent on the resolution employed. It can be concluded that if large planetesimals were formed inside vortex cores, they would be ejected by mutual perturbations.Item The pursuit of the whole NChilada: Virtual petaflops using multi-adaptive algorithms for gravitational systems(IBM, 2004) Lake, G.; Quinn, T.; Richardson, D. C.; Stadel, J.We describe the keys to meeting the challenges of N-body simulation: adaptive potential solvers, adaptive integration, and volume renormalization. With these techniques and a dedicated teraflop facility, simulation can keep pace with observations of the universe. We also describe some problems in simulating the formation and stability of planetary systems.Item Gravitational instability and clustering in a disk of planetesimals(EDP Sciences, 2004-08-05) Tanga, P.; Weidenschilling, S. J.; Michel, P.; Richardson, D. C.For a long time, gravitational instability in the disk of planetesimals has been suspected to be the main engine responsible for the beginning of dust growth, its advantage being that it provides for rapid growth. Its real importance in planetary formation is still debated, mainly because the potential presence of turbulence can prevent the settling of particles into a gravitationally unstable layer. However, several mechanisms could yield strongly inhomogeneous distributions of solids in the disk: radial drift, trapping in vortices, perturbations by other massive bodies, etc. In this paper we present a numerical study of a gravitationally unstable layer. This allows us to go beyond the classical analytical study of linear perturbations, exploring a highly non-linear regime. A hierarchical growth of structure in the presence of dissipation (gas drag) can yield large, virialized clusters of planetesimals, the first time such clusters have been observed in the context of planetesimal disks.Item Nonequilibrium Phenomena in the Magnetosphere: Phase Transition, Self-organized Criticality and Turbulence(Springer, 2005) Sharma, A. Surjalal; Baker, Daniel N.; Borovsky, Joseph E.The magnetosphere is a large scale natural system powered by the solar wind that exhibits many nonequilibrium phenomena. A wide range of these phenomena are driven directly by the solar wind or arise from the storage-release processes internal to the magnetosphere. Under the influnce by the turbulent solar wind, the magnetosphere during geomagnetically active periods is far from equilibrium and storms and substorms are essentially non-equilibrium phenomena. In spite of the distributed nature of the physical processes and the apparent irregular behavior, there is a remarkable coherence in the magnetospheric response during substorms and the entire magnetosphere behaves as a global dynamical system. Alongwith the global features, the magnetosphere exhibits many multi-scale and intermittent characteristics. These features of the magnetosphere have been studied in terms of phase transitions, self-organized criticality and turbulence. In the phase transition scenario the global features are modeled as first-order transitions and the multi-scale behavior is interpreted as a manifestation of the scale-free nature of criticality in second order phase transitions. In the self-organized criticality framework substorms are considered as avalanches in the system when criticality is reached. Many features of the magnetosphere, in particular the power law dependence of scale sizes, can be viewed as a feature of a turbulent system.The common theme underlying these approaches is the recognition that the nonequilibrium phenomena in the magnetosphere could be understood in terms of processes generic to such systems. In many cases the power-law behavior of the magnetosphere seen in many observations is the starting point for these studies. This chapter is an overview of the recent understanding achieved using these different approaches, and identifies the common issues and differences.Item The Balance of Dark and Luminous Mass in Rotating Galaxies(Copyright 2005 The American Physical Society, 2005) McGaugh, Stacy S.baryons to the total rotation velocity increases, the contribution of the dark matter decreases by a compensating amount. This poses a fine-tuning problem for CDM galaxy formation models, and may point to new physics for dark matter particles or even a modification of gravity.Item Two Dimensional Velocity Fields of Low Surface Brightness Galaxies(EDP Sciences, 2005) Kuzio de Naray, R.; McGaugh, S. S.; de Blok, W. J. G.; Bosma, A.We present high resolution two dimensional velocity fields from integral field spectroscopy along with derived rotation curves for nine low surface brightness galaxies. This is a positive step forward in terms of both data quality and number of objects studied. We fit NFW and pseudo-isothermal halo models to the observations. We find that the pseudo-isothermal halo better represents