Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation
dc.contributor.author | Li, Yan | |
dc.contributor.author | Kalnay, Eugenia | |
dc.contributor.author | Motesharrei, Safa | |
dc.contributor.author | Rivas, Jorge | |
dc.contributor.author | Kucharski, Fred | |
dc.contributor.author | Kirk-Davidoff, Daniel | |
dc.contributor.author | Bach, Eviatar | |
dc.contributor.author | Zeng, Ning | |
dc.date.accessioned | 2018-09-26T17:03:42Z | |
dc.date.available | 2018-09-26T17:03:42Z | |
dc.date.issued | 2018-09-07 | |
dc.description | More energy, more rain Energy generation by wind and solar farms could reduce carbon emissions and thus mitigate anthropogenic climate change. But is this its only benefit? Li et al. conducted experiments using a climate model to show that the installation of large-scale wind and solar power generation facilities in the Sahara could cause more local rainfall, particularly in the neighboring Sahel region. This effect, caused by a combination of increased surface drag and reduced albedo, could increase coverage by vegetation, creating a positive feedback that would further increase rainfall. | en_US |
dc.description.abstract | Wind and solar farms offer a major pathway to clean, renewable energies. However, these farms would significantly change land surface properties, and, if sufficiently large, the farms may lead to unintended climate consequences. In this study, we used a climate model with dynamic vegetation to show that large-scale installations of wind and solar farms covering the Sahara lead to a local temperature increase and more than a twofold precipitation increase, especially in the Sahel, through increased surface friction and reduced albedo. The resulting increase in vegetation further enhances precipitation, creating a positive albedo–precipitation–vegetation feedback that contributes ~80% of the precipitation increase for wind farms. This local enhancement is scale dependent and is particular to the Sahara, with small impacts in other deserts. | en_US |
dc.description.sponsorship | Y.L. acknowledges support from the National Key R&D Program of China (no. 2017YFA0604701). E.K. and S.M. acknowledge Lev Gandin funding (grant 2956713) provided by G. Brin. The authors thank the University of Maryland and the Univ. of Illinois for supercomputing resources—in particular, the Deepthought2 (http://hpcc.umd.edu) and Bluewaters (www.ncsa.illinois.edu/enabling/bluewaters) supercomputers—made available for conducting the research reported in this paper. | en_US |
dc.identifier | https://doi.org/10.13016/M2BK16T07 | |
dc.identifier.citation | Li, Yan, Eugenia Kalnay, Safa Motesharrei, Jorge Rivas, Fred Kucharski, Daniel Kirk-Davidoff, Eviatar Bach, and Ning Zeng. 2018. “Climate Model Shows Large-Scale Wind and Solar Farms in the Sahara Increase Rain and Vegetation.” Science 361 (6406): 1019--1022. https://doi.org/10.1126/science.aar5629. | en_US |
dc.identifier.other | 10.1126/science.aar5629 | |
dc.identifier.uri | http://hdl.handle.net/1903/21434 | |
dc.language.iso | en_US | en_US |
dc.publisher | Science | en_US |
dc.relation.isAvailableAt | College of Computer, Mathematical & Natural Sciences | en_us |
dc.relation.isAvailableAt | Atmospheric & Oceanic Science | en_us |
dc.relation.isAvailableAt | Digital Repository at the University of Maryland | en_us |
dc.relation.isAvailableAt | University of Maryland (College Park, MD) | en_us |
dc.subject | Solar Energy | en_US |
dc.subject | Wind Farms | en_US |
dc.subject | Sahara | en_US |
dc.subject | Sahel | en_US |
dc.subject | Sustainability | en_US |
dc.subject | Albedo | en_US |
dc.subject | Land Surface Friction | en_US |
dc.subject | Precipitation | en_US |
dc.subject | Vegetation | en_US |
dc.subject | Feedback | en_US |
dc.subject | Energy–Water–Food Nexus | en_US |
dc.subject | Agriculture | en_US |
dc.subject | Land Cover Change | en_US |
dc.subject | Climate | en_US |
dc.subject | Rainfall | en_US |
dc.subject | Charney Feedback Mechanism | en_US |
dc.subject | Sud Feedback Mechanism | en_US |
dc.title | Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2018-sep-07-li-kalnay-motesharrei-et-al-wind-and-solar-farms-in-the-sahara-science-vol-361-issue-6406-pp-1019-1022.pdf
- Size:
- 110.68 KB
- Format:
- Adobe Portable Document Format
- Description:
- Article Summary and Free Access Links