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ABSTRACT

This dissertation studies resonant gravitational wave detectors and
related data analysis.

Different forms (strain amplitude) of the equation of motion for a
medium responding to a gravitational wave are discussed in relation to the
detection of such waves.

Utilizing "Bayesian techniques" an optimal method for data analysis
is developed. Noise and filter theory is reviewed. It is seen that the
"Bayesian techniques" integrates filter theory and data analysis, providing
both filter properties and optimal methods for integrating the data.

(In particular the method leads to a non threshold type of analysis, and
"looks for" correlation between two detectors without the use of time
delay).

Expressions for optimal sensitivity (and filters) of detector systems
are given, including the 1imit of perfect sensors and electronics. The
signal to noise ratio in terms of the spectral power of the gravitational
radiation is derived. Long baseline interferometry is discussed.

A computer program simulating a pair of Weber type detectors is

developed to study different approaches to data analysis.
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INTRODUCTION

When Joseph Weber in 1969-1970 announced that coincident exitations
were observed in his two gravitational wave detectors--one at the University
of Maryland and the other at Argonne National Laboratory-- it came as a
surprise to most scientists. Probably no one except Weber had even
contemplated the possibility of such experiments. The results generated
enormous interest, and in retrospect one may state that a new field of
research was opened. The birth of this new field has not been without
pain or difficulties however. It was realized that the amount of eneray
radiated at the source (assumed to be at the center of the Galaxy) would
have to be enormous, assuming that (1) the theory of General Relativity
is correct, and (2) that the excitations were of gravitational origin.

In fact, unless the strength of the radiation could be explained
by "beaming" or some other enerqy saving effect, under the above assumptions
most astronomical theories would have to be discareded. In time the
difficulties mounted when other groups started to announce negative results
from similar experiments.

Even if it should turn out that the origin of Weber's coincidences
is other than gravitational, it seems quite possible that continued research
efforts will in the not too distant future lead to the detection of gravitational
radiation. It has been realized that with the possibilities of todays
techniques, an increase in sensitivity of many orders of magnitude can be
achieved if one is willing to make the effort. William M. Fairbank

3 6

has estimated that his 3 107~ °K detector ultimately will be, 107 times



more sensitive than Weber's (1972) detector, and able to detect supernovae
from the nearest 1000 galaxies, which means his antenna should be-able to
pick up an average of 30 events per year.

In the following discussion some conventions are useful. We shall
refer to a "bare" detector as just the antenna (e.q. Webers aluminum cylinder)
without sensors and amplifiers. In referring to the sensitivity etc. of a
"bare" detector, we mean the sensitivity such a detector would have if
equipped with perfect (noiseless) sensors and amplifiers. Further on, we
shall refer to a "dressed" detector as the antenna plus realistic sensors
and amplifiers. The sensors and amplifiers alone shall be described as the
"dress".

If it should be possible to construct a massive (on the order of a ton
or more) low temperature detector of a single crystal of quartz or sapphire,
a considerable increase in sensitivity can be obtained because of the high
mechanical Q of such crystals. Presently, the highest measured 0 for
sapphire at room temperature is 109, while it has been estimated that a 0

18 might be attainable. Furthermore, it is not unlikely

as large as 10
(judging from reports on experiments with quartz and other materials) that
the Q will increase markedly for low temperatures. The "bare" detector

-1 but the actual imorovement depends critically

sensitivity is linear in Q
on the "dress." Thus if the dress can be improved to a corresponding degree,
it is not unrealistic to envision low temperature sapphire detector
sensitivities 103, or more times that of Fairbank's millidegree detector.

In spite of present difficulties, one may thus consider the future of

gravitational radiation detection to be bright.



Indeed, if the envisioned improvements are even partially realized
and long baseline interferometry techniques are employed, a new dimension
will be added to observational astronomy. The ability to "look behind the
scenes" of astronomical events with qravitational radiation detectors
may well surpass that based on all other methods (except possibly neutrino
detection). Gravitational radiation, once created, can travel practically
without loss through almost any type of matter. The experimental importance
of highly sensitive gravitational radiation detectors is not, of course,
limited to astrophysical studies. Such a device could be an important tool
in studying the gravitational field itself. A controlled emission-detection
(Hertz) experiment would provide information most valuable in distinguishing
among various gravitational theories.

Before we go into the topics of this dissertation, it is useful to
introduce some notational conventions. The pair (x,y) will denote
the raw filtered corotating output amplitudes (see e.g. equation (1.17),
and (X,y) will denote the corresponding (smoothly ) filtered variables.
If the filter is of the special type that is matched to a delta function
signal input, we use a dot notation i.e. (X,y), since this filter will in
moét cases approximate a differentiation. In the litterature P usually

labels a quantity which is proportional to <2 + yz, and stands for power.

This may be a bit confusing since %2 + y2 represents the eneray of the

detector; however, the output power of the amplifier is certainly proportional

to X2 + yz. We shall usually use the notation E for x2 + yz. Because

of tradition however, the quantity [ a%—(x2+y2)]2 will always be denoted

P2,



One of the sources of disagreement among scientists has been just
how to do the data analysis. The primary purpose of this dissertation
is to provide an analysis of this aspect of gravitational radiation
detection. We will examine all the steps in the detection process.
Expecially we are interested in finding anything that might explain the
positive results obtained by Weber when his data analysis is based on
Pz, in contrast to the poor results obtained with kz ¥ 92. It is generally

2 AN ,
+y is superior to

agreed by scientists that data analysis based on X
that based on P2 for pulse like signals of short duration compared to

the time resolution of the detector. While we have not studied the equation
of motion for the detector under theories other than General Relativity,

it is hard to imagine any theory in which radiation would mainly affect the
energy of the detector and not change the phase. This would be the only

2w superior to "22+y2".

way gravity could make "P
We will now review some of the major results of this dissertation.
An improved method for data analysis, based on Bayesian techniques or more
precisely on the evidence function (for details see chapter two), has been
developed. This method provides both optimal filter properties and optimal
methods for integrating the data. Employing a signal parameter variation
technique, it provides information on the nature of the signal. In the two
detector case information on "unwanted" or uncorrelated excitations is also
provided. By evaluating the form of the evidence function for various

types of signal hypotheses, one can search for cases where the evidence function

contains data variables that more or less approximate pZ. Such a case has



not been found. (Naturally one cannot try all conceivable types of signals,
but the trend is clearly not in favor of P2). On the other hand, it may
be that for some types of signals *2 ¥ 92 is even more mismatched than

p.

We have also found that if the data is recorded in the form (x, y),
the quantization and other "data handling" noise is minimized, and that no
information is lost when the data is transformed in this way.

To investigate further the problems with P2 versus x2 * y2 analysis,
a computer simulation of a Weber type detector has been made. The results

2 is superior to ”PZ”. Two

of this shows that for most cases %2 v
cases are of special interest however. If the signal is a short large pulse,
the two methods are about equally effective. (By a large pulse we mean a
pulse that gives the detector an increase in energy, large than its thermal
energy kT). This result is not so surprising since phase information is
less important for a large pulse. Further if there is a frequency offset
(usually caused by a slow drift in detector frequency, due to small changes
in temperature) between the detector and the reference oscillator, the
X% + 92 method is strongly affected in a negative way (if the offset is not
corrected for in the data analysis) especially for small signals or a .*tochastic
burst of small signals, while the P2 method remains practically unchanded.
This result agrees with that obtained by G. Rydbeck and J. Weber in 1974.
We must conclude that of all possibilities tried in this investigation only
"Frequency drift" could account for making up2n syperior to 524 92"-

In the following a brief account of the contents of each chapter is
given. The first chapter studies the response of a solid media to a

gravitational wave. The equations of motion are specialized to the case of

a cylindrical detector and transformed into corotating phase space coordinates.



The uninteresting harmonic rotation is transformed away so that any change
in the coordinates of the detector represents the presence of a force. /

Bayes' equation and the evidence function are introduced in chabter two;
these will provide the basis for our approach to data analysis. The approach
allows a general definition of signal to noise ratio. Data analysis with
the above method is studied in an example with one detector. It is seen to
increase the signal to noise ratio by a factor of approximately two compared
to the usual threshold technique. This result was for a special choice of
signals, but other situations should give roughly the same result. Instead
of threshold type analysis the method leads to a type of analysis in which
contribution to the evidence-increase from each data point is a function of
its amplitude.

Noise and filter theory is briefly reviewed in chapter three. It is
shown by example how the evidence approach in fact describes both optimal
filters and optimal data integration methods. We thus have a straight forward
method (although at times lengthy and messy) for secondary filter desian
(assuming the data is stored in the "prefiltered" form (X, y) ) and data
analysis under complicated signal hypotheses.

The fourth chapter studies a computer simulation of a pair of Weber type
detectors, the results of which has already been mentioned.

A1l the detailed calculations and applications have been done in appendices.
Below is an account of the problems that are considered in these.

APPENDIX A. Calculation of the signal to noise ratio, in the two dimentional

case, for a given signal, with and without a definite phase.



APPENDIX B. The thermal fluctuations of the detector amplitude are
studied, and an expression for the signal to noise ratio of a "bare" detector,
in terms of the spectral power of the gravitational radiation, is derived.

APPENDIX C. The "dressed" detector is investigated. Preamplifier
properties are considered, and a preamplifier temperature is defined in terms
of its noise sources. Equivalent circuits are introduced as a convenient
tool for discussing detector systems. Detector and preamplifier matching is
discussed briefly. A detector with nonresonant pick-up system is studied,
and an expression for the signal to noise ratio in terms of the spectral
power of the gravitational radiation is given. The form of this expression
allows the definition of a spectral signal to noise ratio, which when
integrated gives the total signal to noise ratio. It is seen that the
spectral signal to noise ratio splits up into two factors, of which one is the
spectral signal to noise ratio of the "bare” detector, and the other a
spectral quality factor of the dress. This quality factor is related to the
signal to noise of a "kT" excitation" (a sudden excitation which, if initially
the detector has zero energy, gives it the energy kT) a measure which 1is
often used in discussing the quality of the "dress". The optimal filter for
such excitations is derived, and it is found that this filter is invertible
(i.e. it does not lead to a loss of information) and allows further filterina
to match any type of signal. Next a detector with a resonant type of pick-
up system is considered, and expressions for sensitivity and optimal filter
are given. As expected, it is seen that this filter is more complicated

than the optimal filter for a nonresonant pick-up system.



Thus, unless the resonant pick-up system has other advantages (such
as providing a better match) it should be avoided.

APPENDIX D. The details of data analysis, along the lines suagested
in this dissertation, are studied.

[t is seen that there is an optimal form in which to record the data
(i.e. the jmpact of quantization noise, which arises when the data is digitized,
and other data handling noise, is minimized).

Some possible type of signals are considered, such as single random
pulses with exponential distribution in energy or random stochastic bursts
of pulses with a certain average energy. Expressions for integrating the
data under a parametrized set of "random pulse, exponential energy distribution"
signal hypotheses are derived (for both one and two detector systems).
Optimization gives a set of parameter values that provide information on the
signals. In the two detector case, these parameters also provide data on
local, nonthermal excitations.

Further in the two detector case, the method checks for correlation
without the use of time delay. This is not to suggest that time delay
experiments are useless in any sense. Indeed, the time delay method is a
useful complement to the above method, and is naturally included in the
parameter variation approach, by extending the set of signal hypothesis to
include signals that are relatively delayed between the two channels.

Results of the analysis of some of Weber's data tapes is presented.

APPENDIX E. Gravitational radiation detection with two or more
detectors with synchronized reference oscillators is considered. Such
systems can be used for "long baseline interferometric detection." It is seen

that the interference, although it provides directional sensitivity, does



not increase the "internal” signal to noise ratio of the system. It provides
however a shield against unwanted "external" disturbances. Such a shield
may be essential for the future generation of super sensitive detectors.

APPENDIX F. The details of the computer simulation experiment and the
results (which have been mentioned previously) are studied.

APPENDIX G. A method for eliminating "bare" detector noise from
the signal output is consered. This method turns out not to be very useful
for resonant high Q detectors, since it also eliminated the resonance, which
is needed to "overcome" sensor and preamplifier noise. It may however be a
useful method when the "Earth" or similar objects are used as detectors.
(The method really amounts to transforming a solid detector into a free
mass system).

G. Rydbeck and J. Weber (1974) "Frequency drift in gravitational

radiation detection experiments". Technical Report #75-026.



CHAPTER I
THE ANTENNA
THE RESPONSE OF AN ELASTIC MEDIUM TO A GRAVITATIONAL WAVE

This problem has been studied by many workers, notably Weber (1961),

"~ and later by Dyson (1968). It is also considered in M.T.W. (1973). A very
general and thorough treatment has been given by Carter and Quintana (1972),
followed by Carter (1973,A) and (1973,B), and also by Glass and Winnicourt
(1972). We refer to the above articles for "in depth" studies of the
subject and will mainly review here some of the relevant concepts and
results. Regarding the possibility of using gravitational radiation
detectors as a tool for testing relativistic theories of Gravity, we

refer to the article by Eardly, Lee and Lightman, (1973) and just note
that gravitational wave detection may be the only in practice feasible way
to test certain theories of Gravity.

Consider now the equation of motion for the medium as given by Dyson:

(1.1)
9 . o) - _
o (fzfj d,i./k//ljk'““ (Z *ZL“ )/
where ¢ is the density of the medium Cjkmn relates the strain to the

hMN = gm"— /] M where _qmn is the space time metric and 1) =

stress,
the flat Minkowski metric. (Note that in our notiona which adrees with that

of M.T.W., the interaction term 1/2 hmn’ enters with a plus sian while Dyson
has a minus sign). Equation (1.1) is the equation of motion for the.

elastic medium in the linearized theory of General Relativity. In the following
discussion, we will consider the linearized theory from the geometric point

of view (i.e. not the'spin 2" point of view where instead of geometry, measuring

rods etc. are affected by the gravitational field). We note that the

=i
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amplitude Zj in (1.1) is what one might call a R.I.M. (relative to

inertial motion) amplitude, defined as follows. Assume that before the wave
arrives the space is completely "flat" and the medium is in equilibrium.
Consider a point P of the medium, this point will trace out a world line
P(J). Before the wave arrives P(JT) will be a geodesic while as the wave
passes by (and a while after) this will in general not be the case. Let's
now extend the prewave geodesic to form a geodesic at all times, and call

it P, (7) (i.e. P, (%) is the world line of a free test mass, that originallv
had the same position as the point P of the medium.) The amplitude Z;

is the separation vector between P (7) and P(7), or in short measures the
separation between a masspoint bound by the medium and a fictiéus free test
mass that originally had the same position as the bound mass point. As
pointed out by Dyson the R.I.M. amplitude is thus exactly the quantity one
is interested in when the experimental sensor is a seismometer or accelerometer.
We note further that the T.T. (transverse traceless coordinate system

(see M.T.W. pp. 945-952) 1is a very natural choice of coordinate system when
one is working with R.I.M. amplitudes. In these coordinates P. () will
just have a constant position (See M.T.W. page 952 excercise 35.5), if the
system is initially chosen so as to be at rest relative to the medium. (Thus
since free masspoints at rest relative to the system, remains at rest, one
may call it an inertial coordinate system). With this "initial condition”
the T.T. coordinate system is fixed at all times. In the T.T. system then,
Z; is just the displacement vector, ;;;(P(JU) % )6'(PCT?)' Hoj

where Xu = (evist. = i (P (77) and AL P(T))

are the coordinates of the points P, (7) and P (7). One should note

that even if the amplitudeszj(P(TD are zero in part (or all) of the medium,
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it may still be "straining" (the distance between points of the medium vary
in time). In this case a seismometer would not reqister a signal while a
strainsensitive device would. Obviously, one cannot, for example, by

placing one seismometer on the moon and one on the earth detect any changes

in distance between the two (if the change is of geometric origin, and not

a result of applied forces) while such a measurement can be done e.g. with

a laser ranging device. For the above reasons it is also of interest to
consider the equation of motion in terms of strain, .Sg(/P(T7)

of the medium. For small velocities (of the medium relative to the coordinate
syste and small (1linear) strains there is a simple relation between the

strain of the medium and the amplitude

(].2) 5".] - //Z (Z;)J' -+ .ZJ"L') +//2 H:J.

(See also Glass and Winnicourt page 1938, eq. (4, 19)). We give the
following derivation of relation (1.2). Consider the distance between two
near points in the medium, and let _7«¢ be the initial displacement
vector between the two points and Tet éj;(:/ be the displacement vector at
time t. We have:

aX' = gut e QLG 4xd - gxt o 20 X

Wi i =, 4 b i we have:
ith the metric glj ZLJ + ”0_/ at time t

| dx) "= 1 4K " = 2 {§(Zij+ Zii)r g nig | 447447,
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The term 1/2 (Z;; + Zi ) +1/2 hij, corresponds to the usual definition
of linear strain (See Landau L. and Lifschitz, E (1957) page Js
One may think of (1.2) as being the sum of the strain 1/2(Z:;+Zj:)
of the medium relative to the coordinate system and the strain 1/2 rui
of the coordinate system relative to its original form. Making the
approximation that & s constant, one may now rewrite equation (1.1)

by taking its derivative 55%7 and symmetrizing with respect to 1 and

j. We get;

S SN T, o mn]
(]'3) f df}. (\"(‘J‘- /‘{‘J) - iL {(O/(J (kmyl* /\_/4 '/0"“4) -5
For isotropic media one has  Zjkmn = A c8¢<c(pw1-+/4 (Sim din *in )

Following Dyson, we can rewrite (1,1) in transverse traceless coordinates as

(1.4) d%(fZJ) =<>~%—,(/{Z"‘,M)+ {/4 (Zjx+Zk)) +*—-’5-/u.

where f{, = & % s the shear modulus A =‘39(’¢,‘Z-¢(2;) the Lamé constant,
and V and s are the compressive and shear wave velocities respectively.
In the same way

0 g @ ) - { U ) a1

0 o5 .S ]

s sl 4 A5 DR

Sy w2 A A

We can see from (1.4) that if 2/t = (i.e. if the medium is infinite

g Xk
and isotropic) there will be no coupling to the R.I.M. amplitude, while

(1.5) shows that the strain amplitude is still excited. If one considers

. . - G} (
the strain as composed of two parts T ;@H + Jﬂjv’ where
vJ o .
) b e (2) | e .
Sy I A :1 and o 7 (Z:’U + Z)0 ) one may think of



v,

equation (1.5) as describing the motion of two different superposed strain-
(1) . . 3 . . . i ;
waves, one wave g (which is purely inertial, i.e. it does not give rise

to accelerations) is coupled to and travelling with the gravitational wave,

while ;§éf) is purely non-inertial, and has as its source regions
where é?i;i , differs from zero. One may take the point of view that

the inertial waves ;25" scatter on regions where é%ﬁ;; differs from
zero, thereby producing non inertial waves ‘j}jl) . This scattering will

for example for a momogenous detector occur at the boundaries and may for
certain frequencies lead to resonances, in which case ;i; = ;fbfz)

Thus near resonance it will in practice not matter whether an accelerometer
or strain type of sensor is used. One may without too many complications
include simple types of friction in (1.1) and (1.3). The simplest case is
when there is an additional stress arising from friction, in such a way

that it is proportional to the rate of change of strain. Including such

friction is accomplished by letting ;i .n in (1.1) and (1.3) be
N

replaced by Cilomn + Tl 5%? where 7 has the same

symmetry properties as C&kymwx , and for the isotropic case:

Z\jkww\. = oifké/mw i P (Cg;jM Shn + {[V\ Q/RM) B

(See Landau and Lifshits page 125).

Including such friction in for example, equation (1.1) we would get

'"3 [ /

2. (ezZ)= 2. ra 1T i L P r,mu)7
(]6) u; ) —E«J“) = d(/(k 2 ( YZJ.LQW’—"- -+ “J‘.Yf\/‘-)("" -+ 5 1 j

+ i‘l»

@

It is noteworthy that even for purely inertial waves ;;;'« C)/) this
friction (which may be caused by conversion of clastic energy to for example
electromagnetic enerqy or heat) would in the isotropic case lead to dissipation

of energy. In fact, we would in the isotropic have a dissipation per unit

volume given by



THE FINITE CYLINDER

It is usually quite complicated to find the "exact" vibrational modes
for a given elastic body. Even the "simple" case of longitudinal modes of
a finite cylinder is complicated enough. In fact to my knowledge, no exact
solution to this problem exists. With some approximations however, it is
easy to make the problem manageable. Let the cylinder and the coordinate

system be defined by the following figure

Fig. 1.2 ,/\19/{1

el .
\ ' _ A

X=-a //////» ' A=A

(=2 a

We consider the equation of motion (1.5) for the (homogenous) medium

P - Ll S {.f:)_,_elg -k PR A
S Sy TA Sy TH L SR s ] TZ M

We are mainly interested in longitudinal oscillations, and as a first step

we neglect modes with angular dependance (which is not an approximation,

it just means that we assume bending modes etc. not to be excited). The
first approximation is to assume _,, to be constant in I . We now
observe that one can always write the strain ;Z,(}(},f) as an
expansion over a set of functions ﬁ;()ﬁ) which is complete on the interval
—a{ X &, andgives 5, (< +t) the correct boundary

behaviour zga,(<i'41‘$)~=c7. We may thus choose the set of functions to be;

-15=




[L/Qg/(/ wal/ /(j V’W=Oi“-0<>jandwhere k. =TI /s

and y(h¢ -?% mwoo, One may thus writes
:;l(;(:{) = (,JS (t) Coc k ./ T
é " Cos kn X Cn (t) Sin ku/(/,

We will now have to make a second approximation, namely that f
or

e
each mode (7, and 7, ) one can replace, in the equation of motjon,

coupling between the (0, (A/ ¢)

the
component and other components of the

strain tensor with an effective elastic constant Thic ic
I his is in genera]

a "fairly good" approximation, excent when there is a "heat" betwaen s
0

or more components of the strain tensor. (It could happen for example that

the frequency of a particular longitudina] mode would be the same or close

to that of a particular radial mode, in which case one would get a "beat"

effect). Anyway with the suggested approximation, we get when the above

expansion is inserted into the equation of motion,
\/ ‘1, \/'\—-
IR 4!
([-7) % { (ll) +$,:’ %JV(é))/OV\ XT()Z (_{)-k _’/‘1 [YV‘C‘/)&.{A/,L/Ky-

. )
Z_Ku("'/.\i—) .

Y and Y, are functions of ),  and d, the diameter of the cylinder,

o V=Y, (l/n,,éf) and VY, =V ( ”_),[) If the cylinder is thin
compared to the wavelength i << /z ) v, y =Y (Youngs modulus of

the material);

Vo, Vo > Ve2p (32 4)

In the opposite Timit when the diameter of the cylinder is much larger than

the wave-length, we have:

\/n \7{\ S ,/'( + _2 A, as rj; 2P /C._;. ) .
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For reference see eq. Achenback J.D (19 ). The mode frequency is:

Wk [T and DR (E

One may now multiply (1.7) with 1/a (ws k. X of Lo Sim Z:,Af

and integrate over the interval * « to separate out the particular
mode equations. If ﬁL“ is assumed to be constant along the cylinder the
Sine modes (which we from now leave out) will vanish. For the cosine modes

we get;

+A

Coshew X 2 z_’/—/jf1 r
v ) el
(1.8) f (t) v+ 5 () = z ’l” el ~ T (/+2n) & )

-

sothat S5, (G t) =2 F(t) Cashac X .
"
The "“change of length" amplitude, which we from now call the COL.
amplitude, between zero and the point X , is obtained by integrating the
strain from zero to & . We dencte this amplitude by U, Sin Ku X

and one has:

.o "
/l [,{_)7. = (-I) e ("/)
(1.9) B o [ b Tll+2n) L( n,

so that the total COL. amplitude is ([ (x,t) = > [, (t) Sin kn X .

}7

v
Making a similar approximation as above, it is a straight forward matter

)5

can replace the damping of the mode itself and the damping due to coupling

to include damping. We assume that one for each mode (u}":L and 7,

to other damped components of the strain tensor, by an effective damping
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constant L), . The damping term will thus be of the form; (See equation 1.6)
Pk
_pn.cidz_f‘(f)fuﬁ WX ==Dy ki f(f)wsm/'
[ =, : ; .
Including Ko LN Dn ', equation (1.8) with damping is given by;

e ¢ . . /..))1'L
(1.10) F ) r 2 (t) + Wk (t) = 2
- / ‘-DPL ﬁ ) " ﬁLL / // (/+2n) ®

f\\.

It is of interest to express the equations of motion also in terms of

the R.I.M. amplitudes defined on page 1 . First we note that H
~ (

Si (',o,/‘sz,i'”//jf)—fz /fl

5 ) |
We may again expand 5, as |
I

s~ \7 !
v / where 7 = 2= (see page |3 ).

