Superfluidity in a Degenerate Atomic Fermi Gas

dc.contributor.advisorAlexander, Millard Hen_US
dc.contributor.advisorClark, Charles Wen_US
dc.contributor.authorNygaard, Nicolaien_US
dc.contributor.departmentChemical Physicsen_US
dc.date.accessioned2004-05-31T20:34:08Z
dc.date.available2004-05-31T20:34:08Z
dc.date.issued2003-11-25en_US
dc.description.abstractDilute atomic gases have become a powerful tool for studying many-body quantum mechanics. The best example of this is the achievement of Bose-Einstein condensation in 1995 in a gas of Bose atoms, a discovery which has invoked a confluence of ideas from condensed matter, atomic and nuclear physics. Now a concerted research effort is focused on creating and studying a BCS superfluid in an atomic Fermi gas. In the work presented here we study in detail pairing superfluidity in a Fermi gas of atoms, by self-consistently solving the Bogoliubov-de Gennes equations, both for bulk systems, and for atoms in a harmonic confining potential. A critical part of this work is the derivation of a regularized theory, which is formulated entirely in terms of physically measurable quantities, such that a quantitative comparison between theory and experiment is possible with no adjustable parameters. The resulting equations form a non-linear problem, and the accurate numerical solution of this poses a formidable challenge. A major component of this thesis is the development of efficient computational approaches to overcome these difficulties. Based on the linear response of the gas to a twisting of the order parameter phase, the superfluid density can be defined as a generalized elasticity of the system. Using finite temperature perturbation theory we calculate the superfluid density in an inhomogeneous system. We investigate the structure and thermodynamic properties of a singly quantized vortex line in a gas of superfluid fermionic atoms, making the first quantitative determination the critical rotation frequency for thermodynamic stability of the vortex state, and study the nature of the bound states in the vortex core. These excitations fill the core, making direct imaging of the vortex unlikely. Instead, we propose an experiment to indirectly probe the vortex density of states with laser fields, in a scheme analogous to Scanning Tunneling Microscopy. Furthermore, it is shown that the vortex state causes a shift of the superfluid transition temperature, which can be understood as a finite size effect.en_US
dc.format.extent2170492 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/297
dc.language.isoen_US
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_US
dc.relation.isAvailableAtUniversity of Maryland (College Park, Md.)en_US
dc.subject.pqcontrolledPhysics, Condensed Matteren_US
dc.subject.pqcontrolledPhysics, Atomicen_US
dc.subject.pqcontrolledPhysics, Generalen_US
dc.titleSuperfluidity in a Degenerate Atomic Fermi Gasen_US
dc.typeDissertationen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
dissertation.pdf
Size:
2.07 MB
Format:
Adobe Portable Document Format