Simulating Observations of Dark Matter Dominated Galaxies: Towards the Optimal Halo Profile
Files
Publication or External Link
Date
Advisor
Citation
DRUM DOI
Abstract
Low Surface Brightness (LSB) galaxies are dominated by dark matter, and their rotation curves thus reflect their dark matter distribution. Recent high-resolution rotation curves suggest that their dark matter mass-density distributions are dominated by a constant-density core. This seems inconsistent with the predictions of Cold Dark Matter (CDM) models which produce halos with compact density cusps and steep mass-density profiles. However, the observationally determined mass profiles may be affected by non-circular motions, asymmetries and offsets between optical and dynamical centres, all of which tend to lower the observed slopes. Here we determine the impact of each of these effects on a variety of halo models, and compare the results with observed mass-density profiles. Our simulations suggest that no single systematic effect can reconcile the data with the cuspy CDM halos. The data are best described by a model with a soft core with an inner power-law mass-density slope ⍺ = −0.2±0.2. However, no single universal halo profile provides a completely adequate description of the data.