— - M s‘
S4) = 2D Halt) Loclon X, Thus $ult) +ho 22 =gy,
" W(/ A.l't/ iy J

Inserting this in equation (1.8) gives

Vi ) - Z - - Ymﬁ—(/‘*znj .y n
%.,\({’) t LDy . J’) "’w 9 P ( )

Clearly & (+) differs from _f. (#)  when nyro

If l,=¢ (e.q. after the passage of a pulse of gravitational radiation)

/\_L

however ( [f) = ji[f) . The R.I.M. amplitude Z( 1), (note that

x> o
Z(t k)= / s /[,c 50 may also be expanded as Z7. /)<) Z, (+) Siak X.

J r oy
It is then easﬂy seen that the equations of motion in terms of 2. (&) are;

U.]]) 2»\ (f) + Wnl th/f) = "ZH f ( )
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We note again that . will differ from L. (See 1.9) only
when 1, #0 . It is further clear that any non gravitational force
f;_(é) acting on the detector will enter (1.9) and (1.11) in an
identical way. i.e.

Un + O Un = b, (4) 7776‘—2’-’—) £ ()

e

SR Vo (07 1
Zo + W00 Zn =-n,(t) —:;Z—— frn.(f) .
This peculiar difference between the R.I.M. and the C.0.L. amplitude
(which would be non-existent for other than gravitational interactions) was
noted by William R. Burke (1973) and utilized to cancel non gravitational
forces (e.g. noise or other types of interfering forces). Subtracting the

second equation from the first we get

> VI | nL
(1.72) Cln + "’U: cha = ' ’:;'—L‘:L 4 ’)"i + ‘}/’L {,)'
E(lv2n)* Sa
where == Zn . Clearly the solution to (1.12) is
\j g
dn = '}’lu ;Z“ﬁ“‘("“:)‘ = b, bl “/—""‘—‘_// Foriher
(1.13) pieL S T(1+2n)*

dta)=iLia)=2a) = (1) dy = b a}" Lt A

Essentially thus the amplitude /iﬁa) 1s equivalent to the amp11tude between
two free masses at distance a from each other. Let's consider a specific
detector system for which the above relations can be applied. Assume that
the detector consists of a piezoelectric bar with accellerometers mounted on

its ends. With the piezoelectric effect one can monitor the change of
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length of the bar and with the accelerometer the R.I.M. amplitude of its
ends. (An accelerometer consists of an essentially free mass, placed at
the end of the bar, plus a device to measure the relative motion of the

two. A similar device, with a very high sensitivity, has been developed

by the Stanford experimental relativity group). With proper normalization
one thus has the two outputs, L and Zw .(not counting added wideband
electronic noise). Thus according to (1.13) by taking the difference
between the two output amplitudes (l» and Z. , we would obtain an out-
put, completely free of any noise or disturbances of mechanical origin,
acting on the piezoelectric bar (which seems almost like magic). It should
be clear however that one does not in general get rid of noise forces or
disturbances acting on (non detector parts of) sensors and amplifiers.
Moreover, the resonance behaviour present in Ll{. and Z, is lost. For
most detectors however the resonance is essential for "overcoming" wide band
sensor and preamplifier noise. Thus it turns out (see appendix G) that
"amplitude subtraction method" is not useful for resonant detectors, but

may be useful for other types of gravitational radiation detection experiments.

PHASE SPACE COORDINATES FOR THE ANTENNA

We will now see how the dynamics of the detector can be formulated in
terms of a phase space vector in a corotating coordinate frame. This is
useful from two points of view, first it transforms away the noninteresting
harmonic motion (what one is interested in is deviations from harmonic
motion), second, most experimental detector systems employ a "lock-in"

detector which in effect transforms the signal to the above phase space vector.

This two dimensional "corotating state vector" is thus in practice the output

quantity the experimenter deals with and which is later filtered and processed

in the attempt to find a signal.



-2]1-

We will do our calculations for a Weber type antenna (cylinder). Most
of the results (such as sensitivity, etc.) can be applied directly to other
types of resonant antennas as well. In all these cases (e.q. dumbell, disk)
we would get, just as above, a set of harmonic equations coqp1ed to the
gravitational wave field. The dumbell however turns out to be fairly

uninteresting. Its detection efficiency is in general inferior to that of

a cylinder. The disk should be at least as efficient as the cylinder but

we have not done any calculations for this case.

: ‘i g
We rewrite equation (/.9 ) as

() ui?) * g Uy (¥) * ou,jgz/,1 = -4 O =a /Z)

/7,00 £ 2
where )C} is the inverse of the amplitude damping time, o, the
B 7 ‘
-~ (/) 2 : .
frequency and L. = “,/ 7foﬁ» is a coupling constant. We note
& 7(r727)~

that under the circumstances (plane wave transvers traceless coordinates)

N

/ &5 0 ] .
we may replace /7 b = 9 7 L see Misner, Thorne.K.
y repl oo Y TR TN, ; ,

Wheeler J., Gravitation, W.M. Freeman, San Francisco, 1973 , page 948).

ot

The instantaneous energy of a mode is (C#znandygy Sult) = B Simcont )

ta +a
E :_Z /C/’x"’ 5 gy B 2 2., 4 o2 / 5 /,L\ RN,
” 2 / e f-//h- 4//'1 1/4’5 ol :—)(/V“ k.«)( ‘;Z: et /"4 /K//n, STl s T K,
- =

(2 ' e '
e 'z.'f/f“)n - )/.,,“/\/uj 7

X
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% : o
. ~ = /// \ vy, , L = __/./.. (._{ )
We have o, 2 —-Lf ; //) z (3 +7

j/ we ./."/L‘.‘/‘_; .f.gi-‘r':ﬁxvta, /ﬁ y,,,_-'-' ‘/O )'
We can write ¢, = cuo // 7‘027’5) » We get E /Z) =
z ”

7;/' 2 a N ,//,,:' ) since .24 = 77 (the mass of the

cylinder) we get

X Z 4
(H‘Suf /’:’/:7/4/77/,@,_a /0T = *mw’gf/*ﬂa/ /e (t) =

» 9?// (/-fjrz 8 ,//,LZ(/:’.)
The solution of (11 , is
¢ y, (¢-2) ,
l/n/z/) =/(/l///:[/};7 e S/ a/h/f'f)d(t/l]

from which also

2
: ) 7 - /é‘t’) ’ . , .
Zui lél(r’)z/(/"é/&-/-; e 4 (COS a/’n({-{)—é Sin w, /1‘-{) - a (/f)

(From now we drop the '»" rememberingthat /. eZc. is really “/L/n
but we Tet u/; be | to differ from U in fourier expansions).

The fundamenta] oscillation may be represented in "phase" space by the

vector // //( e, LZ) or in complex notation L= Ll * /’CU U =
¢

/ -y (&~ co. (Y- d P
=/f/<t/ G,X )/ﬁlngz‘)‘&é-.5"/'7¢uh/f‘2‘)][{/5{/)

We observe that the signal is a real quantity. It is also important to note
that a signal may change the amplitude as well as the phase of the rotating
phase space vector. The simplest way to extract the actions of the forces
acting on the cylinder is thus to go to a coordinate system rotating in phase

space so that the expected harmonic rotaticn vanishes. In this way eventual
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changes of the phase space vector are due to signals or noise only.
/LUJ f

We multiply the //. above with & and we get ‘Lo in the
rotating frame; ,‘;/cf/ = e f;b"‘”‘jvtf ;
Zf ’ / X _ U t
=), (¢-27) y ~¢ 2 tew,
v=/cw'e 7 /e ? ‘O-Jh e S e (z‘-(?/@/z")
n
Y ) Y -
In practice S / (In fact =2 < g5 - /9 é
/AJ_,) ./v,)
for most detectors) so to a very aood approximation;
| = ~y, (4-27) e’
v =S e = al?).

We can now go back to the equation of motion in the <:o.rcv¥:1,5/;wj7
frame.
—tw), ¢

(1.16) vor Yy =e | al?)

Ve,

or in component form

~

Y ()~ ) i (4) = cos o a (?)

(117)

(2({) *&: v, (£) = S ¢ ¢ alt)

S

From (1.15)we have that the energy of the cylinder is
(118) - Lesm/iY

We will now see what happens when we try to do this transformation

in reality. We have

7 / ~)2 /’C/—ZL/) ;) 7
v =/ 7~ < cos ew (¢t )a/lt’)
7 6(/;7 Vo)
2 —y (Z-77) ,
e f o’ L & ¢ i ocw (£-27) a %)),
" /,(,/) - 5
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(Note that /P is the original output of the detector and that 4 is

Y

obtained fyom k& by differentiation). We will at this point need a

reference oscillator to give us c:a:;cL%-f and Sin LL% A functions,
which means that we actually will be given functions COS (/CL% -¥~4j¢b>> é
and Sim /Z/Jn +Aw)é . We can thus multiply ‘// and Z{Z
with these functions in the following way
( : 7
v = Veosleo * Awlt *t V¥ s lw +Aw)f
f / 7 2 lg)
|
‘1 / -/ -
/ = ) b, - / Al -
}2 };Snv(oﬁy Acu)f -2’vu>/@%7 ALU)é
L
Performing this multiplication we get
5 ’
 —v(Et)
4 s/ y / P fiid
v =/c/£;;;c?. cas(%{—/;\w{)a(é)
- o0
¢ ’
, , o, mYiet) , /
Va 2//5/1‘ ) sinleo,t’'-Awt) alt’)

= o

If the oscillator is stable enough so that A c«vo does not change
appreciably within what we expect to be the duration-time of the signal,
we may continuously correct the oscillator by constructing the correlation -
function CTLAQ%) of ¥ . (For definition see page 5 ¢ ).

If the oscillator is offset with /| LLJ)£:/1{ will oscillate with that
frequency, which information we can weakly feed back to the oscillator. If
the feedback is too strong Fowever, we might kill eventual signals.

When deriving the equation of motion for the antenna, the only driving
term included was that due to gravitational interaction, unfortunately, however,
there are also "noise forces" acting on the antenna, arising from the

interaction of the oscillating modes with the surrounding heat bath.



-25-

As we shall see, the coupling to the heat bath is essentially proportional
to Z; » which is why a number of groups are now trying to make detectors
of materials such as quartz or sapphire, which both have extremely hiagh Q.

We will now Teave the subject of detectors for a while to study relevant
probabilistic concepts, noise, etc. The study of the detector is continued

in appendix B and C.
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CHAPTER 11
CONCEPTS OF PROPABILITY |

SIGNAL TO NOISE, LIKELIHOOD RATIOS

BAYES EQUATION AND EVIDENCE

Let's first consider the most elementary signal plus noise situation,
described by the equation (%.!) d = s + n, where we call d the data, s
the signal and n the noise, which is here assumed to have a gaussian

- . - g 2
distribution, i.e. D//’)) — / ex o ————/—7————7
Va2mr<n®> LIS

In this case consider a single data point d. The ability for the

observer to distinquish wether the data contains a signal or not depends

on the signal to noise ratio, which is usually defined as
PP
(2.2) E;f = = one can freauently see other definitions
- <nm)
such as /\S__/‘__‘_ which definition one adopts is really
& IR Ht

a simple and direct interpretation in terms of Bayes equation, which will be
introduced in a moment. If no sianal is present in (Z.1), the noise will

fnc/uce a distribution in the data:

/ -2
(2.3) /O /(//) = —‘*"{*—*r OXD = —:“{—,——’ if a signal is present, the
et ¥ S 2<Nn™)
signal + noise will induce a distribution in the data

[

Vamen™> 2412

2
(2.1) P (o) = L exp- (=5

=27~
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If we consider a specific data point c?' and the only thing about s
that is unknown is if it is on or off, it seems intuitively clear that we
should base our judgment about presence of a signal on the quantity

(25) & 8 ) = ”"‘”-/O/)

A ()

ol (S, c7ﬂ/ is called the 1ikelihoodratio.

If s 1is not exactly known but has some distribution /7 /¥i>

2 , (s J
/lp ” (bg} = /4// /67 A fj)

N AFCS) S ‘S,

will be resulting distr1but1on in the data, and

. s . /) 2, (d)
(2.6) o (&) :/v’/c:/s /2*’ L () o lniis) 77

7<) o) o ST L)

We will now try to make the role of these quantities more precise..

It is not immediate how to generalize the concept of sianal to noise
ratio to the case where the data is distributed in a non-gaussian manner.

To do this generalization and understand the meaning of it we introduce
theéiﬁws equation. (For a thorough introduction to this and related

concepts see Tribus 1969,"Rational description and Designs, Pergamon Press,

New York" and also Helstrom, 19683, "Statistical Theory of Sianal Detection,

Pergamon Press, New York.)
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Let's consider an experiment, and further let's introduce the following
notations and assumptions concerning this experiment.

We shall Tet C denote all the prior (before any data is examined)
facts about the experiment; and in particular we let C contain the assumption:

(1) The data D in the experiment is produced by one of two possible
underlying mechanisms, which we shall call G and g.

Let (D) be the set of all possible outcomes of the experiment, and
further let P(Dlu ) be the probability for the outcome D when G and C are
known to be true, and similarly let P(DIAC) be the probability for the
outcome D when g and C are known to be true. P(DIGC) and P(D|g¢) are called
probability distribution functions of the variable D.

Similarly we let P(GIC) be the probability that G is true when C is
known to be true, and P(g|C) the probability that g is true. Since according
to (1) G and g are an exclusive and exhaustive set of hypotheses we
have P(G|C)+P(giC) = 1.

Further on we shall let P(G'DL) denote the adjusted probability that
G is true when C is known to be true and the outcome of the experiment is
found to be D. P(glDC) is defined similarly.

Finally, we define P(DIC) to be the probability for an outcome D when
only C is known to be true. It follows that P(DIC) = P(DIG )P(GIC)+P(DIgC)P(glC)

The above probabilities are related by Baye's equation;

(2.7) P(&lDc) = P(&lc) —P—@LE:—-}-
P(Dic)

which may also be written in terms of g, the denial of G

P(Dl&c)

P(DIgc)

(2.8) P(gibc) = P(gic)
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By taking the ratio of these two equations, we get the odds form of

Baye's equation:

. ‘ P(Dls¢)
(2.9) O&lbc)= Ocalc) =
’ ) Bloige)
where Olale) = M is the odds in favor of

FCic)

the hypothesis G, when C is true. O CZ/D&) is defined similarly.

We shall not attempt to prove Baye's equation here, but refer
the interested reader to Tribus (1969). It is obvious how to extend the
above formalism to a case where the set of hypotheses has more than two
elements. One may call this set [CZ;}. n the case of a continuous set
we may call it [ &) or just [G} . Likewise the set [ D} may be
continuous. In these cases one uses probability densities rather than
the probabitities themselves. Since confusion concerning the use of Baye's
equation can easily arise, we will study a particular example. Consider a
bag containing 10 dice. It is known that 3 of these are dishonent (g)
with a given distribution P(D]|9 € ) in outcomes, when thrown, and that
the rest (7) are honest (G). After n throws D is a set of n’
numbers between 1 and 6. The probability for the outcome D for an honest

is just (1/6)". Now let a person blindly pick a die from the bag.

Clearly the probability G that this is an honest die is 7/10, and that it is
dishonest, 3/10. Assuming that the only way to find out if a die is honest
or dishonest is to throw it and study the outcomes, we go ahead and do just
that, updating the probabilities (P(GIC) and P(glC) according to Baye's

equation. In this example thus, the workings of the theory should be clear.
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It has been said however that one of the problems with Baye's equation is that
in a realistic experimental situation, (when we are not given one out of a
known set of different possibilities) the prior probabilities do not make sense,
since different experimenters will most probably adopt different prior p
probabilities,ie. there is no unique way of defining these. We maintain that
this fact is not contradictory at all, since prior probabilities describe
an experimenter's prior information concerning an experiment. This may
certainly vary from person to person.

Consider another example with dice. This time we have 10 bags with 10
dice in each. 70 of the total number of dice are known to be honest, 30
to be dishonest with the same properties as the dishonest dice in the
example above. Only this time the ratio of honest to dishonest dice in each
individual bag is different. It is known that bag 1 has 9 honest, and 1
dishonest die, bag 2, 5 honest, 5 dishonest , etc. A die is now drawn from
a bag, while two experimenters are watching. One of them sees from which bag
the die is drawn while the other does not. Clearly the two experimenters
will étart out with different prior probabilities, assuming they are of the
type, that only believes what they have seen with their own eyes. It is
further clear that prior probabilities relates to their information concerning
the drawn die, this information obviously may be different for different
observers. We shall not here go into the technique of constructing prior
probabilities in a more general situation, but refer the reader to Tribus
(1967) page 119. Our analysis can in fact in most cases be accomplished
without involving prior probabilities. It is however of importance to
establish that the Bayesian methods are applicable to analysis of data in
a general experimental situation. We shall therefore give some further

arguments on behalf of Bayesian methods.
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It is said that in addition to the problems mentioned above, in a
real experimental situation the number possible hypotheses is infinite and
that in fact the nature of most of the possible hypotheses cannot be even
known, so how can we even talk about probabilities of hypotheses, when we
don't even know what they are. A1l this is certainly true, but in spite of
this, the problems can be handled, although it leads to some limitations
Concerning probabilities of the hypotheses that are considered. In physics
it means that a theory can never be proven to be correct in the sense that
1f the theory is A, 1-P(AIDC) can be made less than £ . One can however
disprove or exclude theories in the sense that if A is not satisfactory
P(AIDE) can be made less than & by comparing A with a better theory.

In other words it will turn out that we do not need to consider all possible
theories at a time, but may consider just two or three or whatever we can
manage.

Let's consider a specific example. Let G be a certain hypothesis
concerning the nature of the excitations of a gravitational wave detector.
Further let g be the hypothesis that all excitations are due to system
noise sources only. Also we Tet H denote all other possibilities. As before
C denotes all the information we have, such as noise properties of the
detector, astrophysics, etc. We have: P (&i¢)+P(gi¢c)+ P(HIC) =1
Although we don't know all possible details about H it is clearly specified
as being anything other than g or G. We have no knowledge at all about

7>(J>/f/5,) . Thus, we want to exclude H from the discussion.
This may be accomplished by considering the ratio of PCiiHMJand /3(9/05).

From Baye's equation we have:

(2.10) Plaine) . Plaic) P(D]ac)
P(gidec)  Plgic) PPlge)
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It differs from (2.9) in that P(GIC)+P(glC) < 1 1in this case. Assume

that an experimenter, based on his prior information gives the ratio

P(GiC)/P(gliC) the value 10_10. After a year of experimenting he found

P(GIDC)/P(gIEC) to be 10'0. He can thus state that P(gIDC) is Tess than

10‘]0, but can say nothing about P(GIDC). This is however not a severe
limitation. If the experimenter can say that the probability that his

signals are of thermal origin is less than 10710

he should be in pretty
good shape. Again, we may expand to include more than two hypotheses in
the discussion. Let us consider the parametrized set of hypotheses
[G(E)]. As before we let H be all other possible hypotheses. We have
P(hiDC) =‘j2i5 Pla 5)/175) , where h is the denial of H. Further

let's simplify our notation and just write E instead of G(E). We may

now form the ratio:

P(EIDC) AE _ P(Eic) clE P(DIEC)
P(hiDc) Plhic) PCDinc)

(2.11)

Clearly all the quantities on the right hand side are well defined. The
ratio P(EIDC) /P(h!DC) is thus well determined while P(E!DC) and P(hiDC)

individually are unknown. Equation (2.11) may be written in a different way;

(2.13) P(E|D¢) dE = P(E|h¢ :
10¢) / P(D| hc)

i.e. P(E|DhC) is the probability that "E 2 dZ" is true when 1 £
is assumed to be true, or in other words, assuming that one of the hypotheses

in the set [E] is true, P(EIDhC) is the probability for the particular
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hypothesis E to be true. In the following we will include h in C to simplify
the notation, but remember that we deal with probabilities "restricted"
in the sense above.

Assume now that the experimenter decides to try a set of hypotheses
corresponding to signal pulses with exponential distribution in energy, and
an average pulse energy Es‘ ES can directly be considered as a hypotheses
parameter with a range from zero to some given value. Further he assumes
a density of pulses which we denote & (e.g. on the average one out of
every 3000 time intervals will contain a signal pulse). The signal
hypotheses are thus determined by the parameters s and Es. The

experimenter has certain prior knowledge about Es and 9, he knows e.q.

that Es is not 1ikely to be too large, etc.

Applying the maximum entropy method with these conditions will give us the

prior probabilities /3(252‘;3/4,) (See e.g. Tribus page 440). We may

arrive at a distribution 1ike (For simplicity, we consider HE,)E)=
/E/'é'.pg./~51 3/4'57,9(‘&}‘3'/&).)
Pl EsIC)

AT107T e gt kT P
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As new data D comes in, we use this data to change the prior

distribution to P(E;IDC) and we may get something like

Fic 2.1. b.

P Es 10¢),

=

. o anesas—

e —

N’”’
T nel

" Vs

* I7 }"‘(““ T
[#2 AT-40~% fy-tot ~T

v
£
By =E

J\“\'

where n is the number of months the experiment has been running. Surely
the hypothesis E§1O) will not correspond to reality in a detailed sense,
(the true hypothesis may be an exponential with a bump at low energies, etc.),

but of the considered hypotheses, it is the best approximation to reality.
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In the usual way one may describe the uncertainty in the determination

of ES by the standard deviation
4E, = [d5, (E.-E)* P(E./D<)

Let's again consider equation (2.9). If we take the natural logarithm

of this equation we get the evidence form of Baye's equation;
s
(2.13) 5(/’/6/0() = C?C/'(&/C) -k /s /DgD/,zdz

where e~ (&1DC) = K —%_/%%2) etc.

(if K=1 the evidence is measured in napiers).

We will denote the increase in evidence by J ~.- , ie

P(D1sc)
= g b LR
dev-(GI1DC) = f In Plbie)

Assuming that 4z is true, we may form

the expected increase in evidence from the set of data D for this hypothesis.

a_ [/ | . plolac)
(2.11)  Cael(GIOE)DT = [t PCDIGEC) kel =2
/ PCo/9c)

& . D/ /) )
Where < 7 indicates that /<.~ 1is averaged over A/(4/&< ),

it

We define

(2.05)  Sw(&g/e) = {der(GIDE) )7



A7

In the case that <& represents a signal hypothesis, which implies

that Z/ is a result of "signal + noise" activities, and g the denial of
(z implies that J/ s a result of noise activity alone, one can see that
- . .

7t is a measure of how much the signal "stands out from the noise"

(how much the signal increases the evidence ‘for its own existence). Thus

it seems that S+t should somehow be related to the "signal to noise

I

ratio", and indeed, if we compute 5= for ordinary Gaussian cases (with k=2 ) LF

will be equal to the signal to noise ratio. For the example given'on page ..<

S
v
Ly 7 o

-2
we get =, W = u/(nz)

e with the signal to noise ratio. As we shall

We may thus identify
see this makes it possible to uniquely compare different experimental situations,
such as one signal per day, with a certain average energy, and say 10 signals
per day with some other average energy. With the signal to noise ratio
defined as above, we may compute the signal to noise ratio per day for these two
cases, which will tell us which of the two, is the most fayorable
from an experimental point of view.

Usually, the meaning of the denial of (D is pure noise) is obvious
and we may in this case drop & from the notation, and keep it only when
confusion may otherwise arise. Likewise we may in most cases drop C.

To simplify the notation we may also replace <& with some quantity that
defines the signal, i.e. if < 1is defined by the power-spectrum /¢/ of
a gravitational radiation pulse, we may write .. 2(%// or just o (F)
and in the case of a so called " 4 7 excitation" we may just write _wc( 7/
(See page /20)

[f we are referring to the signal to noise from just a part of the data, such

as data from one day (say out of a month) or a frequency interval to2 if” we write:

S {15/5;;:f/) ot ;ﬁLu((i’/dc{)lféa* (Where S specifies the sianal).
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Further we simplify Feorte) to Ko (2) and P(LIkc)

to ]ZL(QD/ . When evaluating (2.5) one has to be a bit careful. Let
D represent a set of data [Cﬁl:f ¢=/, -=- 1 In general, the probability
distribution of <. is a function of the signal and the noise, and also
of other "  nearby" data points. i.e A, /)= ﬂ;‘,ﬂ¢xv .
Only when the data points are independent in the sense that

QRus (2D o '

d Ly JFe

does (.J./137) sp]it up in a sum so that

/l%.f., /‘Z/'
u‘/,,(_ (5//‘/)-‘-/ /&441'/.3 //)/LM—;D (’éé} ;

(And if  containes no dependence on i )

Bass £ed)
u"—(»f//// /“//65"{ f.SZ’(//"’”‘ 7;:;/2()

We may say this in a different way, only if each new data point contains
purely new information can we add up the signal to noise from each to get
the total signal to noise ratio. The same holds true when we "addvup”
evidence. However, even if the raw data should happen to be "correlated" in the

sense above there is usually a transformation that 'antangles" or uncorrelates

the data.



