Gravitational Radiation Detection

Thumbnail Image


33568.pdf (68.11 MB)
No. of downloads: 70

Publication or External Link





This dissertation studies resonant gravitational wave detectors and related data analysis. Different forms (strain amplitude) of the equation of motion for a medium responding to a gravitational wave are discussed in relation to the detection of such waves. Utilizing "Bayesian techniques" an optimal method for data analysis is developed. Noise and filter theory is reviewed. It is seen that the “Bayesian techniques" integrates filter theory and data analysis, providing both filter properties and optimal methods for integrating the data.(In particular the method leads to a non threshold type of analysis, and "looks for" correlation between two detectors without the use of time delay). Expressions for optimal sensitivity (and filters) of detector systems are given, including the limit of perfect sensors and electronics. The signal to noise ratio in terms of the spectral power of the gravitational radiation is derived. Long baseline interferometry is discussed. A computer program simulating a pair of Weber type detectors is developed to study different approaches to data analysis.