the data in most cases than the NFW halo, as the resulting concentrations are lower than would be expected for CDM.Item Magnetospheric Multiscale Mission:Cross-scale Exploration of Complexity in the Magnetosphere(Springer, 2005-01) Sharma, A. Surjalal; Curtis, Steven A.The physical processes in the magnetosphere span a wide range of space and time scales and due to the strong cross-scale coupling among them the fundamental processes at the smallest scales are critical to the large scale processes. For example, many key features of magnetic reconnection and particle acceleration are initiated at the smallest scales, typically the ion gyro-radii, and then couples to meso-scale and macro-scale processes, such as plasmoid formation. The Magnetospheric Muliscale (MMS) mission is a multi spacecraft mission dedicated to the study of plasma physics at the smallest scales and their cross-scale coupling to global processes. Driven by the turbulent solar wind, the magnetosphere is far from equilibrium and exhibits complex behavior over many scales. The processes underlying the multi-scale and intermittent features in the magnetosphere are fundamental to sun-earth connection. Recent results from the four spacecraft Cluster and earlier missions have provided new insights into magnetospheric physics and will form the basis for comprehensive studies of the multi-dimensional properties of the plasma processes and their inter-relationships. MMS mission will focus on the boundary layers connecting the magnetospheric regions and provide detailed spatio-temporal data of processes such as magnetic reconnection, thin current sheets, turbulence and particle acceleration. The cross-scale exploration by MMS mission will target the microphysics that will enable the discovery of the chain of processes underlying sun-earth connection.Item Simulating Observations of Dark Matter Dominated Galaxies: Towards the Optimal Halo Profile(Blackwell, 2007) de Blok, W.J.G.; Bosma, Albert Bosma; McGaugh, StacyLow Surface Brightness (LSB) galaxies are dominated by dark matter, and their rotation curves thus reflect their dark matter distribution. Recent high-resolution rotation curves suggest that their dark matter mass-density distributions are dominated by a constant-density core. This seems inconsistent with the predictions of Cold Dark Matter (CDM) models which produce halos with compact density cusps and steep mass-density profiles. However, the observationally determined mass profiles may be affected by non-circular motions, asymmetries and offsets between optical and dynamical centres, all of which tend to lower the observed slopes. Here we determine the impact of each of these effects on a variety of halo models, and compare the results with observed mass-density profiles. Our simulations suggest that no single systematic effect can reconcile the data with the cuspy CDM halos. The data are best described by a model with a soft core with an inner power-law mass-density slope ⍺ = −0.2±0.2. However, no single universal halo profile provides a completely adequate description of the data.Item The AGN and Gas Disk in the Low Surface Brightness Galaxy PGC045080(Blackwell, 2007) Das, M.; Kantharia, N.; Ramya, S.; Prabhu, T. P.; McGaugh, S. S.; Vogel, S. N.We present radio observations and optical spectroscopy of the giant low surface brightness (LSB) galaxy PGC 045080 (or 1300+0144). PGC 045080 is a moderately distant galaxy having a highly inclined optical disk and massive HI gas content. Radio continuum observations of the galaxy were carried out at 320 MHz, 610 MHz and 1.4 GHz. Continuum emission was detected and mapped in the galaxy. The emission appears extended over the inner disk at all three frequencies. At 1.4 GHz and 610 MHz it appears to have two distinct lobes. We also did optical spectroscopy of the galaxy nucleus; the spectrum did not show any strong emission lines associated with AGN activity but the presence of a weak AGN cannot be ruled out. Furthermore, comparison of the H flux and radio continuum at 1.4 GHz suggests that a significant fraction of the emission is non-thermal in nature. Hence we conclude that a weak or hidden AGN may be present in PGC 045080. The extended radio emission represents lobes/jets from the AGN. These observations show that although LSB galaxies are metal poor and have very little star formation, their centers can host significant AGN activity. We also mapped the HI gas disk and velocity field in PGC 045080. The HI disk extends well beyond the optical disk and appears warped. In the HI intensity maps, the disk appears distinctly lopsided. The velocity field is disturbed on the lopsided side of the disk but is fairly uniform in the other half. We derived the HI rotation curve for the galaxy from the velocity field. The rotation curve has a flat rotation speed of 190km s−1.
- «
- 1 (current)
- 2
- 3
- »