SIGNAL TO NOISE RATIO AND ENTROPY

We will present another asvect of signal to noise ratio in terms of

entropy. A system with m states X has the entropy,

S=~k 2L Pl) tn Ply) where Ple:) is the probability
(=/

for the system to be in the state - . Let #(k) be the density of

states at the point 4 . We can write

/7/

Y Pri) b Ply) = (niy) Pley) O Ple))a,

[.=/7

where

o . - ! - /
Xh< X('<X/)/ ) dkb “Xo/ /\’,) and/ /ri'-p) ts Smal/

. P b7 .
enough so that rPl) - PLL’) ce 1 {;7 < X, X & X/;/'
Pees)

Thus we can write

2
S=-L T Pex)nix,) tn Plx,) Ax.
L=/

‘_\ . . .
Mo ;Z%/}2).>/7(/k1) ) = /&(jy)*2=)( , the probability density

So o

(216) S =—A/¢/X Lre) & Pl

72(X)

We stress at this point the necessity of having expressions such as

(2.15)and (2.15/, etc. invariant under variable transformation. A signal to

-39-
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noise ratio that depends on the way the data is presented would not make

much sense, similarly with the entropy. Clearly, our expressions are invariant

under such transformations. Had we given the signal to noise ratio as some-
/ X 2.k
thing like J.¢ X 2*”‘ (4 /7 it would not be invariant.
//{/x X2 2 (k)%

(For more information about this see E.T. Jaynes,page 20!

in Statistical
Physics, Brandeis Summer Institute, 1962, edited by K. W. Ford, W.A.

Benjamin, New York).

Consider now a probability density /) rv) = 20) e N

is the total number of states. We can write

=~k fatx (Pee) (z/% — Plx)én N)

2 x)
=~k fom (Pex) & /é?{x)) AR oy

2re)

*S'\SO = ‘/</C//'( 2/4’) ‘h B 0E)
N\
Thus, we can identify a Signal to noise ratio with "‘(<527¢S ™ f;o ))

the negative of the entropy of the signal plus noise distribution minus the

entropy of the noise distribution, if we define the noise distribution to

have maximal possible entropy of all distributions, i.e. ,%2;1() = -ﬁ%§Z3,
Note that even if A4 (k) —> o0 so that S has a logarithmic

infinity, the difference in entropy is independent of ~»(4/) and is finite.



=

We can make an interpretation of this result in terms of relative

§ 4 < . . D
certainties. “ 1w s 1s a measure of the uncertainty of the PP S

distribution (See Tribus, 1969 , page 111) relative to the density »(¢x) and

is the uncertainty of the 22 (¥) distribution relative to #c¥)

o ¥

4]

In the same way we may say that f;74<_~_5; is the uncertainty of the 2

/)45

distribution relative to the %2 distribution. If we define the negative of

the uncertainty to be the certainty, S = - (/«S - fio >

27S
is the certainty of the ;;iy‘? distribution relative to the ;;1

distribution. We illustrate with a graph where we make a variable transforma-

tion such that | n“oe) — i) = (ox.;‘.-“‘zen// Ll /21 (X) = Lonstant OEXL]

Fie 2.2 & pre)
e [Ras ()
-
o . ;X

While ,22 (%) is minimally certain  i.e. X can be expected to be

found with equal probability anywhere in the interval 0 - 1,/%;¥5 exhibits

-

more certainty. We may say that >z s a measure of the certainty

with which we can distinquish data distributed according to 45;5 distribution

from data distributed according to the »j; distribution. We remark that there

are different conventions about the signal to noise ratio. Our definition
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corresponds in the gaussian case to (< ») = £ in some literature
£ % £
one can find (5n) = 2 or o _‘5—5‘ :
. . M 7f J ("{' /’
In fact, any increasing function of jhc S would do as a measure.

For convenience we will sometimes use such a function for our signal to noise

: S s .. s 7 g &
measure. We use quotation marks to indicate this i.e. -t = //5“‘/-



CONCLUSIONS

The results of this chapter, suggests a unique optimal method for data
analysis. We define this method (generally called hypothesis testing) by

the following set of rules;

1. Form a (reduced) set of signal hypotheses [Gij

(Let G, represent the "noise only" hypothesis).

2. For each of the hypotheses Gi’ i =1, 2=--n, compute the relative

(40 &, ) evidence increase

e o L [ PG De)
d e (G ] (G:ra.)c) = k [n Pla, D<)

3. The maximal such evidence increase (corresponding to a particular hypothesis
cia) is the measure of "success" in establishing the presence of a signal.

The probability that Gi is true has increased by a factor exp Jev (ﬁmfﬁa;fﬁy)C)
(Gio/(Gio+Eo)C) relative to the probability that G  1s true.

4. Of the possible signal properties considered the ones given by Gi0 are

the most Tikely. The "restricted” probabilities for the truth of Gi’ i=1,2,---n,
and the uncertainty in determing the best hypothesis are specified by the

procedure outlined on page and

5. The signal to noise ratio for a given hypotheses Gi is given by the

expectation value of the evidence increase.

. | L v, P&
S lG: GolC )= e |(G;+G.) E)7 =)D p(p/’/r"/'%ﬂﬁ@/ﬁ?} .

-43-



COMMENTS

The above set of rules provides all that is needed for analysis of
the outcome of an experiment, including filter design. For simple (one
time parameter only) time invariant signal-hypotheses the final evidence

increase will take on the form;
dev(a]Gr6,)C) =/d% F(G:.c, Jedt E (G e, t-t) 51(4'))
T i

where T is the duration of the experiment and d(t) s the raw output
data. f(Gi, C, t-t') is the optimal filter (i.e. it is matched to the
hypothesis (&, ). It will turn out that the properties of this filter will
depend not only on the shape of the signal, but also on most other assumed
signal properties, such as, definite or random arrival time of the signal
pulses, definite pulse energy or pulse energy distributed according to

some distribution, definite or random phase etc. Thus, the matched filter
usually quoted in the literature (see e.g. Kafka 1975, page 87, and equation
5.24 of this dissertation) is matched to a short (relative to system time
constants) input signal pulse of definite arrival time, phase and enerqy.
This filter is thus not optimal for signal pulses with random arrival-
times, random phase, and random (e.g. expential) distribution in energy.

The effective signal to noise would still be close to optimal however, so

in practice this filter would be quite adequate. Besides it would amount

to a sizeable mess if one were to change the filter for every different
hypothesis that is tested. It should also be noted that if one uses a
threshold type detection procedure, strictly speaking, the filter should be
matched to this procedure. The theory for such a filter would be quite involved

however and one would expect that the resulting improvement in the

effective signal to noise ratio would be small.
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In order to apply our results to the analysis of an experiment, some
basic noise theory is needed. We will study this in the next chapter.

Lastiy, we note that one may take a somewhat different approach to the
evidence concept and similar quantities, than what has been done here. We

refer to a book by David Bridstone Osteyee and Irving John Good, 1974.
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CHAPTER ITI

DEFINITION AND PROPERTIES OF A NORMALIZED WHITE NOISE SOURCE

We will in this section review some relevant concepts on noise.

Consider a set ( ol; ({) } of stochastic distributions in time,
defined as follows:
Let the random variable i+ ) be related to /-4 ) by
. e
dfT(ZZ/:.= #—‘7":/6*, '9../;;/1") ’
= T%
and let P Carct)) be the probability distribution
function of P . The set { ol (¢) } is then

defined by the following conditions

( N

(1) lim 3P oy (4) dli(t7) = S#-E7)
) ' s

M= =0

]

¢

&

) Plagcir) - o -

-47 -
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As N = o< it is assumed that all the members of the set are included.
Since +/(¢) is a Gaussian or normal variable, we may call {&J;(f)}
a normal set of stochastic distributions. We assume this set to be the en-
semble of all normalized white noise sources. For simplicity one may drop

the "i" and write the above conditions in a simplified way as

(1) (X(t)oL(t)) = &(t-¢7)
37

(1)
(2) o (+) normal .

The bracket indicates ensemble average. One may generalize
to a two dimensional or complex set of distributions. The corresponding

definition is

L) KT )Y = S(4-¢")
3.3

?ﬁ Odéf) ; Im Oé(f) ; nofma[ .
It follows from 3.2 (2) that

3.4 (ol (t)>=0 (In the complex case one may write <ul/¢)ol(¢t"))= O )

it is.pqssibjg that the normality 3.2(2) would follows from 3.2.(1), a
condition <=/ (t), = 0 and the central Timit theorem. We have not

attempted any proof of this however, and leave the possibility as an open
question.

-47-
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T
Consider now the time average o/, = ~7/:/¢n4 LY a/ oé[)‘)
— — ?2
and let <& = &, . Clearly &> = for all 7 and
() = L, /p«// W St = LA
-7 _7'_‘

Further it follows from the definition of a(t) that <« is a
Gaussian variable, and thus that the probability distribution of uzf is

Plr) = V5 eep-TE | ik PC2)= () > Z=0

This result implies that the ensemble is ergodic, i.e. the time average of any

of its members equals the ensemble average, or

(3.5) & =<us)> =0

Note that this does not imply that other types of summations over all

1;2—-
time are definite, e.g. the quantity Ly = _,_ /5 F el r)
will remain finite when 77— =0 and has for aH time intervals 7 the
Gaussian distribution
/
Plar) = 2ep-ja o5
Consider now the quantity (,«-/ /, ALY We have
prieg
f"!f‘ /f_/y F LA

%

(3.6) (//’#/)—/(r/z,/ "CIKGD XD ) = /,, = ¥, Lt/ﬁ’ btas

#=9% £-42,

#45
the "random walk" property / (//’ ¢/ > S = J At Again from the
definition of o (t) follows that £ has a Gaussian
distribution, i.e. if &[4/ is real
r z*

/C>6/42f4) K(A =>EE~*;;:;i> =EF —’;<?:f;; & Lk

(07 4 and if «(#/ s complex,
7 ¥
) S ) /R Lo iy = L l2E A1
| CL.jetfs, = =4 294 » /‘ar
4 - A/ -/.K';" '7 / S e n N
N & /z’,./ e / /.-'/::;'l"r':':” /)
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Where in (2. 7] up =up oz ) s B, gl
_ / A, e CE, and B =B, E.
It is clear that 7 B, /r’)/

| st constitutes a new ensemble, and that the
properties of (:V//,;’;fi/l‘i‘;jf? reflects the properties of /5((;//

e.g. //’ ;// must also be ergodic. From now we let the complex
generalization be understood and include only some specific aspects thereof
One may generalize the definition of 2, in the following way.

- e

Let //;4 #7) be a square integrable function, i.e. /f,_g,-'%?,{-,lj = My
= /

-

and let B = Jod dH-40) 4 (t)

Clearly (/;22) = /‘//.é 5 and

" S B} ﬁ_

a5 ) /7 (/3) el — /t’/) :
¢ # e Trags T e
The normalized correlation function (){/d‘r’/ a/ 7“2("/ is defined,

B01) Blbess)> | Jel” FOFvar) 4047
[3.9) - Gplugy s SECLEIES o oo
' /6/ ) /f’vf’ "(”')

The ergodicity of /ji'./f'/ implies that we may also write Z (dt) 3

a time average

::,z’ 54D J5CFvat)
(«3-/0) (/(77’) =~[/’~ /f( /7

A
g
It is now a fairly easy matter to derive the joint probability distribution
j .4/ ,)N / ‘ h 59 ’.':' _:' / > ”: 8 ""."
/(/;J/; JaF) were/r’ /f:“'l'/ and /; /%(. Z#*/) Me have
(3.11)  PlBB" ar) LB ot / B 2 /;1@.
//3‘ /% /47) /fﬁ/;‘ 92/(/5 Y770 Rl (,g//s'1>(/ Gray) ¥

-
I
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This distribution may be obtained by considering the joint distribution of the
two uncorrelated Gaussian quantities, /—'—;%//;’-{?’/ */i(#uzﬂ)) and B = - -
; re
.,(//,;(,z/‘—/;(,wry) and then  transform to the variables Ed’,‘/ R /3 CFedt)
For a different derivation see L. Kittel, 1958, Elementary Statistical mechanics,

London, John Wiley and Sons, page 139. The conditional distribution

/D(/??////?/’jﬂ/f) that given /2;(;/5/:;" one finds /‘a(/w;) at

/z;," z 4 64/;2” follows immediately from (2 //)considering that
/ 7

/9(/9’)/;7_"//;/ = P{A /5 4%) POAD .

We have,

2 Py
(312)  POEIE42) et ep - (B = GEAE)
' V2T Gtem) T LpEy (- o)

Let's now consider the fourier component ALY, of X (*).

We have

* "3

s =l Jak tt) o

- gk

-

w b

We note that /%) has almost the same properties as ./ (#)

(in the complex case exactly the same). We have, < iw)X/ 7)) =

sos e . Bl W
/ ,’ . o “
= L Sabfut lutt) Pty c =
ozﬁ-_” 7/ </ F) el ) rlosd
7o - .
i ¢ i) =ied J % ’
= ol o/ s = U - S v
i JelR &0 )

In the same way we can find that if .<(7/) is real (fw) &iw?)) = lwrw)
(which also follows directly from above since £ 7¢) = u*f./”""’// and f

Z(F) is complex (w/wjwiw)p = . Clearly ((oliwy ) is

always zero. Thus we have,



B

[ stew) 2wy ) = St

(3.13 )1 Ko (w) = o (-)
| , LF () L neal.

L Pe X(w), It Liw)  syiopmal

(Xlw) xlw?) ) = S(ew-e’)
(3.13 b)

c d(“) ot [f/_r"t—/ué/a
C Pe Liw), Tne Llw) orneal ! / '

wr 4y

/4__{ //91’, C}f,//r// e vt a:.// el e ’/';A.; /g /W) "ﬁ"éf)’u([w’) . [Ve /t;oc"é
/ L s dw/z
‘,' \ '/L"ﬁ—_—-——- 'vb-—v
(‘3/»/) ///ju:/w/// = fw or ////5:/> = Jdew

Note the similarity between this "Nygvist" property and the "random

walk" property /g, = [ar of white noise. In fact, regarding transfor-
mations of the kind above (ie. fourier transformation, or any expansion in tevms

of a complete set of orthonormal functions) as just a change of basis in
"function space" we may say that white noise components (or coordinates) from

a statistical point of view "looks" the same in the ZK}JZ basis as in the
fib:f basis, and would in fact "look" the same in any orthonormal basis.
One might say that white noise is absolutely nonpreferential, its components will

be "white" in any orthonormal basis.

F {: / J E /w/

ES
Yy 2 - _________/______ - ._[é.u.l._./fg.{': ‘;L, ‘_’; !_’ :(,:”pf// bt gl2)
PClowd “ls i 525 “ L finy T o e AL,
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* . \
Note  that if '-‘Z’C/U is real g‘a/“’/ - Ew (~w) .

E N . n / - ’
Again Tet :;,/)‘/ be filtered by the time invariant filter 7‘1/‘/)
// /rl 4 . .

ACH) = / AR X)) or in fourier components,

g(wjr-/.z/’/‘ //W/' x/w/' . Since /j(}‘/ has a

"non flat" or non white spectrum it is usually called coulored stationary Gaussian

SO

noise, or simply coulored noise. (Non stationary noise can be obtained by filtering

with a filter %(7‘, 47 ) A1l Gaussian coulored noise may be.considered

to originate from white noise filtered in the above manner. The spectral

density of /Z; (F) at the frequency v is defined as the spectral

contribution to /; "7;’%;‘) per unit frequency at the frequency ..

(“3 /5) ‘);f/wj Ax) /f;) ,7,7‘ 274 f(“”//mr //J//(o(.(x)) K{w") ) = //‘/,u)/

Aar
A > O

It is easily seen that one can write the correlation function [

J.8)

in terms of the spectral density as

/:# A het) HE)
(3.16) Cpcat)= -

~ /d/ Y e

yo s #om e - S, ‘“)')"rt()‘{;‘/
/J-// //;la)_é e’ 7///“)/ 7/ ¢ w) Z i Jl(w
/:;IL/':’(,U/;;LV" //.,U/ /’:U’/ z L)

/M //z_/w,’/ P Lw AP ﬁw/‘ 7)1‘/“’/ p woyia
T Js) 2

)




According to the Nyqvist theorem, a resitor in a circuit is an example
of a white noise source. (0Of course, this is only approximately true, since
any real noise source will always have a finite correlation time. For a
resistor it is however small enough to disregard in most practical
circumstances.) One may thus replace a real resistor # with a "passive"

resistor plus a voltage source (see figure 7.7 ) Velt) = VaTR & (F)

or expressed in (normalized) fourier components Ve (w) = JkTR i) |
Thus the spectral density of the source /% (#/ is é"‘?g for all +v .

( £ ds Beltzmann's constant and 7 the temperature).

Fre. 3.1

R

@ Velt) = VizRp KZ(F)




FILTERS AND MATCHED FILTERING TECHNIQUES

We will in this section review some basic theory for data filtering,
mainly for the purpose of comparison with the "evidence" approach.
For a thorough introduction to the theory of filters and matched filtering
techniques the reader is referred to Helstroms book "Statistical Theory

of Signal Detection.”

A linear filter operating on a variable AV(if) can in

general be defined by

+ oo

/?(z‘) =/d’f///§¥/)*/5:)d{"where )‘/(&‘:5/) may be called

a filterfunction and X /4) is the filtered variable.

We can write this in terms of fourier components |

X () =/dw’//cu, w’) k(')

where
; sk
p At S Lrs s ~twd et
s/ = et —ne =~ _f-
(e, e0”) var V,Z?/”’(/‘l)e c

) is usually called the transfer function),
(/(w,w)

7 IS tenz
and 4 /o) %.'z'ﬁ/d‘ () ,

If the filter is time invariant, we have

Ftd) = 2ot=¢7) , and

cw T

%@owy gﬁwﬂf)/ﬂyy’/(7jc

~55~

5(w—WOVZ§¥7@J

£
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S0 %, (LJ) % \//-—2_";

We will now see how one can choose the filter to maximize the signal
to noise ratio. A filter that is designed in this way is usually called
a matched filter, i.e. it is matched to a signal with certain known properties.
We shall here only consider signals with definite properties, but the
theory may be extended to include signals whose parameters are stochastic
with a certain probability distribution (See Helstrom).
We shall however in the following section use the "evidence approach”
to obtain some optimal filters, and will then consider an example of
a stochastic signal. See also appendix where signal pulses of random phase,

arrival time and exponentially distributed energy are considered .

SIGNALS IN WHITE NOISE

Consider now a variable «/7Z/) which is a sum of a signal i//?)

and white noise ,, o (%)

(3.17) a6 (4) = X(74) +ha (F)
We filter this signal
m—— i /
acd) =///{-z‘)/!/t’)" no ) dt, and form

- i a4 ’Z
the expectation value of o€ ( z‘) /’
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S W
aclt)”s =//c//¢°//-z'/‘wf)/ 3 éﬁ«z’ L=t v e’
~ o0 S -~ oo

A

-+ Q0 + 0o Q
\
'/(/5’//5-57<ba6‘")> * <//0’///{~f) nq/z’)z /‘ =

/
2//0’5 L7 z")(//’)) * p% // (2-2) ¢’

The s1gna1 to noise ratio in this exprpss1on 15

- [/d&’f(c’-z")//{/j
n"?/#*’/x-z’/ #’

" Cn ()

and we can noymalize the filter function

//2(51”) o= /'} So thal
P

i pilag p g @
" Gned) = n"z//dg ///-x')x/a’)/ .
-cr

Let's now specify the typical pulse so that it has a form described by
a normalized function X /#/ /‘ ,k/{) & Ae-~7 +7¢>0

J

where / is the duration of the pulse. A pulse arriving at time £ = fh
b )

can then be described by ,%% (t) = C:b X ¥4 -(’t; 4:724where Cfb 18

the amplitude of the pulse and may vary in any fashion from pulse to pulse.

. #
The signal to noise ratio of the /7‘A pulse is

2 + 00 o
" " C / G I 7 \
SnlilIn) —,;’-’-z//dz’//z’-// X (¢ - (2 7/)/
— o0

_ It is now obvious that the ootima1 choice of the filter function
is Lt =x -2+
where ./ is a time constant which time translates the output and can

in the analysis be chosen freely. As long as all the pulses are translated in the

- .
same way it doen't matter. If we let J/ be zero, we will have the

2~

LR e e e B e e T P R e s S R g
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maximum ¥j34,()f/”/‘}4:1{;57’6Q”“ at time z' é; r 7/ » just when
the whole signal has arrived.
We have
C . =7 2
Snliin) = =5 since J )X (8, T/ A =/
lalZ2 4 /]2 %
— o0
or

+ 0o
- 7 2 /
(3.18) J»z(%/%/m”; /) 'g/c// £ 2"')
— <2

If terms of fourier components we have

%/(212) # /éjfciz)if ; ‘//Cgﬁaz //7/75iAU) /= /7.

+ o0 . Q?
=2 g oy X (¢-CE,27)), ~>
fn(//’/ = /) <, ///}/‘—27)7 & 4 (‘U)/ .

~o2

We can also write

-+ 00
X </ L o
R R N AT
e~

This is thus the signal to noise ratio if we know in advance the

arrival time and the form of the signal.

5



SIGNALS IN COLORED NOISE

If we instead of white noise have colored noise, we have

(3.20) q(Z) = X(Z)+ V(%)

where /V?Q{)

stationary way .

can be thought of as being white noise filtered in some

- o0
/4 /
N(Z) :///‘/2 FE-#4)(4) £ . Tt is in this case more convenient
—-—002 ¥ )
to work in c0”  space. Here we can write (3.20) as

(3.21)  Rcw) = Klw) FVRT hiew)x (w)

e w=]
We can now transform </w) with the filter // (w)) )

Glto) Klw)

— + o/ tv) SO we have an expression which is a sum
V2 Wh(fu) /,z 7 re)
of a signal and white noise.

We cantrext apply the rules for optimal filterina
of a signal plus white noise.

Thus we have for an input < (ew) = ¥ cew) * V R7 #iw) X (w)

that the optimal transfer function is:

> . ~w
4 = a ) X" Cew)
3.22) Loy = d VQO) So A (w) = 4 : =
(‘ I 'QJJ 0297/,)-2(”)/ ‘/""—“‘277,. /hz(w)/

~* _

— \ 2N X i) ) ,\/ () — —/,>+/ e
(3.23) G cew) = ) x () + () = a (w+a,lw)
1/02/"7.//7’((60)/ nlw)

@//Z@ A_(’*ZC&)X (w) ‘Wf/DZ
~ o ( -// = //
=/5 Cég)l 2
In2cco)] 27T

L -

Sw X)) =

—0
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which we may write

. oo ///(/,72/;{)/ ,:j/‘cu(5~('fb,‘ T))j)aZ
i[/"”“i/’/ / ©

: /nce)!
— oo 4/76'/
.7&.
| . e /12/50)/
i 128 — ,; /-'/
(3.24) S (K1Y= 2 [ 9% ]

We note here that when the data has been filtered with a matched filter
the noise correlation function and the siagnal have the same form (and

spectrum) i.e.
# 00

L) apE
- (A£)=-</Wf) N (E+a4) ) = few T C

- o0

and ,
-+ o ~ S
 de Xwxcw) L S [/ "
(‘ﬁ)i//QT In® e/ - ﬂ?;w /%zﬂd/
~o0
= -



(3.257)

(We remi

Fca () da, a,

—

20

6]~

e T i B
[ s (0D X, () #(a,(8)- X,

D)

< N>

nd that & is a complex quantity, a = Q/ * 7 7 ),

We can write this in radial coordinates

2

//z/ = Q Ccos 64 ) = r, cos e
..‘Z -, < 8 Xy = % Sin 6 =
< < - 4
D - - / o t bl Ll ST ":’L*ﬁr})
- & ) an d6 = = exp = o
2, %) % % TN > Z (N
2 < 2 2
SN =< " >=<N"+HN">
N / <
¥ <9 (the phase of the sianal) is unknown, we sum over §a and qet
(3.26)/Cex) /0/(9 p(r ‘%)2

where /
[o

is the }cro 4

ol /—‘?yr T
cxpL
</V) ( </V)

order Bessel function.

= =

' 7 -l
If we define ff:E 2L anre <Ny =

a ) X

we have
Al \5 — l/
.21, PlEIIE, =
7h
An asymptotic form
expand around zf:s =

(3.28)

/4 ~ '\ v 7~ -
P/éajc/é;:/‘//fﬂ’cs/ G

-]

/S £, tE, /
on (- E252) 7, (2

for this is usefu],’ we (et £$ b N

"2y - (Ea

r ar,

£)”

4,

74

SE
a



EVIDENCE AND FILTER

We will now as examples consider the particular form of the evidence increase
for two cases, (1) a signal of known phase form and magnitude (the same case

as was considered in "signals in coulored noise") (2) a stochastic signal.

It is assumed that the only possible hypotheses are; either a signal

(t), or, no signal at all, We have,

If X is true Q(WJ=X(WJ+mh/w)Q(@)
If X is not true alew) = }/3} Ned) X Cw) |

If phase as well as form and magnitude is included in our hypothesis

we should use the distribution (3.25) For the quantity
wraw

a,,, (@)=, /cm alw) .

wrAL
- . / )
(Similarly with /’(‘/Aw(w) and /’)Aw/'-’u) T Few ’7(60)06/4@//’
we have 2
/ /a (@) —/V (Co) /.2 :
A e ()= 5 crp — 4L and
S2h deo Z”<a04éu(iu)>o?ﬁ“ <:/ (cu)/;>a;#
/ [y, (@))%
Pla (w)) = eep - :
sl 2, K] -y 2
w Tn,,, (@)>27 </n; /cu)/> 27
' 2 2 /
Now < /hAw (w) /) //7 (ew) (compare )
and QA@ (eo) > d (C()) etc.. Thus we can write the

Aw =
increase in evidence as (with k = 2)

Q (é‘«} /e/\/ (é("//
exp — /Aw —

&0 9277‘//7 (.4///
A
4 &y =
A ev Cx a) = D?,,,L:;o e, /’J—AAQ__(’/O )/,
g = Aw cEp T 2////7 “Ceonf
dw
A o T 0

62-
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»# /, » \ Ve _,2 "
@dw(“’“)zaw (Cn) + QAw(QJ‘)XAw( W)= [ Xy, /‘”“)/Acu
27 [h7tey) ]

A EL/(QZLZ) = & TZ;

= — o0
w, = y e Adew
dew =0

+ o0

= og/c/w Qe 7o) *a ) viw) - /xicew)]
532*/49'2(20//’

e ]

The implicit filter in this expression is similar to 3.2 but differs

in that we are now a]so”fi1terinq”with respect to the amplitude. The signal

to noise ratio is

= 2 2
) Db (w) =X () 2K (W) (W)X w)>
< = = : Lot Rid s wela
A= <4 evba)>,: o%@ Lo
-

Co

=
LT hie)
o

(2) Stochastic Signals

We will now investigg&g the case of random signals i.e. , the signal is
P 7 2
defined by oS :/0/5 5(2{‘3/)@3 <3
-0
The data is thus

-+ Qo -+ oo
alt) s o’ stV &) St n )X, %)
e o

or
(3.29) ~ oo
{“i‘aﬁ(aa = Scew) O cw) Fhiew) & (ev)
V2 5 .
Since a(¥) 1is a sum of gaussian variables, it must itself be a gaussian

yariable, so its square must have an exnonential distribution i.e. 1if
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Ja®f)) = Eb) = E;08) # £, %) and

77

A -+ oo
CE)> = [ ST ; CE &= [t n* (L)

(Similarly for az(w) etc.) we have

] / -
7o (EC) CE S iEy T KENFLES

PlE) = L exp- £
n LE 5> % Ey B
It is easy to form the evidence in favor of "s" for a single data

point a({o), we have

| P (ER)) )< £, E
Ael/(&&(t/‘o)/ £)= o Py B 977 _ E/9><E> <Ei>>/\,

B (ECL))  <E><E+E)D - ta(/+ <

This is not of much help however, because we are interested in the
evidence from a strech of data say from £<%, €o £=¢,+7. We cannot simply add up
the evidence from each point since close points are correlated and thus

contain redundant information. ( Jee Jret g€ 36 )

/
Consider now —= Qrw) = ScCew (w) * »Hiw) X /W) . We have
Var / S »

/ /
o \’\Q(éu)ﬁ(w,)> = S(w‘w')(/_fa?(w)*nasz)j) thus there is no

“interdependent information among the fourier components a(w).
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As before we let ~§A {ewd = s /(;(YO)CP () dew » similarly for

Qw
/741&0 (w) and QAO () » SO0 that <€1’i (W) = é /Ssz)/etc.
We then have: :

1 av, (w)/ fdew

P (lat (/)= £ed cxp = /Qaw ‘2/ and
2.30) 4 nrs o aw /h %) + 520wy 27 In e+ s 2wy ]2
2 ' dw /a .gw (@) /) A
k/?,//ddwfév)/)" eep -~ L4 ;

Il ar LT Inacap) 2n

We may thus write the total increase in evidence for's’as (Wefc, /&Juc)dﬁ”4>:)

.n({‘,—

Jak,, (W) [s*cw)/ s *w)/ |
2 I, -
4 evsa) = 02 Z /n'z(w)//n"z/vu)ff a) AN s e, £ /n’z(w)/)
Aw—;o Aw >0

These terms may both be infinite, but nevertheless the expression makes

sense in the following way.

We can write

+ o0
/= [t SCarmay) = [ [oo fp etp (-
Aw =

thus
o < //<°? )/ e /e %uy/
dev(sa)=Z [ [aZew) /5 (e ,2/‘/5 c/w°27],[,,//+
Sa -‘0/ “ Ineirl ) n ) + <y ] 27 g & InZce)/

We can write this as

- . o) s ce) ‘w?
i ;< —.-%é Yo ST’ cz/u)f/w)e alw)Scew) e [
i \g&) - V_— V2 [ 127 h (cu)[/h’z(w)* ("?/wj//%] }/E’—//- (a))[/n"/w)vtg (,U)/Q//
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r0° oo
(3.3'!) A e s x)—_Z/a, /L /lz)/ "2/0/&//“)027; & (/11 /{7’?(23)/)/

where Z?-/f) =/C/5/7//21‘ZI/)Q(/¢ZQ
~o0

+oo <) e{'w({-z")
(‘(v(/
. Lt -F) = 92;7, /02/7.,;(&,)[/,74/@)*5%@)/2] or
— e
el aw) Ste)

Vo Ptw)fh%w) + S2Ca)) 7] ‘

Thus we have that the optimal filter for a(w) is(f)

¥
3-32) \Y(V())
( 7{(40) /7(&)/[/7 c{(“‘%(/”)/)/,,%/

(3.31) tells us that the new evidence from the strech of data

af?) Zo Jz@’+d/} is

fdz{ -+ oo

2 §

=2 /2) 224 W)

devigaum) =L [ ot /a~ct) - Yo [ dw o (/4 _Z?“_.g_/
L ? . /n"lw

a

We may write this:

Zy fdf
(3.33) 4 v f (,(//.J") = VJ/ (/Z‘/ /7/)/ oZ

5’

7‘ < /)
o 8
[% / <h “/t))

()

page 386.

This formula corresponds to the formula for m(t,s) given by Helstrom on
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where is a time constant:

e

v

Few )[ (e w)
L T 4 <€)y ) // / ehas

7 ~4//) — e 2 e n )]
/5% /) lsRew)) |
//w /ﬁy// //)Q/ )// //5“ [/7/ //“‘(2;57

taking the expectation value of A ey we get the sianal to noise:

/o | . 178 ‘(' / /3
(334) ,/(w_‘ S '/-"?:'/5;/,:‘;/'.:?V_/\'J; a A;/-) Z / /‘ J:,‘_',.:'V)/ / deo //+ ‘*1“‘)/)}02”::

at’ s 2T 1n®(w)] 7 2 /nca)l

Jdg/(v L)) ”w))- L &n //+ /J)> )/ i

<n /)>
The derivation of (3.32)to (2.3%) may seem a bit careless (with
infinities, etc.) but a more careful derivation using a fourier series
over a finite interval, then going to the limit of an infinite interval would

give the same result.

Since in practice the output is multiplied with a gain factor one will have
to normalize the factor az(t) in 3.33. One way to do this is to
measure the average output noise power (when no signal is present) nZ

exp’
2,.2

and then multiply a2(t) with the factor n /nexp’ where n2 is the

theoretical average noise power;



BURST OF STOCHASTIC SIGNALS

The case of bursts of random signals lasting for a finite time interval 7
could in principle be treated in a similar manner, but the resulting

calculations would probably be formidable. One might quess that if T »>) «

~
is the average duration of the bursts that

¢
éf;;(?é) - ///1545' Cﬁ‘ﬂ?/ﬁ{) is approximately the correct outnut
-7

variable to use. Based on the probability distribution of ET(t), we may

then form the increase in evidence from ET(t).

We note here that the formulas for probability distributions of such

quadratic integrals are quite complicated (See Helstrom page 372). MWe

avoid these complications here and just note that if T ,i{,fi » the

distribution of E7_ gets close to Gaussian i.e. /2 /<

2 (4

The results of this chapter are mainly important to desian of sensors

and electronics and as a basis for data analysis. MWe will come back to the

first topic later when we analyze some specific detector designs and the

second in the data analysis chapter.
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where /.
)

and

EVIDENCE AND GRAVITATIONAL RADIATION DETECTORS

Some conventions are useful in the discussion of detectors. We
shall refer to a "bare" detector as just the antenna (e.g. Webers

aluminum cylinder) without sensors and amplifiers. In referring to the

sensitivity etc. of a "bare" detector, we mean the sensitivity such a detector
would have if equipped with perfect (noiseless) sensors and amplifiers.
The sensors and amplifiers alone shall be described as the "dress".

A dressed detector can conveniently be described in terms of an

equivalent circuit (a method adopted by Weber since his first

experiments).

This may be accomplished by constructing a circuit which has the same

coupled differential equations as the "dressed detector. We give the

typical Weber circuit as an example.

Figure 5.3
V3els .
3
E S—————— s ettt S, 1__.._.6’ __/-\’vl,\’ ly(,
| |
== & 1
-2 | !
= 4, ! i o )
- | €2 S . . :
! o] % R, @ L il He)—
f: T‘)'y ! | | )
| L OQue | |
) =it |
) A i S N SN T
L = _/L< i i —~ N S N — —v— e A VW-—“(—W”——(J
DETECTO SENSOR FREAMFPLIFIER ) AMFPLIFIER FreR
corresponds to the signal, (see page 126) ),  /,, %5, &
. . . 2 4TQ-JJ.'TQ-/{fo‘W%
¢ are white noise sources. /, ~ = &/, X, ) 7y = &9 A » = A 30,
5 i ol ¢l )
P
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For such circuits we can in general write the output voltage as

Gt ()= () + 177 () = Ftw) [ G0 (vt + 1y leg) + 4, Zyt) e oeq) ()]

where i is a normalized white noise source, and qi&u) may be

considered as propagators, propagating the signal or the noise from the

source to the output.

Consider now a set of hypotheses ‘fQQ%J;, and let &,  be the

-

"noise only" hypothesis. Further let V(t) = Vout(t) be the data from

an experimental run. One may then write the evidence increase in favor

of Gi relative to GO as follows. s B

Vi (@) = 5 [t v7)

w -4y,

We define

Further let ?E?(Qiﬁ&,/&ﬂwz) be the probability distribution function for
Yoo (20 ) under the hypothesis G;. We have;
e //kf;ffd))/ e
,2// /E/WD / CECw))
where f?w):/%Auy/,ﬁ%%wvy,_“,,/qfﬁqv

p/l/,u///))

Now let the signal /7., w) associated with G; ,  be defined

by some probability distribution 232</@;4u,(ad)/) . We have,

S o Maale) Wl
(3'35) /?//é.d/w/)“ C'// é‘du)(w) /2(4‘4“)(741)927—(2:/ )) //J (E/Z/U/)

The evidence increase is (ﬂic,i Wy = p/-dau)

7 ~ . T:_ ../_(- /in /) /J) WV)')
(3.368)  Aes (GillGer &) )= lim 2 40 4 I o)

Juar» 0
- D

/ P / J / u U})
p £ | / PECENEY AT s—— / ,/ 4y :,
= /_//u) A nwa ) , wharere Frw)= /1w S ii“‘“ )
P Lot / ~
- ol P/ WA / {)\/ ,"' ':/A'/ul / Z/J)/
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The distribution (3.35) is, except in special cases (such as 3.30) not

easy to calculate. In the more complex cases investigated in the appendix

approximative methods have been used to evaluate (3.35).

CONCLUS ION
In chapter two a theory for data analysis based on Bayesian techniques
was introduced, and in this chapter we studied Gaussian noise theory which

allows the application of the theory for data analysis to gravitational

radiation detection experiments. It was seen that the theory integrates all

the steps in the data processing, providing the linear filter and other
data integrating functions.

We will in the appendices investigate the details of gravitational

radiation detectors and study the specifics of the theory for data processing
for such systems.

An optimal method for data recording is also proposed in appendix D,

and the results of a strech of data, recorded and analyzed according to

the methods suggested in this dissertation is also presented.

We give below a summary of the results of the appendices related to
chapter two and three.

In appendix B, the thermal fluctuations of the detector are studied,
and an expression for the "signal to noise" of a bare detector, in terms

of the spectral power of the gravitational radiation is derived.

The"dressed" detector is investigated in appendix C. Preamplifier

properties are considered, and a preamplifier temperature is defined in

terms of its noise sources. Detector and preamplifier matching is discussed
briefly. A detector with non-resonant sensor is studied and an expression
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for the signal to noise in terms of the spectral power of the gravitational
radiation is given. The form of this expression allows the definition

of a spectral signal to noise ratio, which when integrated gives the total
signal to noise ratio. It is seen that the spectral signa] to noise ratig

splits up into two factors, of which one is the spectra] signal to noise

of the "bare" detector and the other a spectral quality factor of the "dress "

This quality factor is related to a "kT" excitation" (a sudden excitation
which, if initially the detector has zero energy, gives it the energy kT)
which is often used in discussing the quality of the dress. The optimal
filter for such excitations is derived and it is found that this filter is
invertible (i.e. it does not Tead to a loss of information) and allows further
filtering to match any type of signal. Next a detector with a resonant
type of sensor is considered, and expressions for sensitivity and optimal
filter are given. As expected it is seen that this filter is more complicated
than the optimal filter for a non resonant pick-up system. Thus unless the
resonant sensor has other advantages (such as providing a good match to
the preamplifier) it should be avoided.

In appendix D the detailed theory for data processing for Weber type
detectors, under a realistic set of signal hypotheses is developed. The
type of signals considered are random pulses, with a certain average frequency
of occurrence, and with an exponential distribution in energy. In the two
detector cases, two types of superposed signals are considered.

One type consists of pulses that are common to both detectors, i.e. these
pulses will cause a correlation between the two detector-outputs. The

other type of pulses are "local excitations" and will cause no correlation

at all between the detector outputs.
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The evidence for the best hypothesis allowing "common pulses" relative
to the best hypothesis not allowing "common pulses" is computed.

Finally, some preliminary results in this type of analysis of real data,

is presented.
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CHAPTER IV

COMPUTER STMULATION OF A WEBER TYPE DETECTOR SYSTEM.

THEORY ,

We will in this chapter consider a computer simulation of a pair of
gravitational wave detectors. This study stands apart from other topics
considered in the dissertation, and may be considered as a separate part.
The reason of this study is the difficulty in understanding some of Webers
experimental results. In analyzing his data with the well-known threshold-
crossing-time delay technique, he gets positive results when the data
analysis is based on the quantity P2 (See page 79 ) but nothing or almost
nothing when the analysis is based on x2 + y2 (See page 79 ). Since the
object is to see if these results can be repeated with this simulation,
we will use the usual threshold-crossing time delay technique in analyzing
the simulated data.

The study could have been done analytically, but the calculations would
be forbidding, and would have to be done separately for each type of signal
considered, while once the computer model works, one can just put in any
kind of signal and wait for the answer. The details of the results and
the computer program is given in appendix E. We will here develop the
generating formula for the simulated output. From appendix <&  we have

two components of the detector output that can be written
é

: _ (-t 2 ) ), ], , (2} 5
(%/) Vi(t) = |dt e 5 j//\{*.[f)-fﬂ, c{;({))+ﬁlcd; (%)
- [=/,2
where (%) is the detector front end signal and )1,szmg/f) .
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-(f"f')/g—
the front end white noise (which when filtered by &

[

becomes narrowbanded) and 7, <«¢; “(t7) is the sensor and pre-

amplifier white noise. The data 47 (%) is integrally sampled to a
new set of data Z’, %wj where /£, - lpoy =4t
?v
At VErE) ,/m//dz‘ ep- g (5i0t7) n 0 CH) ¢ Qo/"()/]‘
"o-/ Yo

One may write this

/‘/l‘“/J = ’///// 7 (5t modf V) o)

f 4t

Y,
/a/f pep - b=t //(//](I/f'/ &) -t & uﬂ]j
£-a+

Nz=a £, _,

which one may write

/
(4.2) Il‘l/ = //L’V * VZZ. "_:l) wnere

' zy
s g = AT : ¢) o S
tliv = M/o’/j/ﬁ” ¢4, s *f// Sev 3 5 /ﬂ,u ) anel /‘;:l}:%/f oy /{)'

further Zo-t
o
f.»=/6/f %/.)-——-—————Z—Z/ ’//' S tt) -, and
[ t-gt
tv
e //z ,,;M_.Lm__l//f L E)

tv— t-d¢
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a¢ is chosen such that  J¢ <& T . In this case one may

approximate ey - /ZL’ 45155 f in the integral.

The auto correlatwn function of )Lj:” and /E(L) alta
¢ OV
2/3 (’1‘3) /t/t:x)
) '
(/B;( /3()> J/é dttg, /M.:;)_-__r/ »
= Ty and

cal t2) 5T
(/B:', //L‘,?“/»w ) = 4t f/,uz

I¥f 47 is chosen small enough /L’_:') will have a correlation

time that is much smaller than the correlation time T of the finally filtered

output (i.e. ;/fb, will be filtered by an optimal filter). The exact

correlation time of /B - will then become irrelevant and can be
&

chosen at will as long as it remains much smaller than T. (In the same way
the actual correlation time of the white noise from a resistor is irrelevant

in most applications). To preserve normalization however one must choose the

new /L/;)/ such that (/wﬁ" E > is conserved. We wjﬂ thus

replace the old /::_;// with ,yz)% /7(/ » — /;3;_:/

is normal and '//“, J/;::J/ - cf/,u/ . We also replace /'-.Ei;”

with /g4 )% /?.‘_;’1—) / where /?u/” is normal and //2"" f_;iﬂ),/

We can now write the generating equation

(2)

(4.3) Vio =ilyy = Mo (LE)* B,
3
[[“V: &(/,g_ _.;4____ /(:‘-V’/ o+ ‘_7/‘([‘/ 'rfz V‘;I (/df./ f?(/j
g

/‘,;) ]

where s and

Oﬁ(,# -
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ﬁi(l) are noraml uncorrelated random numbers with the average 1.
¢
o
Lo represents the "bare" detector output, and i, édf)l-/Z:z) the
wideband noise that is added to the bare output by sensors and electronics.

By comparing (5.1) and(5.2) one can see that

/7 N
?Z ...._.7-. . "/’Q’ 1 P .2 e TR B Gl = —/—-
O e //L_ I, VR By =G f=73

I

where T is the resolution time constant for the detector. Renormalizing

the above equation we have

s : 27 pti)
R S o S

bip ™ g~ ‘{/}f*‘:,"“‘ ity T O 80 “/-:JL . (Where < is a constant).

We have

' L%+ Z../l 2‘, = ‘4«2,) which corresponds to the thermal

;’J:O
energy of the detector. Thus a signal

~ £z ;/_Z‘ -~ P = .
(4'5) s "‘//V‘/ AZZ‘ \Jén(k) //,/) VSL/ /df ;Av\d/ J/'A/

arbitrary, is a "kT" excitation (See page ).

The theory for the generation of the detector output is thus concluded.
Necessary input parameters are, detector damping time, "dressed" detector
resolution time, and signal parameters.

We give below an outline of the computer program. Pairs (i=1,2)
of random numbers ;f/g§:J//f are generated by the computer for each detector
(j=1,2). Unfortunately, the random number generator used can only produce
random numbers with constant density in a given interval. A transformation

W, /
is utilized to produce normal random numbers, i/ (Cr”,’ ,(1'/)/

where i now represents the two phases. These numbers together with an
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eventual signal are fed into equation ( 4. 4 )* to produce the output

//fv . This output is filtered with an exponential filter
zep = Lot/ From this filtered variable 7, the
7

quantities;

_— 2 — st a3l
0) 7 /) ty)
-
/Vu w Kv-/ zu-//

and

/ - -y =, ¢ | /
(g2 )P = [ 7 ) (28 - )"

are constructed. A time delay histogram of the "threshold" cross correlation

function as a function of the delay in one channel is then constructed for

: 2.
a number of different thresholds for both P2 and x~ + y2.

*This equation can in fact be reduced further so that only one pair of random
numbers is needed for every step. This was done here to save computer time.



RESULTS AND CONCLUSION

The results of the investigation shows that for most cases the 22 ‘- y2
histogram is more sensitive to simultaneous signals in the two detectors,
than in the P2 histogram. Two cases are of special interest however. If
the signal is a short large pulse (Targer or equal to a "kT" excitation).
This result is not so surprising since phase information is less important
for a Tlarge pulse (See appendix ). Further, if there is a frequency
offset (usually caused by a slow drift in detector frequency due to small
changes in temperature) between the detector and the reference oscillator,

the x2 + y2

is strongly in a negative way (if the offset is not corrected
for in the data analysis) especially for small signals or stochastic bursts
of small signals, while the P2 method remains practically unchanged.

The types of signals investigated are
(1) short, medium and long pulses on and off frequency (by "on frequency" we
mean that the signal has a central frequency equal to resonance frequency
of the detector)
(2) fast-slow frequency swept signals
(3) short-long bursts of stochastic signals
(4) all of the above with frequency offset in one channel.

We must conclude that of all the possibilities tried only frequency offset

y y 2
could account for making ”P2" superior to x2 +y .
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APPENDIX A

SIGNAL TO NOISE RATIO OF

TWO DIMENSIONAL SIGNAL IN GAUSSIAN BACKGROUND

Consider a case where the data is two-dimensional
(A1) d=s+n j &g +/({%/; 5287085 5 nan ten,
and the noise is gaussian i.e.

<hn™> =Z<nds = 2<nts  any

vy
3 /D / ~ - / <y — ‘—-—————-——n L4 L’///;‘ (/ s .
(A-2) r) O/h/ ‘/”z C T s ek <nAT> -

If s s completely known, we can multiply(#./) by s*

=,

(/5)\C = \=§‘<* # /’”)\5* since we now know that the signal part
S P

is real, we can write
g D : . iation
E = e o™ = Ss* + A ns*™® . The R.M.S. dev

of the noise term (which is now one ) gaussian) /5

\ 7 / 2 v )//./2
P 2 -~ o5 <
/S,-? <>+ \%,“'</7,22>) = /“2 ST AnT) T, Se

() 222 ¢ 52 o 24
- ('J_,_;;——r—_‘ e ) S ey —
“ I .r/. <nn=y <h/:3> <,72-”2> =§

It is easily verified that this agrees with the definition (25)

If the phase of 5 s random , we eliminate the phase by squaring )

e s
‘ —~ v
— . VN J= e Mo, A& =
SE>=55%+<nn*> » £ =<nn* E_=ss5*,
e > > .| N A ) ~—-/*}) ) D
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=0

The signal + noise distributions in (/4.3 are no Tonger gaussian so
we use (2.15) to find S

We have (See page /] )

7 Ay ) - VE. E
A B 4 & = )
pa <= J__ o x ———é

(A1) Snl&)= ;?;//;VQ: A Zé‘::%;.Ji; (<;Z ﬂéégg;%él;)
Vi &
Cdnfenn = £ 1 (25F5)).

We evaluate this in the 1imit of small and large siqgnal energies Es'

For small values of k’;
s /e /
//7_/ e} =2 gXx = g;;--i./

g

7 . For large values of }fj

Lo T cr) = ¥ ~ 5 o (2Tu) F (9X)”

0

Thus for small values of E}

- £ & /5§- o Vorsy
P = / E'*Eo e ¢ e b -
(A.5) SnlE)= 2 /dE = cup — — cxp F = = )
,f;”c 3 // ég;ﬁ ot ZE}A //> C%ﬂé'z (/ 7%,z Ly
2L 2 5
3 z i £ ( Lo <% £E_. )
7h [“"7’,'7 </
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For large values of E;

— =7
-~ g L] E+£E QVEE /. ~ JEE %
J%(E.:):cg E = exp ~ 2 ek =Lo6t /-’/// = ) -
SRR, P o7 © 5, S

— — — ot

/@ /.
Y e (VE - //fﬁ _ 5)9
= 92/2:—4-5- 2 b — VZ)( 5 (=
5 7%
. 2 7 = ~ 7 "
- //O/E E,K/D ‘/@;Vgl [’:—/'2-/ /z/;‘ﬁ‘c;/l/,) /¢ZZ /(<=£‘
;o 2y 75, ) 7z
= ~
e Farw il (r-ke)* ¥ix (% -k //"?)ff)
= o
;< <X 2> (T<x,25 )7
oZ
5y 2 Yo vt )A (EAL)E
@7m0ﬂ/ﬁk& j’y) dnmnde-ﬁ)C(f— €)~ 7 -
- <
. v (=)
_:;ulﬁf)’= ‘—£23%7i7~ exp — (z/‘1§L)2’ &2//k413 -/Q?‘*/Ckﬁ{k)) v A '

If the integral is extended to -infinity
<
S S TG TS

>
<’kr/; z

or in terms of energy

] T /73 ez ) . <Es TG S
(4. 8) S (E)= 2 =5 7, / 7 E Py s T T
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We can conclude that for small values of E:g the Toss of phase

information essentially degrades the signal to noise ratio, while for
large values of é; » the Toss hardly matters. Clearly, Sau is always
an increasing function of 5:5

S

so we may for convenience use
\{ % JE\S
R SRl - '
7%




APPENDIX B
THE "BARE" DETECTOR

THERMAL FLUCTUATIONS OF THE CYLINDER AMPLITUDE

Consider again equation (/./4) with only a white noise source on the

right hand side:

® 7 7.[ \ .
(B1) y+ yy= /v,fzév’%"gt (4) , where a can be determined from

v

. /.

/ﬂ/’ﬁ:?,/*’/\
energy considerations. For simplicity we may consider < LT/
as a normalized white complex noise source, we have:

/

- , - s / ), = ) /
) e daht o, 220 s = e/wpﬂ Z)<Q/5)Q’/f/)= c/?'“ll)

<l T gt ) e SLAE 7«

¢/

D

However, with any time-averaging over i a

Co

Thus the condition for complex white noise is approximately satisfied.

We may then write (B./)
(22) vty = 2 @) 2 (F) complek .

(This is in fact a two dimensional "Langevin equation", see e.q. Reif,

Statistical and thermal physics, page, 564).
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a is determined by the condition:

/ e o) / -
K/ = L =2 pl) ™) >
2z K S /

The solution to (B7) is

f > 2 /)
T “J/I“ el
'y/ & / :»/ e - )% /E/j So
S ) 5, :
</'//L\?/> :‘// \-—7// /::J e % = \.VV . L "/'"') = \ /V \
—_—
o8 V) 4
2F 7 ] = ZKLY . a o= ? / - ’3:77 L
= = /77 ) ’7)
We can thus write (1.]8)
' [ 7 e 1 «
- ‘/fc/pi . \ 2 _//// 7 L)
Ve = . / Ty P . . AT, A ( (‘.,
(33) v o+ /,1/ l/ == & F/Z 7 o / 7 /
0, . 2 e Y
/‘_ / = -72;, //:(, e - /.’,,. ;) .
where i 2/ fy“”z "o B /%;cna Lt &

& -Z7)
Consider again the solution to (%./) 4 ;J//Z7f & a o )

gfi 3

We have according to (35) that the normalized correlation function — _

for the amplitude V is

2
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LA E 4 / 4 / )
747 L) LT _)//g-/-[):/—-f) _)/({‘Z//
(ot e -g/42/
7~ /AZ/> - =i = &
ke T
/c/z‘ &
—~ <0

The conditional probability density for V at time £-+4¢ , given

that V = VO at time t is

-y dt 2
Fy=b & )

(z4) Z%%?%}J{)Q&Cﬂﬁ = s
‘ 4 TVI(-e

—5572. EXP = ~77aE "
“‘JJL) < P’fa(y-Ci )

< 2 ? £y | T
<V ) = <// £ V"> = e . = _________/77
’ 2 /9
/ Y
The probability desnity to find V=V  at t and V=V at
t+ At 1s
= b oy - 7 "
(z.5) ;7y7}/;df)aé"ﬁf/z . gé =24t
' { s AT )
, -yaz ne
v Eoryte S
° iy — o SN ds IS
where ds = ~%° /- W Ve )

-r:v"/ s/ ';j .

For reference see e.g. the Wax papers, page 22 to 27, and also Kittel

Statistical Physics.
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SENSITIVITY CONSIDERATIONS FOR THE "BARE" DETECTOR

(Where "bare"means that there is no wide-band noise from imperfect pick-up
systems or amplifiers).

We first note that it is clear from (33) that (independently of the
shape of the signal, Tong or short duration) the inverse of the damping time

)/ » the temperature T, and the inverse of the mass ! are all

on equivalent footing in calculations of signal to noise. We make this observa-
tion since the situation has not always been made clear in the Titerature.
(See e.g. Review by Press and Thorne "Gravitational Wave Astronomy, February
1972, Ann. Rev. Astron. Astrophys. 10, 335-374).

Since in the case of an ideal detector, the output is just a one to
one transformation of the input, it is sufficient to analyze the input signal
on the cylinder. This simplifies the procedure since the noise at the input

is white.

From equation (7.3) we have the input signal {driving acceleration)

’ \ / ¥ : L )
I N 1 T AT 4 /7
- agac ™ 'S G 2 22 %h L)
Y Ll o / g 5 or
7!/“/ = AW A A e - t(»~/
7/\:9 //_71‘// / ol e /7) J
in terms of fourier components:
& N /7 4 r ""(:’ ) ; N 72 k / 0 // - ,",/‘ S g “
£ ’/5 S, P i ',.”'/'.’ (o ?Ev, + o \J //) (L)
7v‘//*vVU .

For a Tinear detection procedure a(t) is filtered directly so that
in the resulting output the signal to noise ratio gets optimal. As we know,

(See page 57 ) the optimal choice for the filter transfer function will

in this case be ~ (w) ™~ XK@ re, /) , assuming that the sopectrum of

the signal is known.
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The resulting output is

2, . 2 !///f7r//

/ ; D Yo o & o ’ 7| 7
/‘J (w/‘ ~ JE,. L" ,",‘)/‘ 1‘4‘,‘ (¢ (/& “"/I/ £ g 9 {',\2’ . ;/,(/ v ) el / /7
*
'ﬁ)ﬂp+w)qfw7
and the signal to noise ratio is
7 oo
9
- i#é'fnc‘yﬁv 4

wé)Jﬂ[gmg =

7 ) ]
/ /voof;./’ ‘
e ¥ \ v //.791)///” St ) /
',/ /\/7‘/;7 [/_/’:)/7/\ 4

We can relate this formula directly to the spectral power of the

gravitational wave. From Gibbons and Hawking (/77/) we have the power of

the gravitational wave

P .
e - _/ ,/ A d . ) R Y,
(Z) = & (5% 'S /> / J RE) C/zz/( ot 1 Lerms o)
~po

spectral power;

>
"'/ /K/ o ) e
/'D. 72 7 ~ X 4 / A g
/"L (/{",’) —-_— I g ’// ;‘7 = o ‘i_’—"“ V/
ot/
” -7 9
e ¢ ey s
)< b Pama “ S ry e ) ),_ )
//“\ (e )] = € O SIG £/ (e,
So we can write
7 Ll <

o L ma’ SY7A / c03) F
SCPlew) g .2 5 _;f“J_:m/"'T e ’4’2'/7(’°)/ el e
/ \ -~y ey ) 4
kS CT(IERA) 2
) —eo

Ly
NS
N
S5

A
i N—
\
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o
. iR S
Or if we use the relation .z = Y W Z
o

where 5  is the speed of sound in the cylinder.

)
Em Ve~ (

o — ) 7
Yl k’r/;cf //v,j;,) g o

(87) Lo (Plw) =

If P(w) is centered around ¢’. and narrowbanded enough so
7 e >

S 2 2 ”“,"‘;J a2 Vi
that / cw~ 2e) dew = cw ’// Plw) dew =cv. &
- ) S
1.

; 0
W lere ?} is the total energy of the pulse, we have

" = < &4 /:/v;f::,) ) A S £
@8) S (F) = B s vrG) 8 o
tlcCs o2 , L e 5D o ,2(/% 9/)&,
7 ~ 7//,) & 2 o 7),
REMARKS

We will later see that even the best of todays pick-up systems and

amplifiers will narrow down the bandwidth of the detector to a few Hertz

A .'w;’ 7 )
around :L}O (See e.g. page //5_'_)_ Thus the factor “ s :‘«%‘7 <
is practically 1. This cancels the apparent improvement of a long cylinder as
a detector (i.e. a long cylinder makes &ut smaller, which apparently

increases the signal to noise ratio, but since e, is in practice selected
to the same frequency ‘0, , the improvement is cancelled).

From (58) we can also see that the signal to noise for higher modes
goes down as (1 +2 )72, in addition the damping time {;*/ will usually

decrease with higher 4
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Note in (B7) that the signal to noise is proportional to })'J
independently of the duration of the signal. This will not be so, when
the Timiting effects of electronics is taken into account, in which case
the signal to noise ratio for pulses shorter than the resolution time is
proportional to the square root of Y™ while for long pulses it is still
directly proportional to = .

Antenna parameters where improvements in sensitivity can be made are kf
(the speed of sound), ¥ ™' (the damping time) and T (the temperature).

Beryllium is probably the material with the highest speed of sound of
all (about 2.5 times that of aluminum). It's quite Tikely to have a
large Q, or damping time, as well. Unfortunately, however, this metal is
extremely poisonous.

Detectors kept at temperatures as Tow as a few millidegrees are presently
under development, but it may still take years before these are in "working
condition." Low temperature detectors made of a single crystal of e.q.
quartz or sapphire may also Tead to a substantial improvement in sensitivity.
It has been reported that such crystals may have a mechanical Q of 1018,
while the highest measured such Q is about 109, while present detectors have
a Q of about 107, Technically, there is thus room for substantial improvements
in sensitivity.

We give below sensitivity 1imits for some types of resonant detectors.
Note that these are "bare" detector sensitivities, i.e. they are optimal
Timits in sensitivity. We use (B.8) with '« =c¢), . We have

€= 6.7 10°° 2

cm3/gsec

c=3 1010 cm/sec

<
1]

1.4 1078 ergs/degree



0D

Further for aluminum l/§'=<§-/675_cm/sec. With these numbers we get,

2
demanding $5. (5)21 | that £ > 7. 07 oo g Lo
W scc tm

For an ordinary aluminum detector at room temperature

TaXejo®* =K , M= /Oéjm =

Le erys, erm ™ .

Es =08 - erggem =,

- Dy (i =
F= 2,47 - 107% see

5107

for a similar 3 millidegree detector;

For the ultimate detector, a one ton quartz or sapphire crystal at 3

millidegrees, which we optimistically give a Q of 1018 » we get

f:, - /0‘13 C’,:(/I/K‘M_z._
This Tast limit is pretty small, but apparently not small enough to make
a controlled emission-detection experiment an easy matter. Using approximate

formulas for power generation (M.T.W. page 979 ) it seems in general hard to

generate much more than 10'20 ergs/sec.
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APPENDIX C
THE "DRESSED" DETECTOR

PRE-AMPLIFIER AND FILTER

The "dressed detector will in our case be the antenna, a pick-up or
sensor device (which in some cases is built into the antenna, e.g. a quartz
antenna, where the piezo-electric effect may serve as a sensor) an amplifier
and a "final electronic filter." The data analysis system is really also an
integral part df the detector system, but we will treat this part in a separate
chapter. 1In fact it is up to the "experimenter" how much of the "data
handling" or filtering should be done electronically and how much should be done
by the computer. It can easily be shown that any final filter effect %i/iuV

Z y
can be accomplished in two steps by first filtering with 7, (¢2) and then with

£ h th Fw) = L)y (w) . Thus as 1 < few)
,‘Z(ZQ) such that (4 T (%] 7 5 K& . us as long as .7 (&)
. o . r'j/ )
is not zero for any finite interval A4 , where :*/42/’74 0 , We can

always filter with a second filter to get the filter effect we want. However,
between the filters there is always a Tittle amount of wide-band noise added

(assume e.g. that the first filter is the final electronic filter and that the
second filtering is done on tape recorded data by a computer, to match a certain
type of signal). As is shown later (page 153) the most economic (tape saving

way) to limit the impact of this noise addition (i.e. limit the loss of information)
s to prefilter the signal to a form approximately that of (X, y) which is then
digitized. In other words an (x,y) recording requires higher resolution (more

bits) in the tape recording than does (x,y). It is shown on page that for a Weber

type detector (x,y) is equivalent to (x,y) in terms of information content

-94-
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(i.e. the transformation (X, y) —>(x,y) 1is invertible) Further, it is true
in general that there is never a Toss of signal information in going from
/,y) ‘j’) Zo /if.J é) , since if the input signal is .S/74) in form, the
optimally filtered output for S (4) is

+
(X(E), Glt) = [at’ Sid-¢) (£ ¢¢)) G(t))
— Qe

The preamplifier can in most cases be described by the following circuit:

Figure .1

& oLe(w)
2,(w) |— (~)

C’b d GD o {_;7 () G

v o

SIENAL SouRCE FREaMPLIFIER

e and i are white noise sources, which may in some cases have some correlation.

From (324and fig. (C!) we get the spectra/signal to noise ratio

/ 2 Z :L.J / :?
7 SO SRk ST
V) 7wy + Ziw) /
g " /
" - _: \ //' 0 » / LY y €
2 \ o 2 Z () IR / ) W) Tl [
ﬂ/vvg@b/ P FRES 28 (%) oo, R Jamit—ED
<l W)*Z‘./'i’) / ) YA 25. (w) + 2 (W)= Sy 1 Zelli) ™ 2 (w)
N
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where  C 0 is a correlation coefficient: C - (W) Srw-w)= CAIEHEY
;< “s

We can write this:

Ve Zrw)
5/7 /5/&/) = = ) : - 2
- €2+ 20 e /Gef Cos & [Zow)] + LH/R 0w0))
2 ) 2yl )
EE J g fimrg]E Gl /
Where / s & = ~__,E._H/(mf‘3 "ﬂﬁdw_ NN, S

DH w) Zlw) o
o b f L
(Zelw) w2 (w))* ~%/

If we imagine that we would be able to match the system (say by using an

ideal transformer, or adjusting the impedance of the source so that it keeps the

same maximal power output), we would have a variable factor / in front
of /e and  #~ in front of < ) (n corresponding to the

ratio of number of turns on the imput and output of the transformer).

This would Tead to a sianal to noise ratio

& )=
Snls/w) =

»2y: 20 o 0
€%t 20 e [0 ptw)] Cos Blw) [ Zglw)] + R E (W) ]

2 g . =

PR i HoE =
Maximizing with respect to » gives d ()2 (w)]

2 ) A
s S tw))

o " :"J )k Aoy ‘_,’(j )
e //7‘/_(_{/, p (W] Co2 &C ¥

Snls/w) =

[t is clear that if we don't have a transforimer we should try to design the

source or the pre-amplifier so that ,/z_ca)/ = 0"

.Y
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We may describe the quality of the preamplifier by the spectral power density
Plw) =2i-e/7+C, ), i€

)

has energy units and may be given in terms of temperature. A good F.E.T.

-3
amplifier may have a temperature of -~ /o ’52:'?

Sometimes, instead of having equivalent noise sources e  and T s

they are replaced by equivalent vesistors. That is instead of the current source

qua. one puts in a noise producing resistor A,"  and instead of
Coy another noise producing resistor 4@ . This gives the equivalent
circuiz:
e C.2.
Pe

A ;
¢ ,4,/ v"/". A\ 9Y“*ﬁ-ﬂ

N
&,

P
Yo

< D,
g " Z(w) /
r
! ﬁ/
|
!
e — e >
Assuming £  to be large we have
' 'y o 2 — A
(f= KL L et kT R
4
—1/Fe - |
€+ = A?,/ ; B or in temperature units:
/Yy
T e 77‘4//?é
) %
9 >,
These resistors /é/ and As however should usually not be

considered to have anything to do with the input impedance of the preamplifier

(which may be quite different). In calculations, one should therefore not

include the "passive" effect of these resistors.
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As was pointed out by J.P. Richard, the fact that the quality of an
ampTifier, can be described by a temperature, implies that although the
employment of several amplifiers in parallel can be useful as a technique

for changing the imput impedance, there will be no gain in quality.



DETECTOR WITH A NONRESONANT PICK-UP SYSTEM

We can now proceed to calculate the "spectral signal to noise ratio" for a
"Weber" type detector, which is Tater expressed in terms of the spectral power
of the gravitational wave. This shows that the "dressed" detector has a certain
limited bandwidth (whereas the "bare" detector is not bandwidth Timited). The
Timitation in bandwidth leads to a low sensitivity to pulses of gravitational
radiation with a short duration time, which is demonstrated by calculating the
signal to noise of a minimum uncertainty wave-packet with a central frequency

dgé » total energy }? per unit area and duration 7

We also calculate the signal to noise for a delta function type excitation,
where the strength of the excitation is measured in terms of the average
thermal energy of the detector. The signal to noise ratio ff%r<?7? corresponding
to suddenly changing the amplitude by an amount corresponding to its thermal root
mean square, is in general useful as a quality factor of a "dressed" detector.

Let's now consider the typical "Weber type" equivalent circuit.

If we Tet Z¢%) in Fig. C.3 be infinite (which is usually approximately

true) we can simplify the circuit to Fig. C.4%

f:>L >
p ol — S
e I | —/
I Pt | z
3 A ! <~ 72’
S 4 g _
/ ___;_(z TN z 25 - I/L \ N_ ;* 'I/ i /
< = I~ (/l A /) )(2/(0/ /,. 7 2 N{
:E E; : T
{ ~ / i
\_y /, vetd I'4 | ‘L
| Bl T ALy 1 . bl N —>
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We have omitted the filter ., ,’/// , /:Z and /§ are the
contributions to v from z’;') 73 and y; respectively. We have
. Y (w) — %
/ . / /
/ 7 Cx rals Tl
P/ 4/ tewl (., + 2=
4 <2 R
3
/2‘/* .::-‘/i»/‘-, /fjcvdc/" SernSor ;é;g- 4L ./'a) C,? =
/ /
: / / e 7 5 Ve Pl ”:>
te &y 7, pC g WoTC T Ky
V (@) /Q.D
~ CwC o K., +/
/5(’&)) — % 4
R+ == /O o wd, P e 4
/ w Cozu/{i: / (ew € o cwc/
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Let Nz__{_.. = = / T / Since the detector is very narrow-banded
fw ‘ewe, (el o
(which will be verified later) we may for nonresonant terms replace cu by
Q)o where 2 is the resonant frequency. We may thus Tet
P= 0 # /% and we get
o
0? I
/WCQ /@q -+ ‘(a)
Py V/(w> /—,‘/:ﬁ. - e A
Vo) = S '(?: = |
/ A RNl ¥ ‘
4 v C
N )9 - P
V ) (kg = e G K
=, / ol # "“42‘2

=7 &+ WY 2, |
4% - ) (e (52 |

B 2 g 2 e
Z -f e = X 2V = s /:(/)C-/ = fu C J ‘:7
. o?z_/ ) 0 L C 4 4.2 b e X
(ewhy e, - w20 2 ) Fu By = AR o
A~ 1 H_‘,_ - y{(/ . ﬂ. )
¥ (o) == V//du) /D5 - / ] * R % _
v : :
f '2 - P i o § - 3= \
._L/C£ Zf(w—,/{y/ -wo“?/ -—A/(o?/.ufa/d ¥ e )y =2Y)
(wej Co, *Q=C?C?>:’/%":7 3

‘7 w) ' /B T / Vi ¥ )

J/
v

. = - Y-
2L, 2 4 (#+p=c7)  (w-ty-07)
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We may thus write
cow R (= q' cawryCs = 5/‘“
7 : Vi) )
b e /a) LW T aE T
£ QZL,C'Z&/"O'-Q/OZ// _/(,/,:5()0 —-r4) (az-—w&—z,f)

Let o — -

//~w)

ﬂz«g

cawl

i g

in the first integral, since Z () is real
/ ) =
( pa[j J"Q ('éo‘Z‘
V/(U) = 2 e
& /‘/&() / / "‘492 +
O’ZLC oy /27 u-—cua-(g
0yl ay? et g
B A Y '
W=ty =~y
wh, ¢, - @, 2wt
+ oo V(/ap_, = =
~ -/ o 7 ER P or
5/’/} Y K& y2F =y, = ¢ f
-0
% / _[;////d /,;-6) ,,? o
) Tole e 2o and
///{) L 7 C 2 (2% i '}Q}i’ - Luo = r d/
~ P
e (40/9( ) Y
Pd) = / G [ 22 2. 7 )
£,&, e, VT - e -ff
o
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Thus we may let the phase space state vector of the output be represented

by (similarly to the procedure on pages /5-/%)

7+ oo /4“2 ./-({/f
— / i yw) =5 €

Vd) = o U +///{)~//‘0 /7 (g

/ ¢/ “o ) // 27 4 ca /C!)“KU&“('J’)

e

So Pha? /:V = /o ///2’)

We may now go to a corotating coordinate system by multiplying

with (_’9’-(6%21 (e ////z() % 5 {,/_/Z‘)) g

-+ o ,
— ) i ¢ /q/czl
P, 1) V) = O/WE 4(4@7(4%)ZQ? &, | _
) Vap L ay o (/@) — )
—~oe
+ 00

e W (cprt)) /79 e £ 1
Vo Z/ //«/Q?)Quc—(;)/)

where ap = ey is the corotating frequency.
For 2/ we have:
N /
2
(e, - S
. BB fedd # P e g L (ev)
] — / /WC/ .
b (@) = /
- {' -
/Z)z’—* LW, *r / s %/H) /fiz il A R
1279 r/f/-é o e
¢ L e,
() (1, gL
s V @ //é(/ # x; - /"‘/’Jgj i
L 7 B .
g R T R A S e <, lwe, 4
3 | 2" &

i
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by similarity with L; we get
(cv
4 )
: " / 7
V.Z/lz,ﬂ cWC o //(6“'4 i <) Gl (e, / / / }
ag-{. C,Z (/7" /6{)/<’;2 02) é/ /éo’ "(/) /a)_(()o.—zld/>/
<, )
. /w)/"°?+N)Z"+ ~d"2 / / / /
Ly (/+ e w? Caz) //w*w—[() /&U—wo*f'f)
SO
~ - .Q . /() 142 v
Voz,/) /D (/4) /rfl(wj(—féu —-(a)z—/-’——-wo ) ezwzl 2
V_7 @, (74 (e Ry Co) (w—-c,-(y) /
In the same way as for r’j we get the corotating state vector by
~tew,t

multiplying with <

;_oo _? ¢ s (;dll
(62) o) = [ LpDmawme ")
2T e 07w Tata e TT)
@ 'and;
(w20 =V )= EE)
(3 /v = &5 {,////),* (‘)6/
(e3) )= [ < mem)
- tWa
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The sum of the (two dimensional) state-vectors v, /{% and

AN

is the total output state vector ) ' » Which can be represented in a two

dimensional graph

Fig. C. &
9 (2) 4

-
‘1) .

where V_/:‘) changes with time due to the combined action of signal (from

source one) and noise (from sources 1, 2 and 3).

Consider now 47 Feco+c¢e ) = 1)~ ) A we have
W (e ) v a, (ee) +ay ) )

. fan i =5 / i - Ay ©
<Ct3 KCbecuC)a/J (@045% )> cf/aé u,’c) and

‘o 7, . 7 y = ,«( ) 7 ) b -+ g : f{J i
\_Q’j (&da *Aé)vfj @, * G ) o (océJO w, Cc)c )/ since > is real.

But we can see that for any situation where we are limited in bandwidth

Zo /.a,ic 7 <% . -C‘(O /&)a * ) will behave as a complex /o))
defined by 7./3 . The same holds true for the noise sources /;: and
V// . With this approach, all integrals should be taken from e, to oo
» : ;o2 .
We write the factor (= ~ O?(C{'/" -éu/' ) in (£2) as

e '
IV S NV 1) SR VI VPR
/ e [d//) ,c,)/ d// /// (v /d'// 5@///%/ i’ />
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& .
where R G — Y X

- 1 P " -+ 7 .
AP f . We may approximate e /d// ~<j , With
O?éu& . We can then write (C3)
-+ e e
/e
. ' ; o _ <
v, (¢) :_/- Sy, 2w) Qey, (w-))=0y) e _
_\OO‘YCQ//V WO (/7‘(5()0 /(’22 C.z)(%-/d/)
+ o0

. DN X -
_ [, 2V ) (4t Juw,—2F) e C
VEY o .

7 * % \ =
(/4 2y Ry Co)lay =1 )

oo
Q= %
et .
& = L T T B
28 =r I/ = e / ~
7¢ € 3 L/ // & C-Z f C/ 2 2 COZ
Doing a similar approximation for __ ~3 }
J
We can write the noise power as
/0_/2( )/ ﬂ", /l("))/{:,)? o 6/4)—0 -/5(/4)’4/ ///Lé"é’”};;)”f/ f
[79) = - ol ¢ £
0? 25 ¥ o2 . B 2 P _:,::) 3 )? VR4
i % (/"L@.g'/(% Y i )?) 4/“(//7‘!{2 )/% *)7)
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(3.24) gives us the signal to noise ratio;
=]
o Zah //(/4) od %D?/Q/)/p =
e _/w ,;/{é/p 7‘/4* “/u)/ //4 )14 )v‘)’//v‘/ /a/) //7‘5?7)/‘6'2"/’7)

v 2 7

B % /f’)/@

j’/d{d 2 AR T e S % Y A )...

=g VL Lal) V)/"‘)/ et 5 Fooe |

5’/&‘-"-%//7‘@; Yo )_/

At i e da) | g Al )"?/

R okt " g
(//z“v‘//f 2:%) 0577 2950057
( /5%
| LeZ Aw = Aw ¥ 4 - and
| L i Fe (05 05"
) 7 ,
1e#) 4 u? 1202 L 4 1,24 7 1%L 28,00 T A4y Aw)
e 7 \ /,(, = o
(e, +//¢42°?) "7)4 ¥
| 2
/3,“? - /3/ 2 /Qp)

L2000 p 20 8,%))
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4 v ) o ol
2 / Vo~ () (a; »qu)” 2.4,
€) i) = Y (%) + ) —

)
/7“420? é(/c"'??‘v)/“?

*
( k/a? i {, 0?
| Sois) :/"{ PR ) 3

=2
sp oF )

of o7 ) <
G, ) AT (ay Fhw)

Ve oo s
(/Ci ) ﬁ or 1n terms of the "spectral” signal to noise ratio
| 2
2/,
$olsley) = 2 Ll oy
¢ Y, F 4w
We can see that for a flat signal //fg ‘%? = constant) the

spectral signal to noise has maximum at &/ = = Aw (A fact first

pointed out by Kafka). For a detector with a high Q and a sensor with not

so high Q we would expect Adew to become important, we have approximately

) . i
A¢ ) G
(277) //; = // il Bous?

(Note that //Q represents the effective bandwidth of the dressed detector).
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Usually Jda/ << 4t however.

The matched filter is

(¢2) 7//‘//«)/} o &_:5*/“/6 ) —_p sy )y + (‘f)
A%ﬁjﬁ%)// /“g*(%2+4w)*

Note that we have calculated the signal to noise ratio for signals of known

amplitude, phase, shape and arrival time. If the phase is random we may use (2.19)

to find f,;/ , 1f the (amph‘tude)2 is known only up to an exponential

distribution we may use (2.28)to find S» ) ( ShrIE )2 Suls)-In(1+Sn(s) ) )

and if also the arrival time is random we may use (2.257).



SPECTRAL SENSITIVITY IN TERMS OF SPECTRAL

POWER OF THE GRAVITATIONAL RADIATION

To determine %ggtzﬂ in terms of the Riemann tensor, we compare

the mechanical and the "equivalent circuit" equation for the detector. The

mechanical equation is: (from (19))

>e

Y7
(C9) Ft) +24 F(2) *a e I € 0 (?

and the"equivalent circuit" equation

e s > & £
Cr)  Geye a2y Gib) v g0y - L

417
(where fz is the charge on the capacitor C )
The energy at time Z 1in the detector is
d'g Q 2 ‘902) . Lt
and in the circuit
Z';/{) ot vy J /

thus we may identify

i 5y 23\< \
E@==L((52) 1w %%
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A=

//‘:?@ Fr¢) = /;_7 ;?/f/} , Replacing  F) in the
{/ 2/
equation (¢9) with /77/ };Z/ZZ) —

A
e . " ‘2 = /77 /“/) ’?Q/ < /_/[1):
(Cil) ﬁ/{) +£f§/z‘) “@, _,?/f) /’24/ 72075 2n) < /‘D/czz

Comparing with (£7) we see that

/ )
Kt V pn Sac2l-/) L () or
L/ o'?L/ 7;vo?(/7‘02/j)o? ‘/a/p

P
= |7l 2ecte” o
5 G X oZ K
2 D Cr428) /070
o? '
> 7 V-
with the relation e s /é o %,//02 or 2 = g de
a

where é is the speed of sound in the cylinder, we get
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4, 4y *2:“?(<-47/7 »
= 22 S /
g (@) & Vv, (/72n)% /?/wo @) and/

fmZ,Vé"?Cé

2 =
//é, (w)/ 7/\,02(/7420)024%:5

&
»%,& ‘a)/ .

Again we use the relation for the spectral power flux of gravitational radiation:

ol
~ L Kpps €/
co <

Plw) = c T 35°6)

or-

(Note that we are considering only one direction of polarization)

1% )= CTT e 7 E) w? Plas)

010
we get,

Fm L, K2C9DE)

TECiran)2es %

o

27

(cr1z) Jyg%a)/ =

Lrew)

Together with (56) thi gies  (led Play) - Playez))

& 73 Z
Ernd, V. /5//”/\2{) e | Vi
& — /S 8.5
o /C) & = s i /R “ /D/w) \
5o ( /Mé)h 0?7"?(/7%?0/“6“&;’”2 w, . /‘””(f(wc#ddd,))
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Now V;“?: P 7@ (See page 6%) and 2;7 = —L =

o
& //;/ ) . ?M/\/g &=y, dbﬁ? oy ﬁ/]
D7 <. ) 2 (W) 7 Z
g7 s ,é7/" & (7421 )% @, A, f(w(_%—dh/o)
We can see that if /?; — oo (= Kséfi@V — /) the dressed

detector gets an infinite bandwidth and we regain (47). Note however that ? 1y

will be different from the 1; of a corresponding "clean" detector

v

i.e. putting crystals or some other pick-up device on the detector will in general

‘ 0
degrade the "Q" of the detector, /0/ = ;24)) .
\'//'6)

- d ‘{ya
To make this difference obvious we may define 2, ¢1n£//q24/) to he the

A

V4
Further let's define

and CQ/y for the “bare”detector.

2Ty (B, 5 VR
hoiey )j) (/+25) o dhat

% Emm Ve U 975)
c4)
) w2 7, 3,5 _
(C.13) Sh .//D/wc) r é; @, 2 /O("é) 2;)_//4;@/%+dw)‘?)

From this we may define the "spectral signal to noise per unit power flux",
a quantity which is independent of the signal and defined purely by the quality

of the detector system.
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2 / (éj/{ 2
s~/ & , 7
(/C-/L// o (u /a)c) s | e 2 <

> 4 . So halt
£ @,y (AT (ay r dw)R)

-+ oo
S0 (P) = [uy Solulay ) Play).
- o

Further S~ /45 /42 ) is a "product" of the quality or "spectral

. . i ‘/é’), 2 =7 C(//‘)e
signal to noise per unit power flux" of the "bare" detector, S 4 ,/;z/aé) = ;: 2 2
7 b/? )
: N 2;7 ﬁh“ \
and the quality of the dress 4 c_’z//g%/ = “ =l |
Ee %//‘5,7‘ *( @) # Z]fd)ﬂ)) |
’d . . 75//, ) .
(which is always less than one). Note further that Z9(« gives the
detector an effective bandwidth, defined by
éf/c = ‘ﬁ% i//ir/? 5 or= &gy = /% — déc),7) i//’(ﬁ’ . 3'
/3% 5,
: 7 ) = A P A
We may write fC/zQ/C/ as QC//%)

AL 2 & 1) ) nz:f =,

8,7
and as we shall see in a moment (page 116) L . 1 is the signal
% /3,2
3 5 — } - 2
to noise for a so called "kT excitation", Shn(£7) = 7-7,/;"*
v 0 -
. D) P Wr‘(
For a "flat" power spectrum (let for simplicity ;’,/4_; () ) = ’Dd “’;5‘ i
g -/ /é) A I - - 5
we have, S, {//-g) = ’;,0 /g 7/\“0'; Sn C-7) . Thus in the
P , x ’/‘ -~
case /"/;UC ) is flat, Y (,{/7) measures the

performance of the "dress".
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We give beneath a typical graph of Sr ('/;/g/d()c) versus aé
Fra. C. 6.
S (/) 4 S
;,*/ Z:'; XK
’/"\\E [ 5 //< F d/n
it “
\\\
o N
¥ Dt el
,/"/ S
T .
- T,
/ﬂ' \\
e ” >
W= -/;: *‘;,'po)n K/('—‘T}»’{‘-JHJ"_ w‘:é()" 2209
Wc:"dww

As typical values we give L ‘M‘é and ﬁﬁ

5 for Weber's 1973 set up.

-/
/ -, 9 ‘/1\- /. <1 =//se =
/%:/gég) ,,4,’2)/g,& =) 7secTn O 27 Az, dW =~ 4 sec vﬂ,/j’z‘/z/*“”//a ' 1

077 Hz. "
For a room temperature detector of Weber type & is approximately 5-10 er’gs/cm2
We will now consider how sensitive the detector is to a minimum uncertainty

{
wave packet, with the frequency width ¢’ (or duration 47 = Aw) centered

around 5@5 i da)h We can write the radiation power per unit area and

bandwidth as

/

2
" . ) | h o y

2T eiaw) 2
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/é7 is the total energy that passes through the detector per unit area.

The signal to noise is given by the integral

+ o2 (%) 2
(VD) . " S /. NPT
¥ €, VAT pawia? ) 2@a)?
~f;545//%;7 ny Ao \517(/251) =/ we J?C?Z(
Yalle2 02 2 —-/
/ = j O/C() ﬂ’? E’/K/D“' ---—'—“—‘—"‘—‘——‘w 2
Z 4 Vg Aa%}@gfaﬁ) <2 (da)
e 7=
which we may rewtite as:
o
PR S Ay
e, '//3”2 A /dw) where
2 7 g
Lol
%///{{/7 A Kf/) X /‘/’ . __“_.__/( k0 — _‘/_/ "
g’ e 2aw =R VA% o
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b)), .2
We give a graph of , /’/’ﬂ: rd —)-/i—fl 7// ¢ -dF) where
‘ T “h b A /3/7"? ™ )
A%l

Again we give as typical values

//é; (the effective resolution time)
/(432 , L~
and /(-g //50 < for Weber's 1973 set up. A ~ A€ sec, and
(é/) 2
X}') /((/7 v f’/ﬂ? ¢7S/C,n'?,
2 f B~
7 V)
Fio. C. 7
Z A
.
| , E(0t) s the fotal pidse evteray regiiivecd For
| v 7y reg
\ o /)/t/jd a/ diration J¢ teo ywe ar iastanlarecus
J \1 .ﬂjrm/ Yo nolse ratls a/ one,
; \
| \’x\
L
&Ly
i) \'\
X
\F\N\—«w
i ~— :
"v[g’:t Al ” Jine = S B . . o, = g =5 e i - — - —
/i
, § P e >
- /L-: ar

We note from fig.C6andc. 7, that the detector system has a built in bandwidth or

minimal "resolution time constant" which has nothing to do with how the sianal later
is actually filtered.
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The matched filter function for the kind of signal would be

Alw) ~ Rl cop - Lo ra9)”
2 - o
Ay # 4y +aw, ) (42)
; w (Z-2"
Lid-p?) - /Vu, O o (o) + Au)) eﬂ(é/ Z7)
/02// /f */a/ *dal, yo=t (du) = )
If we change reference to i 474gg we get ' of the

oscillating terms in yﬁ/f—gff),
One may now compare the overall performance of different types of detectors

with graphs like (8) and (9). If one for example compares a Weber type detector

; £ d \
(’#k) with a Drever type detector (29,) » we would get something
Tike
Fie.C.8
\)Cyz, /lé,/afc)/
. (’ f”//x/ﬂ )
)|\
/ \ w)
(o) ' \ — 5w,
i N ““*-~—\\“
e AR i
= /Afu) B ) e
Few
- (;VQ ) )
\:‘l : /7/ " a ~\/, .i/
The graph is not correctly scaled, in fact OU) Bt 1 T4
5/7 "7/“/y / "k

(*With Drever type, we mean a detector with a comparatively strong coupling

and Tow Q).
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(Making the detector masses and the central frequency the same) and
7

ol e ST

Le <
“w)

Or in terms of a graph like that in Fig. 9.

Fig .9
M
\\
(D) \ ~ ) (o)
"5-0 - \.\ . i o 5 -
\
\
N
N 1
\\\
e (w)
, e
5;:"/);"*__‘ N e Pttt ol Tl -
e L e e S
> )
,;0} ~ 6 regee, f;w}‘b():“/ffu
(D -
w (2 s 45

C v Ao tw,
‘5

(Note that the values used are probably not "up to date" and used
to provide for an example only).

Sensitivity to a delta function type excitation

According to an argument given by Gibbons and Hawking a gravitational

radiation pulse can never be delta function like in the Riemann tensor, since

a2

for finite energies, we must have /oK & (%) =0 (See the
/ /070
— D

formula for the power of gravitational radiation, and the reference given on
'p)

page  £9 ). still if £ %)

: i i cles in the
s just consists of a few cy
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frequency region :25 , it will appear as a delta function-1ike excitation
of the detector with respect to the resolution time A, (We can

see from Fig.C.7, however that detectable excitations of this type are costly
in terms of radiation energy). Further the signal to noise ratio for a sudden

/ )
1 excitation (i.e. an excitation such that ';;/n /27%’67 =4/

V' is defined by (116)or in other words such that J4Z :ﬁ?7h if £, _.51)

"_/f.'/.zf/'g{_ /“ i

, Where

is an often used measure for the quality of the detector.

We have from (C.6)

) ol
O {;aaizg r ) : /ﬁn
Snilsin a )= 7 ; %
J e 4,77 /,}) ’L(‘éuc v*Z)Zz})

(det K Cwray)= K Ca) ).

Since we assume a delta function type signal we have

. 7 o, : T N
/ e )i = i > - = C
Goog) = Tox (sothat vit) = 555 C enp fay (42

7ok«

L)‘\

where we want to choose <  so that we get a kT excitation.

In terms of the current of the equivalent circuit, the energy of the cylinder
/ s o . . . . Pe
is £ = "] Py and the current is obtained by solving (£19) with I=4

L

&
= ;i ; y Pt
Z“/C/Z @é’/éﬁ—&;d{—é/) ckp te] t o) o -
-

-
4,0/7

z -~ *—C;/ g(/ % if )
L ‘ ;7 ' ) ¢ ek,
=://a€ suys/LcQKX-r )+'M@7// “““LVQa
P

— o0

¢ &hd
L )
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o
y . eddttd) % 2, ’)/Z/fa
://;?7%-2@y%*jzarﬁ'ego/ /350*70</) 2‘/?% )e

€22,

X 3//’)
(Dropping the small PTG ) we have

o ad -
/T =z with L JTY AT wenwe <)oy
g S o /

// A/Té
So we have V. ar v az) = ,// T2, with o e LT
oy (;y 4 ’.’ G // /
“ / Y4
= 'Qo v
f’z 7 KJ) 08
g gl B £k i -
/ 7/\’,@ o b/,'(/c % v & -
PR AT Py rha) )"
=ghe ¢ 7
— J/? / //(
— T/ =
gy A / N o7 Y 4
L @ o T~ + ) +40,)")
- e > V) c /)

e
et 4
(C.15) ,,‘w('/é//\ e

where &, = —

(Note that Sn(kT) is the "instantaneous" signal to noise ratio, of a

completely defined signal.)
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We will now see how this signal to noise ratio is related to the so

called 2¢ For the case where & =0
\.‘y
/': (5)} e =0 , We have
2 525
/{0‘?2 /Q//Ov'f A, /(V”?
g0 /) <
2 o S
¢ . ol e
%0 &
T
: S \ ‘ A
(Clé)  Srnik7) = | o g
R+ A/ /
4 &
o
This may be written in a different way. With
we have

» and perfect amplifier

and

il

P A and
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iy L o
The term ;71, ¥, is usually called the ,=¢
™ '

bar to make it differ from the , 4  above) where .~ = <~

(we give this i

= T/, is a measure of

/ €z
the strength of the coupling between the detector and the sensor. Note though

)

that this signal to noise ratio really does not depend on /} , but only on
/D and /«C’l
/

9 When the amplifier or }§2} contributes noise however the

P=%/s, mar be important. We give some other useful forms of (£./4) If

Lo<< ;4§ we have yfﬁ,j¥, thus from (C.16)
/ 2 i ‘
o o S e Y 74
/ [ B /Z? } MJ/,_; / / / . —-(;..__/l.._ = 2‘;‘;
J1r 7]
—~ "}
where -, 1s the amplitude damping time of the detector and éﬂk;

is the time resolution (of the detector system).

We may also express (C.16)in terms of a "detectability limit" of the pulse
energy.

Clearly we have O e )
7/ r.@

i.e. the signal to noise is linear in the pulse strength =

& (measured in
units of kT). We may define the lower limit of the energy of detectable pulse

by < such that (&) =/ =>
0
!/
() RN S, NN N
¢ /2 y
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Or in terms of amplitude o< measured in units of the

of the thermal amplitude < ¢ "7 < %

oA o \7 >

root mean square

) ] A //'
fEgi) o //’453 . //’ é&i/7 2 ’
o ( e

74

To see the role of we investigate the more complex situation when a

preamplifier with a given =  and

TR

~

i: is included. Let's further

assume that we have the ability to match our system perfectly. This means essentially

that we can let =2 - ».e and ('/»3 7§<z' where 77 . can be chosen to

optimize the signal to noise. Assume further that the system has the same

temperature all over. This means that

; (" Fp 2 : P .
2o 0T 2= P 4T+ — L2 (see figure 6) and e e,
2 72 J B ad /)Q .
To simplify the notation let 2 and i be given in terms of temperature
2 o — * / s LT
so that e =h & K’/ and 7 2 < po B / /‘
(which gives the preamplifier the temperature <.~/ 4°, note also
g
that /4  now has the dimension -~/ ). Further we simplify in (5.4)

- )

by excluding the . and

¢

,) N terms (which are much smaller than the other
f ¢

terms.)
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We thus have
X
B . ,% % —'ié— 24
( AO} :_/_44/ sl g;«,v/ A‘:{/’—d‘() 2
' o 2 & Cﬁz ) <
el 2 )
K, ¥+ (w2 k,7)
/P
; ,Q * z4
| H R Ry R ’
|
/Q/ /4/02 oA /? = P 9 2D
, 2 /K‘DZ + —/)——23‘ t:t/ * /D C{/»/é(/}. ‘C-, ['):,)
(C-Z]) 3 //“'.;/-‘ -: o4 )
| YR+ L2 o e 0 (1400, R,0) 47
o /7':/“ ol
A
Pt arller
) 2 5 2 2 ‘_/‘ 2
Y (Ry + =F ot + 0¥t (a2 7R, ))
7
\
and
- 72—1
(C.22) u/,{’/ﬁf; J/L): o «L:

21_“’*“ 0{, /’LLOC"{/ 51.12

;/,eL

/,e ol PR, - 9 * 04(/,,“;‘(‘/2/.) %;"'2/
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s

In terms of resistances # . P, and £z (see page 91 ) this

~=f 3 ~2

would be (with n = 1)

- /
/ . .
Qnﬂﬂf n} may now be max1m1zed w1th respect to n, which is
realized by choosing NE= / // K
//*Wﬁ'n{, 2%
So
22 -/
(C.23) o /P ) ., g A
“)ﬂ'(/ /’ et (J//M. / ,/'P *9( ( /) ’r'do (2. 'L/
/
Cs ;«:1 /6 s t-\/ 5e //t //—’"//ﬂ/zc‘, S. /“))
e ),&”
/2///('94. v il 2e 9 )\,/ [/'/, ) z’c/z.‘,éi 3}
_ A P S L NI e SR =P 00, £y 7O, e fave
n TR Liiin of & /Dﬁr/‘tlz”dvzh:»’." L.C ARTTOY ) &y T &, e fave,
£ > o », X ¢t Yy ’l'—»-f.'/ - .—v,-"f:’ o4 28 40 i ../t 2 v, el
Co , L.C. Fhe SERLLELyelef 2yHals e preas /p/ofzf/ bETPErQ el e
For a given /51/}/ we can find from the above expression if and how
of 2
much it pays to reduce ., and < (and vice versa). It does not pay much
. , F A .
to reduice ¢, beyond &, £ ;= e and ¢4 beyond
/[’ /L/ -/UO
’A-—~ i e s e et S— e e ————— e
o 292 T PTETE YA A

(if we have a reasonably matched system). We may reexnress the condition
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for £, s

L g F
< S g = J & 5 L., = e
/ & d}z_ Cs / zo /‘%Lf, El

We note further that the match derived here (imput impedance of amplifier

! ® . 2, i :
= nt= /3~{3 ,/f;:::. is optimal only for delta function
T, Tl M R
i 3
excitations. In a Hertz type experiment the quantity ﬁf}aﬁ- should

be optimized (See fig. 5.6 ). (If the signal is monocromatic with frequency w).

Again we use the Weber 1973 set up for typical numbers.

Frg = 20710 Wl R = 2,3 107
“ Az
(2 = //,/‘/)"&' &, = 2,3' /o =3
/ -2
©, = —t—— = /,j /O - ~ 7 2
e } B, Ky wh* un/,{:?’z:o— /36

Optical input impedance

Jn/ATé - T

270754

of preamplifier;

‘

B

= (:) - £y 2 .
’)t/a = —l'—‘——fvé‘-;‘“- = STy 10 =2
/”' @y U(z VVLl "L)L

We can see that one can improve slightly by reducing

7
4

but not much

if = ,07%% S would go from 100 to 114 if &2 2O

o
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"’{(‘ZV//// J;-rtff//ﬁ

We will now determine the matched filter for the delta-function signal. From (
we have the output signal spectrum
//lf/ o
/ W, =-Lv
and the noise power spectrum from (55)
o, v A2 -~ ’{i *
g oo LAY
L™ 5/14
S0
>‘// / &c/,-, “y 5,) % _ 225 ‘I}/A«L
7% =, ~r S - = — e
/Wc*‘rn//(w‘f”w/ 'f/‘" 2'/ //W¢f.//u»)u/)z‘*/iLj)
We change reference to ¢, = Lty =7 % = v, =
4 -1
’ Ll e S, — b !//L
'7//“0’4/ g . # g 5
and
+oe P ”
’ . g T Sl (F-F7)
?/()l'/l/ S // g ;/ '2./ // ) !“'d """" & =)
N, = L
_pelh-#)
7/,/,1»47 L) (e i dih) €
e (F=4)

-
e

1)
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where _ﬁ’C//"f’/) is the step-function. Evidently this filter mixes the
components of the signal. We will try to make the situation clear by the

following.

i

| , L Iy
Fd 4] = S e RO crgy) o RO

P (hH)

) | g ,
S ) = S0t 2 st , ’

Je~ /r’;ltr

(C.21)  JlEA) ~ g f i) v (Bemi2n) (47

’ ‘
;{ and 7i can be represented by the following two graphs

Fig 57/0
db= F=F
c'/‘;(%—/’) g“/ﬁ:(%’oﬁj 5"&(‘_}') C’-/‘/‘:[{‘_,{)
> T '“:““' Z e G

A4+ A1)

As we can see ;/(/#'/3/ acts like a derivation averaged over the time

2 Bl

n

-1 . / , ) 4
#e while yigf/-/‘/ just averages over the time /



-130-

(In fact /(*‘ )~ 2*;/’/;-/,);

Z

# S0 that 4,',/’—/(,4-/yq
/ qgt)~
L B AT IH) ) ’ ’

with

,1)3///{/ ////"’ ‘ 7 -
(// ¢ '/ J "(‘&/(/}*"{(4) sosied,

—
"4
14

the filtered data & denoted by

(M = / YL S )

Vi
ad we have

N\
o,

//’[")w 1) * A, /[/// 2

J

” Vd . 7
drwﬂ/'/‘ F = -t SNP4I E Y pt) o
- ! . o (;)

The form of the signal part of the output in the Primed coordinate syst
em

is easily obtained;

where ,{ is the arrival time of the pulse and ¢ some complex constant.

75&,;;/} is also the corre]ation function of the output noise . (See page 82).

In practice, the filter / 7‘ // may be a bit complicated and one usually

uses a filter approximating /,»,! (F-4") with the reference s/,

We will see how much signal to noise is Jost by this procedure.

We have
‘;/ My =+ &
) PF e
7 ./" / wl //‘ Y

so the filtred signal is from (/C.[ )
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e 4'5’?..

| o= [ = =
/%f/mwc /1 T(/*‘az/"”“}véa/%tl*/‘z)

-~ 2
-z s &, L4 \ ; % z
. = i Zada / .l 127 ) o pt T
/&""// Jar T 'f/-rr,?-’- l /M/ ’_444 s
F4 ¢l V.%-_,/(._ )& .
" o7
y o702 sa A .//: 2
s o= Sl AT / /LU :
/uow,// ‘/ P& ( °J /_*/._ % = e
Ty oL, 7 = / 6/ ¢ L
; = e
A/C":‘L) ) e ol
"'"Mj‘/ ’/ 2.)2.: e 3 il A /
o, .,,»/vt L2 01 s & et | Ll -—‘.;Q_WT .
N : e (b, R e, Pt g 7
— R A 2 / 5 7 .
Pl = /"’ RCRE N B )
/rat o A o2 P

Since the original signal to noise is

//f.i.‘f E Ll L /2'
ey //*c@;/,\,; CJ[.,/V(/Li/L(’”> /

G (hT) = = |
/- SE /
“" / ot “"_; ___/_.’:....—- | e st
/1G5 et Bl E
we get,calling the
. ) . €, = . ’ ,
new signal to noise ratio S /F7 (effective signal to noise ratio)
- =
vl S e .
(/C.—ZO onlint /)= ”‘"r 7 (/ ,Lz.
( M
Im most cases P ‘f‘f/ﬁ_f so the procedure is o.k. In a case however

where we have a high Q antenna, and a not so high Q pick-up system with
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fairly strong coupling, we may have to be more careful. If L= lra gng

we have
/!.':(/w. . _/;), /':3 g > o &
s pe Il el /LS - =z
AN R

It is obvious that if the output data 774 ) = (¥ ct7, ¥ (4))
is put on tape after being filtered in the above manner it can be refiltered by the
computer to match other types of signals as well. In fact if we would Tike
to filter with respect to signal pulses with the envelope SCE) , and
random arrival times, we should just filter the output
;?f) with  SCE-F7)
_ so that

e

(C28) FL.,(t) = [eth PCH) SCF-1Y) .

el

We note in connection with this that it is frequently implied in the
literature that filtering necessarily leads to loss of information, this
s however in general not so, it is the addition of noise to the signal that
causes loss of information (of course we can deliberately choose a filter such
that it wastes information. This would not be a very good idea though).

It is easily seen that for example an ordinary RC filter is invertible
(i.e. there is a one to one map from the imput to the loutput) and as we
shall see the filter (£.2%) is also invertible.

We have

2
",”.r;f’ | . "/%L */LL/Y.
{-“w‘ /’ = e _ ‘ -
WC "JWIL— (2 ﬂ/v\
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This Tooks a bit suspicious at first sight / ’/"/
seem to converge), but 7,/ ‘()

it is a differential type of filter. We haye

fo g ) S (hH)

7/— (#47) /.2// "l e -

“Zy M"‘y“)h“/%‘

¢ = I~ . |
i /i = T ( ) L (#-+)
R A eletde =
/p/i— /} - rw"‘_/ d'yL e )

/7- ‘/..»64—-"1",/) "ld// =

= Ja7 gt fﬂ /) d(ﬁ"*— Ly = s (208 ) | ielé-#)
n ﬂ?‘/’f’/'{‘ Wy o -‘.r”_ - |

B { s +80 )(F-F7) T
::,,'—‘,in(/ ?.5_( \{/)‘ I‘)‘/" "‘/ ; (//»/)-p/ /7"///}*‘?‘&4)’, é’ g} (Y;l//(/ ;)./ o
where $C#-17/) is the step function.

2/ V7 s wnrde )(#- -#7)

VTP B (e 8) [ 2 &70‘76ﬁ//

Thus if the filtered output is /Z/%)rﬁ//’%_/p"r’) VALY,

we have %()Z/ =4 z/p/';f’/ ’/L"//"/T/ vit) =

£ liteons 8o J D
“/'3'7‘// 4/‘,,0 -f‘d»\_))'(/r & ()-r

T+ ;";?f’}?:"(/{,/s//g« fx'd'i,/ vilt) - ;f,i_ '({—/7{/ .



-134-

This is of course, a rather complicated expression, and is not intended
for any practical use (one is never interested in a totally unfiltered amplitude,
since it contains wide band noise), but only to show that there is no information
loss connected with the filter (£.2%).Rather in practice one would use the
relation (£.24)to look for signals other than of delta-function type. MWe
note however that if we have output data ~/  filtered by a combination of
y{ and 74. (such as 52%)

)

AL = /;/‘%""//4 ‘/(/’z-/l/fﬁi‘{f!/"('/’/) ALY then the quantity
At = [ B A1) A0t
N (which is just the

smoothly filtred amplitudes) is related to ¢ by a simple "non-differentiating'

filter operation. We have

/f.///““/{f’ £ / (B, Jf/// //) Y or

/“ /7‘

. r L T 7
At = (4 520 L) =

)L
= i) '-/)) ~ ’_,//[/"_E . ,:, %,
{c/{)‘/": 7 j‘_}“, ze p? (/ -y ﬂ(/
- gt cal
Thus  2{(#) is related
to £t/ by a simple exponential filter if A and B are real. (Note
that we use °~ as a symbol for a "differentiating filter operation" and not

for a pure differentiation).



DETECTOR WITH A RESONANT PICK-UP SYSTEM

It is possible to reduce the negative effect of the capacitor 02

by introducing a parallel inductance Ly. He will briefly investigate such

a system for the case when the free resonating frequencies of the (1) and (2)
part of the circuit are equal.

The equivalent circuit is

F;é’. C- // : Vi
—~ V3
A | ! 1\ y
= ! | T
sS4 e e e |
r ——— | s 1 ~ o~ o~
;LZ ) j ? _3, Ka;‘:/"//z_'%
o2 Ay ,‘ ff
;
— e Y
The only difference from the circuit on page 94 is that a Toss-free

inductor (Lz) is added to resonate with the capacitor C,. This gives us

two coupled harmonic oscillators, the cylinder and the pick-up system, and

leads to a complete transfer of the stored energy, from one to the other, with a

= et

3 w7 1/ >
transfer time (or period) # = . /"ﬁf,

The inverse of the transfer time is a measure of the coupling between the

systems.

This case could be handled similarly to the nonresonant case, but we will instead

use an approximative method that is accurate enough for our purpose.
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We have

~ e ey S
L ///"V/ /,/)[ -+ -
V) = DA -
: /

W, - 2

/@ v r~ 'f’”b){:,-r /V‘—)C‘;_, - /51_ [WAL

;,/;’;u)

-

5 z / /
Now Tet L = Wy + where P70 R el b
zl (I A (L
i 2 ) J - -—-—-*l‘u“ -
Consider Ly T e (o 'f/’("/ '/“/ £EC) (s é{)c,) . If the
. o 3 s o
system is narrowbanded so that b, L& W, we may expand

so that we get

x
~

- . / /
PBorifw,tvde ) Lyr = i

S vt L, = /\; w2 Lty ,L/
‘Wo LI [Wo Cl

Doing the same for the second term we get

oy - Ml
L/'ZL-W(.A/- + 7 /(/:/J, c’, },L/’a/

-z
/ [e0) ¢4

oo, #/’i—z KV(QLJ wh= &)

i
f
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y [+ ’?’//fi /
where 2oy "’,—; / - = . :; L s ? "
L4 ey =, - S A is small
YL, Le / Dhyly 1 SHE TUR,
, / / P
we drop the bar on s, from here. & == (5 -
Lo I\g‘ . ’ CJ

Similarly we get for vz

- ( () ,Z,.a/ /1,()‘4 ”/ ’d

Vitw) = 2
/M‘,-ru/_(-'z & /./// = 5) and

Wrw) (ht-d ey e 200 )
(st =4 ¢) (22 =087)

AR

And the spectral noise power output

A D A Y e LAl o) e e )
> m/;—x// ///w‘—% e

And the spectral sigaai power output

F; ,/ 2/ 'lji* o //*fﬁaiji }// e

I Av*)*'”"t#/ //Kka—“l v )
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We have:
2
" ‘ . / ,/ {’ / / 17 /?/’ /‘4’)‘)/ /3 el Bl
(G20 . lS5iws = B - el e , Pyt
//42%/9422/ //'z. /“/")/ /”"(/"W‘/w;* 777/
where
- 2
> & y i S
T A
Vo2 "," ,j“f:’,,//—c", X
B e
2 2 K?z % 7 ¥ie ) .
z ) & /i 'f/{ /A),l -'K (/’* /M”'z*
L4 & 2l -
(C.28) ‘2 / v“{J Z -1/,/ /7 J/Z \
_!:‘m — /, = o - A
* Ee, (/- “ye)
2. 2z 2
72-; a/_,"/_'i'/caf/{hk'//"f" (/+ ¢ty
//
. / w% "
These ;s and p% s are similar to the ones given by (5.4)
H/V -
To see how much we have gamed "take a Took at the _ . /47 . In most
cases one would expect /7 > ¢ In terms of £, 2, and #.
we e, 2l n Bv. VB 2. o 1 usually /4. & 2 and @, <
9 e S A T [ ‘/1’,; - \ AL &4 /v/ vy <
7> “da J o (1 %) i
if this is the case won't contribute when (7.2 / ) 1is integrated, and

we get similarly to (£.22.)
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A

4 ) g~ /A J/ / ‘Z/’/ /(")..'.
{/ i ‘// Soe. L[ T} B o o

oRr e o o » 74
(Bt Rurntl v B2 [

In terms of R, R, and R_ we have approximately S _(kT) = R2
ko : h R
1 e

Comparing this with (5.22)we see that in effect <. has been cancelled by

is of the order of pc¢*

the parallel inductor. If #/*

e or larger, the
situation gets more complex. Ko £l Ty may be evaluated exactly;
i ey i v B
22 Vi i 5 ¥ Yy,
bl //*//'°JW'” F=1/= ¥4 y z
J) /,A "““““}'v‘:;;?_;;.;‘.f::.::’:_::?r s ; 7 % & /,,x
7~ 2 S | . / &t \
7 '/ /// i < /.»8 (/"‘ f)’-/(:—:f/
| * f&_‘kz 2
L Ore Lapes e TPIgY
53 {//!//‘ [ - . -~ s r .
and we would have to compare _ ,, /.« //) with  Sou (4 7) ‘/¢ (CI5) ,

from case to case to see if it pays to "resonate" with an inductor.

One should also note that the filter process in general gets more

complicated when we use a resonating sensor.
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The filter function matched to a short pulse is
,wc Cr-47)
Al4-12) ~ / E S
'}'f/ // ” 7:‘» s L(//’(,/”,: '//)
N //f - A4 P 9
(c.30) #/4-47) = -47) / Lo e T v
" R Ay A a7, /
/—/,,4-1 / .e.f /‘/‘;(y - / 22/

i - ; /j’ ‘/Ji¥)/2_L o

( /r/l 2 ;2 / '/‘,/ Y, /
/’f / LRy =

' /% 4 P 7‘1
where i / r/ /,._..../ and

/ . po————
nt [ SN U
/ & / ‘7(7 /(,.( & Z’ [r’/ ;;;;_:/ - /
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For 7‘/;? 4 p7 » and neglecting the small symmetric 4 4 part
74{/-fj) is an antisymmetric function with a typical shépe
Flgl.12
dhf=t7

\ >

M“\/ dF =147,

If g7 g7 7Z splits up in a damped oscillating complex and

real part,

7/{/.’:( . TK 7(/a»yo/az .

/ : -
Note that /”complex’ is component mixing.



APPENDIX D
DATA ANALYSIS

RECORDING THE DATA

The problem we will consider here is, in which form should the data be

recorded. The rs@ data is given to us in the form

(Xt , $04))
There are many ways in which this data
could be transformed without any loss of information.

the output amplitudes of the detector.

Some examples are:
s s vy ’ ¢ ~ y A / } \
a one to one variable transformation g5 /Z7// y7%))= j7ﬂk??/1;/(?/))

/

"invertible time invariant filtering " ;4

(200, F(vs) = Jed” Jlk-47) (atv), 9047)

a fourier transformation, or

The word filter is somewhat misleading since it suggests that it reduces the

information content of the data. This would only be the case if the filter is

7/

non invertible, e.g. if the filter is defined by ) and IKVﬁQ is zero

for a finite interval 722 , then jb”&) would be non invertible. Obviously,

we should not filter the data with such a filter.

Although as we said above, there are many arbitrary ways of representing
the data, it is important to realize however that if a certain amount of noise is
later added to the data, the form of the data (or the way it is represented)
matters a lot, in terms of information loss. (The situation is similar with
the detector itself, on the front end we have signal and white noise activity,
this input is transformed by the detector in a one to one manner to the vibrational

amplitude, in fact the forces acting on the detector are easily given in terms of

the output vibrational amplitude . /#J ) as;

3 / =7 L7 2 > /e < < )
F) = SC4)+ Nosltd) = m(XrZEX 10X )

=142



The "bare" detector thus acts as a one to one time invariant filter

on the input  Z(¥#)+n.L4) » Which transformation in no way limits

the bandwidth (Part of the input 77..4(¥/ of course, degrades our

information about the signal in a nonbandwidth Timiting way since o/ #*/ s
white and affects all frequencies equally). The bandwidth Timiting
effect (and thus a severe loss of information for signals of short duration)
comes about when wide-band noise from sensors and preamplifier is added to the
output).

Consider first the data in form of the amplitudes C{gﬁ ;?) (where

[iéﬂ J’/) corresponds to an output given by the amplitudes ,{j;/) filtered
by a filter )C optimally matched to a delta function type input signal).
Note that /.7 o7/ will always be an invertible transformation of /v =/ ,
as long as the noise sources are not zero or infinite for a finite interval
(a special case we need not consider here).

As can easily be seen a second filter Z{ to make the combined filter
match our imput signal _"/¥) s given by /—’: (F-#7) = \J"*("‘"'J'),
so that the new output is [fi?, 5;/)*fJ/;&/'ﬁéz//"HQJKQZCZ) .
This ]5'/ "2 ?{; ) is "at the worst" a delta function in which case
the output /.2, & J = /) and in all other cases a "smoothly
varying function, with no derivation effects (except if we have signals "wilder"
than delta functions, e.g. derivations of delta functions, or signals far of

resonance, as we will see this does not alter the basic point of this argument

however). Unfortunately, any recording of data in digitized or quantizized

form will introduce "quantization noise".




The quantization noise is essentially white and may be described by
?04(;;/ : where ol () is defined by
y{
(9((‘»/"/3)/({;')> = O(:”_/' j a,rzc.( ?{
is a magnitude factor. (Compare with the definition of of (#) page 58.)

If we include this noise in the recorded data we have

e e T o . e S
(F ), Fh)) = 2 1) [ L), deg))rttady), «iv))f

where ([, (), 4 lh)) = LK) [l o et

and /z is a filter operating on the digitized recorded data. Now if we make
) v . . 2,
the quantization procedure "good enough" so that ,7 (4 <a//€/;<‘:;¢2 _’/,,,f.L};D
and the quantization time or time increment at least as short as the correlation
time of ([ yo<ic, Srrsc ) then the"integrating" filter /2/ (which is smooth
and without any strong derivation effect) will always tend to decrease the
5/@4(/;) (since it's white) comparad to _(//'t.'/wnr::r , :/l:l,(;u,;o ) ,
in other words there is no risk that the filter Z could make /o “/blow up.
Consider next recording a different choice of variables for example the

plain output amplitudes /.+5 /) . With quantization noise added, we get

(KD, ’:,//f’i)) G« (#) , a subsequent filter operation gives

(70), Tvi)) = 5 fohe-ts) [t gbd) )+ 9 (i, )]
J 2
Again we choose the quantization procedure such that o & (A0 ;,’,.f,.;“;f;/w)

As long as we are only interested in the amplitudes or any smoothly filtered

amplitudes there are no problems. But note what happens if we want to obtain
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quantities like (&77), v/ (7)) , then 7//,4-_,9,/‘
becomes a "derivation type filter."  / /i), L/(QQ;)/) is a slowly
varying quantity with a long correlation time and Vif{?{'_ is a small

but fast varying quantity. Thus any (time) derivation on (fﬁff?;}, i/(?;)/)f
+ 4 (e, (%), &y 4D )

(XD, )

will make ;7/25,(?T)}v/}44?{/b10w up compared to
We may thus conclude that the best form in which to
record the data is a form such that in any subsequent processing, we will never
need to apply any"strongly differentiating" type of filter.
One may restate the above considerations in terms of a more precisely formulated
problem, or question. Let (D.1) dit)=xl(t)r (ICE) |
be a continuous time series, where N(t) is stationary colored Gaussian noise,
and X (t) is a signal, which is assumed to be known in a statistical sense,
e.g. let a particular signal be defined by a set of parameters f;iu]
A signal ,Z/(t) may then be defined by the probabilities ;l {QZV,).
The problem, or questions one would Tike to answer are the following:
Given that one is allowed to record m bits of information per unit time,
which is the best way (minimal information loss) to record the data, and what are
the Timits on m if one allows only a small fraction of the signal information
to be lost in the recording process.
As far as I know this problem has not been solved, and further it appegrs
to be far from trivial.
In practice one may of course be satisfied with some approximative answers.
We will have to consider a simplified version of the problem, and even in this
case we can at the present give only conjectured answers.

We consider the following questions:
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; : it time
I. Given that one is aliowed »i= ‘5,  data points (real numbers) per un

in a first reduction of d(t) , in which way is the data best reduced,

( — ! [ ) . . .
i dit] f Wiy dij (n number of ;s per unit time)

II. What is the minimum n required if only a small fraction of the original

information is allowed to be lost in the above data reduction.
A . : i ich
III. Given that one is allowed m possible numbers in recording dy & 1D whi

way 1is di best reduced to m numbers.

IV. What is the minimum m required if only a small fraction of the original

information is allowed to be lost in the recording.

CONJECTURED ANSWERS

: ta
I. We shall take as a guiding principle for question One that the reduced da

points  d; should be uncorrelated (when no signal is present) 1i.e.

. 2 3 . *
<d; dj>> = S;;» so that every point d, contains independent information

One way of accomplishing this is the following; transform (D.1) with a

filter //L-1') so that the noise goes white 1.e.

Act) = b flE- dCE) = Q)+ L4

] . . . 1 i atin
(where o~/ (t) is a white noise source) and form data points d; by integrating
d(t) for the time _J t, '

é

-
L2

(D.2) s = /;/f Alt)

L AR/ 84

[ —

relation time 7 g(t+¢?t)
Jt« T, while
"new compared to

*a.g. since the detector amplitude x(t) has a long COTTEiS
has relatively Tittle new information compared to %(t), if
X§tg has a short correlation time so that most of x(tat) is
444



1. The minimum n required is given by

resolution time of the detector.
JT=%71 7

[11. 1 am not sure about the answer to this. In actyal recording
S,

e the linear
amph'tude has been used, W a CUtOffJ = CZ)’M:&( .
[v. With the approach taken in II one clearly must demand .. 2 2l
L >> _7.._2___&_»(
\C/" ) )

d be compatibl i
gt o shoul p e wWith the largest types of signals expected

———

Although, at the moment, I to IV are only conjectured approximate

nghumbrules”, they have when applied in practice led to considerable increase
in resolution.

One has of course also to consider the amount of extra complication
(computer time) these rules might lead to. For example if the data is not
optimally filtered when recorded, it will have to be filtered later by the
computer, which might considerably increase the amount of computer time one has

to spend.

Consider now a specific example of a data recording where we compare the
7, /) “method and the %7 )" nethod.

Let the system parameters be the following:

The damping time of the detector is = # sec,

. . £ L 2 7y N .
the resolution time o »* = &, Q%Y rec and the data is recorded

with six bit resolution and 0.04 sec. time increment. Further let the data span

12 days.

With no signal ¢ has the distribution

& s
¢ Za \

o . = '.(.C z 4 2N / W4
/U/// = S “-»/L'X/W/M PO where g = A L/ > 3 /'/‘!/ ¥ <7
f/ uv/ }/ :J )() o = -
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Lo

- for &/ . Let the p
and similarly ecorded data range be ~-.1% i,

This means that the number of times thig range will be exceeded by the input data

gly of the order

is rou
o>
S 2 leatd / / . g_m_t/:__z +.8 £ e ‘,.
‘//",r((./fwaz(u’ /.af /-J L= 7 /,:il-—) / dL/
oy
S rz 4
2 A& o, L
= 25 favs ] f = e =
26 = L
ﬂo
(for <>/ we may expand) =~
= / ‘5—'-¢-/~- ey ‘)n_;i:’f /___/_ /
2 / . ( Z, ~Zs™ "
with o= 7.9 we get 3 =&, %/ | The vange. - 4.4 fo v 4,8

is thus a bit tight so let's use the range -~ for +4T (in terms of a).

Now from page , before recording we have a resolution

[Pl

dn \ ! i
oo b CA/“*"JL.:///fJ4-~(/agy/&

CxreygrE LT/ e/ TG03
but after recording the resolution is Mi;. = O ¢ (6 bits means the

”
o

range gets split up in 6 points). Obviously this leads to a fairly large
loss of information in the recording.

% 2z}
Now let's consider doing the same recording with the 47 <./  method.

We have
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J v | / ?Z -
Pl e e &= s £l TR

(and similarly for 37 ). The reso]ution in these variables

‘A// ‘(,f o 2 Q./ &2 Jéx = :/ / / /

e

Again we define a ra .
nge Ao, A ) and the number of times this

range wi i ;
ge will be exceeded by the input data is (the correlation time of // ’/
is 0.04 sec, which is also the resolution time of the detector, See page 3
(o4
® - P A4 ‘ / /;z j,l / |
i = LEenE [ zepa e 107 gep - / - )
O 04 sec ST A 5 4 Z Ra, [ %5
&, '
/ * L e
‘,’-}‘,'(.{« A m «:;/ .

Now let .= /0 =,

e /0 » Thus we may use the range ~— /& Cz2 L /O witn
essentially no risk of exceeding this range (due to noise activity) and it will
not be exceeded by signals with a signal to noise ratio if less than 102.

we expect even stronger signals we might decide to use the range -2 cald z20.

(not exceeded by ~:/s) ¢ “¢e ). In the first case we have a recording

z . * s f)‘ .
resolution of e :"ZXJ Ty 2 74,{2 - 6 T2 ) in the second
case /7., e 2 & & La . The original resolution being J.z. JA4., > /J

this recording will give only a small Toss of information.



SIGNALS

We have very little information so far about the nature of eventual signals.
One of the few things we can say is that if there are pulse-like signals,
each pulse is not likely to have more energy than what corresponds to a 4 7
excitation of a Weber type detector. Further we can say in general that the only
property of the output data that any type of signal has to affect is the energy
distribution. Aside from this, the signal may have special properties that can
show up in the data (if the detector system is sensitive to this property).

The most nonspecialized signal of all would be a Gaussian white noise type of
signal. (Only one parameter, average power is needed to specify this signal).
The three degree C° background radiation would for example be such a signal
(unfortunately too weak to detect). The only effect this type of signal would
have on the output is an increase in its average energy.

We will now consider some special properties a signal might have which can
be used to increase its detectability.

We define a pulse as a signal which is preceeded by "zero signal™ and followed

by "zero signal" for at least the time 7 3 where 7 is some time
constant (one may set 7= - the resolution time of  the detector, but we
let 7 be unspecified for the time being). We give beneath a list of

possible types of signals that we think may be relevant in connection with

gravitational radiation.
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We may classify the signals by three numbers (k,i,j) in the following

way.

k=1 Pulses consisting of stochastic signals

k=2 Pulses consisting of an exponentially damped stochastic signals

k=3 Pulses of special form with exponential distribution in eneray

k=14 Pulses of special form and specific energy (must be considered fairly
unlikely though)

i=1 random arrival times

1 =g periodic arrival times or other types of periodicity

=1 non directional signais

j=2 directional signals

The above definitions are fairly broad, i.e. the stockastic signals may be
narrow-banded or broadbanded, on or off frequency. One may for example imagine a
stockastic signal as arising from a black hole capturing a massive star which
by tidal forces is broken into a number of smaller parts, which in a short time
spirals into the black hole. One would imagine that this would create a
fairly broadbanded stockastic signal centered around some frequency. In fact
it seems not unlikely that it would damp out in an exponential manner.

It seems to us that the exponential function is the most 1ikely form of the
signal pulse energy distribution. Certainly, the occurrance of constant energy
signal pulses appears to be quite unlikely.

We also note that if there were signals with periodic arrival times,
(compare pulsars) for the same energy they would have a much larger signal to
noise ratio than random signals.

We will next consider detection of signals of type (3,1,1) and (3,1,2).



QUTPUT DATA DISTRIBUTION FOR A DETECTOR

EXCITED BY SIGNAL PULSES WITH RANDOM ARRIVAL TIME

AND EXPONENTIAL DISTRIBUTION IN ENERGY

We shall consider a reduced set of hypotheses, (Ei Tj) i=1,--n,j=1---m,

of'short" signal pulses with random arrival time, and exponential distribution

in energy, where Ei is the average pulse energy and Tj is the average time

between arrivals of pulses. One might also consider generalizing the hypotheses

to include different stochastially distributed pulse shapes. We shall, however,
limit this investigation to "short" pulses (pulses that are short compared to the
detector resolution time).

We will have to take an approximative approach in deriving the evidence
function. Let the detector resolution time be 4 T. We assume that the detector

output should be filtered with a filter matched to a delta function input signal.

The points {x(t )},t -t _1=4T of the filtered output are approximately
uncorrelated. The probability for a signal pulse to arrive in the interval

£, 2 A is 4?7;/7f . The distribution of /%.) if a signal

-] 4
SCE ¢a) is present is 7
L
) / //t/(f") =k (1 i’//l/‘
B e o2 -
Plec)) =g, =7 7
s ) /4

where (7. ) is the "noise only" expectation value of a4 ) .

CErD = P = CH )~ 002
and Jff//}, r) is the signal output at Lo ) if the signal input pulse

arrives at t.
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(/’ (ir;) KE )

.44 |
£y $ ) is a 1two component signal,
t follows that the

Since
the en .

ergy of the signal has an exponential distribution i
and Sa have normal distributions.

correspondsi
" ponding amplitude components 5y
o i |
5 At ) I B 1) = EC(t o)
/j_;fxl fo- L HL T

in the interval and

For a Weber-type detector

E
(tit,)=Ftybo) 27F - £ 47 .

all a :
pproximate £ /7, . to be constant E;

we et
e

-/

£ = E,/f,,f,)j/% ///z‘ zefl = %t::gl . Elt, bl [/-¢
é/-dfi

Sin
Ce -~
are normal, it follows:

S, (4 4s) and _;;(y;f,)
p J )~ Lz

Lo (X)) = [ 45, p/ﬂ;ﬁ)ﬁ/}':) P (En)
: / St e /;Z;JS"

ol »
(E/I’,Z‘y/ SR exf Bt ) T > B+
y in the interval f,IAT is 4/.?/_»

-

The signal probabilit

wu

il Es=Fy; ; we get
gads / //2//’)/
’éJ 7’ (E w;) il (Enr B

T / &L’)’/E

(D,3)
Ev(a"j)/n’{) (2‘)) // CFn)

oise * signa1

Where =
'”Qj) denotes N
tector system

i1
1 later joint output distributi
a single detector-

but i
wi .
11 first consider detection with



DETEC
TION OF RANDOM PULSES WITH A SINGLE DETECTOR

Since
the data poi
0i L
points ,4f are approximate1y uncorrelated they will

. Give 3
tota ;
1 contribution to the evidence;

deor
(E,77) = I T Poe gl
Bolotd)

=0 {( |- 47) - 47 )
: é__) o, LE L)
't (. TE:) i FmEp D /2

¥

lose than 4T Since

One mi

1gh

ght want to have sample points more ¢
e to correct with

Pointsg
closer t .
han 77 are correlated oneé will hav

e new sampling intervals;

jidbz (_JMZLKKJ/

a
factov‘ Y r!/
BT , where 4T is th

(D.4)
4 d’o”(fg: | L
.-.7J-=«’~>w/*f &
/ J?‘_;‘ /[1 ) n E /U (En"'[—;>

The 3
1gnal : :
(See to noise ratio for the hypothesis (/J) s given by

2

(b.5) -
‘:)Vl/[,’ ;:.,I 4 2*"‘//)
jIT)=E Jde By By

aluate (p.5) for

where T
We shall now ev

is
the total observation time.
to noise ratio

ffective signal
(D.4)-

Som
€p
aram
gt
er values, and compare with the €

r consider the typica1 form of

for
thre
shold detection, and late

Let 2 _ ¢
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T P : D 0 :
Writing , ... in terms of B and e we have:

/74(1«1‘]) y

; = T e W _ —
.8 e ) 7) = 77/(/é<ﬁ L) P (£) + 4L P (£)]

S % iy g

2. (E)
O (- 4 ) e

/ = —_—— / e — ————
We have /D,; J z': cxo = “5 ~ /E) En + £ oy =39 *E_i

Let 47 _ 4 (Note that tvpically A is very small;

A <1074 for a couple of pulses per day).

E A N »
/J7 urL(iu'/U— //{Z///HA> X/-O—E o & gx/D_E +£5 2
a
AEx | &l
O [(-A) By et Bt ]

Since this integral resists evaluation (in terms of simple functions)

we will settle for an approximate (better than 5%) evaluation. We will

use the approximation -, //+,()=)(—0/ 2 X'2 which s accurate to at

lTeast 54 if O < k< / - We split the integral in two parts.

Ly

\
- 4)(& FIEAE) " E, ZnE))

(G-A)+£ (12

é; _
= /J-_/{’:,j)_ F=3 s ._"E._ e A o
]/ /O/E{/E;z =P £y lgn"gi 5
o

o0
/‘ ! £ -—*¢ 4-//"/4)//:.4 ,/,)
§:ﬂ£XE£~ex/o-§: +Ehi_ exp - E +£//'/” - of f //
&

. Eq ;
eLp = Enl(En 7£5) )

\

£ £ -~
where £, = Ly /° = ”L—l /,,/ /E C”' )// ’4> We note that our approach
O ' A t /+ E» 7
. . e < ¢/ En
1s good only if Ca 2 O/ / A

b f‘/gn

A =1 means that the signal is on all the time, for this case we can easily

evaluate (//). 7/ exactly.

Vi
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e

Let e o Vol . We then have
En

*a&z /-ﬁJn

] M/_/_L-_-_i e / 2-4)
A / 086}_‘/ (/

. v 42
0694 —35 A /2
¥

We repeat the meaning of the symbols; T is the average time between

pulses. A is the factional time occupied by pulses (e.g. 1 sec. in 104

sec., etc.)

a is 54 (i.e. a is related to the signal to noise ratio for a

By

single pulse with known arrival time t in fact Sn(a,t) single pulse =

2(a - n(] + a)).

In the 1imits a —> 0 and a —> o2, the signal to noise
ratio is
= T
Jﬂ(f‘// }2)"?(:2/7 /d‘—/n[dv‘/)) where nE T
(D? A= oo
ol , | [ 9 9e Ata’
Swlah ) »> nAf/se ~J, 981
a—>0

If A=1 the integral 5) 1is trivial to evaluate;

,w{ﬂ/*‘f/T)—ﬁ Yy, "(/,(/L’//) Qﬁ(/

7—

™
‘w

— . o
s (,/{__ AT )
A -2 2

::ﬁ_
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We will now compare the above "optimal" signal to noise ratio with the
"effective" signal to noise resulting from a threshold type data processing.

Threshold detection corresponds to reducing the data to binary form, e.qg.

[E@j B { h} = 0,1, where =0 of

and =1 f £, >E, , where £, is the threshold. We have
— £ (%3]
/?*_5([:0) = /f/f /nr.{(&-) ) M?‘J (‘ '/) ?:J[EJ
(2] Z'— Ea
R(i=0)- </5 /2 (F) , B(i=1)= [dE P
Thus £,

Bri (0) = (1= 4) (1= 2epp- £ ) » A() = eapp- Tz )

(1) = // A) f//J'~“*’—- - A eﬁ)~§§

A
- f o ) - Lo

"
.

Blr) = ex/y—i_-’;?}-

Thus the evidence increase from m data points ng"] for the signal

hypothesis is

4.(/6//"/_{“,4/;«'/1.);2“ i LBrS o 4. =

=i /?1./[;/)
= UE) b fl1-0) + p 2222 ) r ) b Jr-) A
/ // c’//u-—}:r
where SZ(/EZJ/ is the number of data points below the threshold ,

and /}’éﬁ,) the number above. £ may now be varied to give

maximal evidence increase. Next we consider the effective signal to noise

ratio

(0.10) S5, A lm) = 2m ;/// Al = B )2 AL 2t )

J
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/. ///—/) g e '?_‘)”' )) lre. dhesp-F thop e )/,1//~,4)+/4 cep FrBe )|

..,og/x_z}; ) "u(/.,‘f[;//j

Mo E,

where "eb" denotes "effective binary". The maximum of Sneb cannot be
found analytically. Over the next couple of pages we give some computer
evaluated graphs of Sn(S, A/m) and Sneb (S, A/m). The graphs are
evaluated for m = 106 (approximately the number of time intervals during a
24 hour period for a Weber type detector. Instead of Es (average eneray per
signal pulse) we use the variable /= »1-4 é%% , the total average pulse
energy for m time intervals, in units of average noise energy. We remind
that A is the fraction of time intervals occupied by pulses. It is seen

from the graphs that slightly more than half of the signal to noise is lost
with the threshold process.

The threshold approach stems of course from considerations of individual

signals. We would then be concerned with the problem of assigning each

individual time interval a signal or no signal (yes or no) stamp. To do this
we would reallly have to know the prior probability for a signal (which we so
far don't know much about) so that we could use Bayes' equation to find the
probability for a signal hypofhesis to be true for the individual time interval
in question, and then-based on this probability say yes or no.

Since we are mainly (so far) concerned with the problem of gravitational
waves or no gravitational waves (and not if there is an individual gravitational

wave in the nth time interval) it seems more appropriate to "aather

)
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evidence" for (or against) the gravitational wave hypothesis as such.

Once we have gathered say 99 napiers of evidence (to satisfy even the

most severe skeptic) for say an hypothesis Tike ( &r, ;) we may
decide that the hypothesis is true or rather that the no signal hypothesis is
untrue. This decision will then define a prior probability ;%U

for an individual time interval to contain a signal, defined by the

distribution
S &
) T‘ 5 .
namely /ﬁ;) = f%;f - Thus it seems natural first to convince ourselves
v

that there are gravitational waves and then as the next step worry about

wether individual time intervals contain a signal or not.
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The analysis of the data from a "single" detector is accomplished
by evaluating (D.2) for the chosen set of parameters, and find those which
give the maximal evidence increase. The parameter variation process
may be fairly time consuming. Once a "good" hypothesis is found one can
do away with the variation and just keep "gathering" evidence for this
hypothesis. This could be done in an extremely simple way. In fact it
can be done directly on the filtered output of the detector in a recursive

manner. For each new data point we get some new evidence so that

Pesri ) (E ()
RAEH.))

dee~ (Eo T In)=deer(E T ) v k Ln

where  zo7/~= /n) denotes the evidence from the data points
Eits) 1o Bt

On the next page, we give a graph of the functions

| / /D Ty /E-)
anAd Er(‘:ﬂ (E) [n Latigld

Z% pru(:,v/_',{;(gj
P () .

K (&)

the total surface of which is the signal to noise per time ./# (resolution

time). Note that although ¢f¢2;~'(?§é§;_) appears to cut off for

energies lower than ~ £,/— = JO , this part of the curve is still
7SI e
important, due to the large number of outputs i?/gyn in this range

(as demonstrated by Figure 2a).
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TWO DETECTOR COINCIDENCE EXPERIMENTS

One of the problems with the "single detector" experiment is that
there is no way cf telling wether the signals are gravitational radiation
pulses or local disturbances of some sort. We can of course try to limit such
distirubances by improving the acoustic and electromagnetic isolation of the
detector, but this gets increasingly hard, the more sensitive the detector is.
The best way out of this problem is to use two or more detectors at well
separated sites.

Consider the output data from two such detectors

d/(/‘i f‘*JK'///* ) 67

d{z/-:j/*‘rfl),r)z(z)

Where o/“’and «/“*’both have been filtered to match the same signal.

"j/{”and S/ are excitations due to local disturbances and are assumed to be
completely uncorrelated. ~ and J “is the same signal occuring in both '
detectors. We will 'consider the case when the reference oscillators
of the two detectors are unsyncronized, the effect being that  and s’
have uncorrelated phases. )

The first problem we encounter is what type of distribution we should use
for the pulses 7/ and S/, With a Timited amount of information we
should choose the distribution with the least constraints, i.e. we let- “and _
have exponential distribution in energy. Clearly .”” and -/ could have different

density and average energy, but for simplicity we assume that they are the same

and are defined by the density .., and average energy ., . As before we choose
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the exponential distribution for the signal pulses defined by the density =

~S

and average energy 70 . We make the approximation P piy ) = o
i.e. the propability for these pulses to occur at the same time is zern. The

distribution of the data,the moment a signal pulse arrives is in the two channels

P e ) Z
2T j) - £, 7% 7/

2

U(’)/ ,/1//, —
TcEws ! CEn)

oW, lies ()=

7 )7 Fer) / CAXVE

: IR cCi) _ - [ty = ¢

(2) R.(7) = Torn s SPTTIE (B> = (nil)= /pas?y
"y N\ S

(We have for simplicity assumed that the two detectors have the same average noise

energy).

vy .

e o=y

S and 57 have the same magnitude but random phase correlation.
st e T b g =
Now Tet ;ﬁ‘z)'a AN Jeb ) = J ) crred
/5( v = "' /‘//,/U (-/) ‘_":) /5;/1/‘ g;‘y L: /C/KZ)LJ:.) 5 z)

<J—>‘ \/--~4/
=2
b— 0 F 5 7 s R 4 - i ' .
Now .5 has the distribution ST S el - ;ﬁL:; ety — ;{:w YA
- N2, \-1‘;> =

V.

- and 7 being the two phase directions. hereafter we denote
//J}cﬂif/ Zif [/L?:

>
% 4 & 3 - 0) ¥
Thus the distribution A ¢ ;;'igf“Q' is

/r'#/,fj/,
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-+ v xf) /W &
e P ﬂ} v/ > /(‘) )
= //;c’:; //P*‘_f‘;—)f:{.‘& <E- * L7 b, /“’ (o re :> [ 5 ) .
4 G7 S\ e e
e T(Ea (B CEL X(E; D
. —-//)2. _(Zl' Z_ PYI ¢ m-'jf> //, ///.’ /(ZJ)
L / A 6/‘ *’;/ g (Ern o2 F7)
a3 P =
T LECFr 2 ) r (E.)

— , = e 9% b 2 4 Z ir2 s, ) | .
We have :,’;"/") 2-: ‘;//IJ : /f‘/t’/)"‘ /(//,/// ) l’/“) = é//‘) i il K’[ IJ:/C‘/“J// cervied

& N/} L = el Cos &,, =

/EJ) ///, V23 ¢4
(2.1 A < L i i (el A U s )
Y 2, (T < o
Mris) s /7(/5;)(5" .c’;,) (’,C‘n)

o 4

Now the angle &), between ="/ and ¢ is not measurable (since the phases

of the reference oscillators are unsyncronized). The angle &, between 7,

/

and the _t” axis is not important, so we integrate over =, and £, =)

(D.13)

SV e ([n.)(‘f 1’" J/

i __,*4 /4 bl )
//f ‘/'/»f/) # {'/) //z) P // e ,“,}‘ ) &/ ‘)Z‘ 7(» \ 2 /) e ))
// fff) : /. ”’/\F .'}LJ/ (‘}

Where 1Io 1is the zeroth'order Bessel function. We will use the approximation

for large argument;

T, (o) ~ =t - —= P X
s poix © g2 fed X
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el e NS ) .;‘_‘, /%20) 2
//z) /“7/ P, / ¢ ‘/"/c’/ /7 e S - / &)= _\::‘“}/J:-':f;««_:’:i, o *(F_> (/’, {'/‘ JJ/
d.J. e Gk ~ p — - ) e T T ———a
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i A KT 2B (L
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We may express this in terms of energy;

'\//y-’// r“j)"wvu//‘;—;j r/,‘/&)vz

/ A)\ 2

.15 » /E«,:»Em) =

— e (o > T
(:/ /;”,’/ f‘"’“ )> -<~‘:J£},_’ e=is )

= ’ LCE;)
‘/'\‘:—:a J‘:- . . .
We can see that the term {fE 7 =y Ettd is a "coincidence factop" which

.

gives preference to energies which are of equal order in the two channels.

The distribution of the data at the moment of disturbances s and
are:
"I} ) /‘ -r‘///
f.= ’ = - — ./-———_
/) / Eat By AR TP
(D.16) <
/0 9 7;-{1)
E)) - ! 24 b
L nrls®) / £ CEnAE) g ¢S
We can now write the total joint distribution;
ol , —2 )
/ M ez -+

/ r‘ 1l P L2 , o o ’:, . ) M_;M_ 25N - y ;,v-_- '
/Z/ /7/ / )f / o S ‘_,:/,’ (1/5\/2. '/" :",5»‘*'«/‘
o \// f
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& =01, ~C2) ‘) z) )

s . /:*,/, ? - -{; BRI, -ccc: R ) / , & 1/ - é,j:..m»~— - /£/v 1.;‘/_” pl/r » -
~ < b ’, ‘_‘A- \ / " i
/(z’ “Eep FwtZep / SELXEWE) Co/(Eu? ‘//

g /r /-U
# 'uf/ T R, EXENE)E /, )
.Jr 'f// ,/‘ i-»(/ ’_ /F r)r")/ (E‘)(r)‘*f; ':-‘!

JECIER 55 En ,,;’;'?Nf )
We have dropped all terms of order 7% . e will also need the distribution
O motse plls disturbdntes  , Bokmo signals, which is given from (D.15)

by making “ =2 . HWe will now have to consider three different sets of

hypothesis,
FL e ) : (The data contains noise only)
A /7 (s 780, 5, /I (The data contains noise and S, only)
HlE 25,5 &) (The data contains noise, ;; and = )

Where the last two are really parametrized sets of hypothesis with

parameters _7 /7, respective 7, 7, 2 ../ 5,

First let's consider 4/ and /7, where we let //s  be the denial of

/ l/" 7 - . . .
f/_r = Let Jee—(7 / ./ﬁr"/’w) be the increase in evidence in favor
of  A4/- .- From a single point at /- t we have

) / o ’;;L}
/“ﬁ /g/ L e (/’{/G/f:; (%/s f,v%/,)/" = Kk h " hd CIVLA P I
ES e

— 1) —cz)
T
5 ) (Vi) = K S Af dn /?4*_/;‘)»*(:/
/D /o /) /‘,//_'/“’{/7"»/'.:' H77s%)) = =2 Z 4 7T
(&, - Y & /D(Em =zl 4
¢ n & 10 )

where AT is the detector resolution time.

*Again this is an approximative expression of the same kind as (D.2).
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By varying & F, & and & we can find the specific
hypothesis // ° that has the maximum increase in evidence. We let the
) s = 2 — o -

corresponding parameters be defined by $2=5°, 5 s B S =50

and Fef.° (We note that this procedure not only specifies the nature

of the signals, number and average energy, but also the nature of the local
disturbances, thereby telling us if we should worry further about improving
the isolation or not). Let's consider a parameter variation for say two

Weber type detectors with 7., (/’,“7" SO . The following would certainly be

an adequate set of trial values

Mg aved By= 2,/-27 [ nalz---jo [& ,_f'%‘ )%"'/7)%; /
Es cvneed E, 2 8"  # =/),2 -- /¢ ( Jee /e .
Next we consider the hypotheses +%.° and //° where 4. is defined
e and 2, =277 0 A% is now considered to be the
denial of ‘4 . The increase in evidence in favor of A7 s from

a single data point at t=+:,

) ‘z)
/[69(14 "‘J_,L /

/D
D.2 f e (HEE: (HAH')) = be o Lretiaren) ~
(J o) A g S(H ) /D/fj/” epr

o ”"‘o,

and totally:

/,,
3 (&) Er /
= /7,/.__ ,//U/(F‘//’,/.QY)-_/'J])M r-—"/ ‘!’?. l,«r/,./f/ ) R
/!ﬁ.Z// L (#”’ (/75 ""I/')Kﬂ /,,./,/ r—-.,)‘
L —;:—' /0 /‘., )
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This is the final expression for the evidence increase in favor of a
"coincident" signal hypothesis. Note that this gives us all information we
need and it is not necessary to make time delays. A time delay experiment would
amount to testing, for example, the set of hypotheses
which are all similar to the hypothesis except that the arrival time

of the signal pulse in the second detector is delayed by the time compared

to the first.

One may then consider the function

(D.22) f{w) A e (HE(at)[fF ESL (H Y0 -2E) A )) =
D (EN B

¢y —~—4.wt))

= —éc"‘ ;dl‘ /Vt M (S ) +¢S)
AT & /
s = ;EZ(QE}{I ._(A )

We remind that 7 is the time increment in the data recording.

][(V) , Y¥=0,2/,12 - - defines a "time delay histogram", which
provides a very useful way ofdouble checking the rczults. Because of the
Timitations of original set of hypotheses (they may not be sophisticated
enough to differ between a "bug signal" and a real signal) this kind of
check is necessary at Teast until one is sure that there are no "bugs" any-

where in the detector system, or in the data analysis programs.



ANALYSIS OF SOME DATA FROM THE MARYLAND ARGONNE DETECTORS

We will give a brief account of how the data analysis of some Weber

tapes were analyzed.

et B (/ () = 4 /*M/) i

-l e 1
= ) e z({'w) -F. f/ (f/%)) , where (1) and (2) are channe
notations (e.qg. iff’) may be the Argonne sianal and E fe)

o

the Maryland signal).
't v",) . J .
The data jE},', g /) sty =% (/A denotes time 7, ) is stored
in 6 bits, /. _71“249 )---- 63, on the data tape. The first step was
to transform the data into a "frequency" matrix N(i,j), 1,j=0...63, where
-f-{/} e

N(i,j) is the number of times the pair ( B 5:;5) ) took on the value
(i,3), when F* goes through all its possible values (A1l time
information is thus lost in this procedure). The individual frequency

distributions can easily be obtained from N(ij);
ni) = SONGLG) 7 ) =2 ML)
J ‘

We also define the averages.
;:_ Zz VZ(')/Z) : ‘/‘—‘- ‘;J M(‘)_/J')
Zn[')(lj ) Z‘n(z.)(-j’) .
w2

If we assume that the number of excitations is very small (the

fractional time that the detector is excited is very small), one may identify

Pl BY s e B,

We rewrite the distributions D.13 and D.16.
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(D.13) =

/Dh.fd.s(z“‘/.) ==(/112 as) s / [/ /+Z‘d‘)(- : o /}

VI D)
/ua_T __7‘ ;‘-7 ,

Where a, = E’/fn

(0.16 )

where 7 = ‘EVEn . The "noise only" distribution is,
e B A e
LD, -(/54—//7 (/‘—:—""*w?// =L
¢ J J

From these we construct the new probability densities;
ROLjIs,as,5,a)=(1-si-5) R(Vj)~

S /2*4//[,_[) - n+a ) J) anel
Bl jls. ac) =(1-53) B (r.j) +52 Pra, ()

The evidence increase can now be given in terms of these probabilities.

(D.23) Jdeu(s as,s,4/cfijl)=

=24t SN ) L L Plle. e St ]
47T i /D(z_/)
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and
o) Jea (S, S a0c (1))
b '24/2‘5—/&//;,_/)/% pﬁ.//a , a,

1(1"-/ /\’L 44)
antage with th

l

rresponding to the formulas D.17 and D.19. The 30
co :

trix approach Ties entirely in computation tipe. Computing (p.23)
ma

(D.24) with a P.D.P. Tl...takes about 30 se. While the same computation

done point by point from a three-day tabe would take hours or days .
on

In our calculations a "scrambled" matrix M(i,j) is constructed

Jong with N(ij), for the purpose of comparison. M(i3)
alto

[ P e u} /z_) :
the following way; / re /‘J;((:u)/ is the set

(1)
of output data pairs. Th1s set is transfonned 1nto the set ZC/E- / , ZFéig/b/

is constructed in

F b .} is the same set of numbers as
where [ Vpe

[+
but the order has been randomized. The matrix M(i,j) is then constructed
u

[f(/'f‘/‘) F ‘2)) J/ Just as N(i,3) was constructed
£ J{ - Clearly M(i,j) should give no evidence
::ima éimészf:ig;al f;1 fhe two channels . The computer program produces;
‘475?97 (:@/), if¢/7(<ﬁ1) and 475Q;;§H)for a given set of parameter values.
A second computer program was constructed to produce a time delay histogram.

It gives Lz (V) where one channel is delayed with -4 sec,

2 - - - - The above matrix approach was not
and =/ 2, - n
used this time since a) it would require one matrix (64 X 64) for each
time delay, b) no parameter variation is performed. Instead the computation

was done point by point, with the aid of a matrix,
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(D.25) f/b,/) P/ZJ/'?‘@”""‘) 5 [ O &3
C RIS 4 ) s St e S

and

L

0.26) J ey (S a8, a. /5 o m})

f"') ,u»n)
(il
7{(_' B

This approach has one advantage in that the program is extremely versatile
If the matrix 7f(1;j‘)

is chosen, instead of as above, to be f,/ j_ /
if 0> £, and j)jo , and f{"g‘j); ¢) otherwise, a "bmary
cross correlation function" is obtained. If f(/[“f) - [-j' the

ordinary crosscorrelation with time delay is obtained. In the same way

outocorrelation functions are easily computed.

Unfortunately, however, the computation time with this method is fairly
long. In order to cut the computation time integer numbers were used which

in turn led to certain errors (which may decrease, but not increase, the

central peak in the time delay histogram). e can at this time onlv present

a few preliminary results. Presently, we have only eight "cood" tanes where

the data is recorded the new way, i.a. in the form (x, y).(Good means that

when these tapes were recorded, both detectors and recording equipment worked

satisfactorily). These tapes were initally filtered with a simnle three

point filter, with weights (1,2,1), The filtered output is then sauared,
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and x° + 92 is formed and recorded on a new tape. It was then found that two
out of eight tapes showed signs of containing a signal. One of these tapes
was analyzed in six hour periods and it was found that only two of these

periods contained "signai activyity."®

We will not for the time being speculate about possible origins for
these "signals." The above mentioned filter is simple, but not optimal.
A new computer program* which allows filtering over eleven points (note
that on these tapes the “sampling time" is 0.1 sec., and optimal filter
time ranges from 0.3 to 0.8 sec) has recently been completed. The programs,
and some other aspects of the new approach, such as the initial electronic
filter, are not yet working to satisfaction. We will therefcre only include
some preliminary results for "weighted" (as defined by (D.26)) and "binary"
crosscorrelation of the two detectors (Argonne and Maryland). Although we
are at this point not sure that the "Weighted" crosscorrelation is "optimally"
weighted, it is still a valid procedure. In all the cases the weight function
f(i,J) was matched to signals with exponential distribution in energy. It
is noteworthy that even though the testpulses were constant in energy, the

weighted crosscorrelation performed better than the binary crosscorrelation.

More complete results of the investigation will be forthcoming in a special

technical report.

*Special thanks to Bruce Webster, who wrote all these proqrams. His ability

with P.D.P. 11 assembly language, allowed the construction of very fast
programs.
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Fig. D.8
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Fig. D.9
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APPENDIX E

GRAVITATIONAL RADIATION DETECTION WITH TWO OR MORE
DETECTORS WITH SYNCHRONIZED REFERENCE OSCILLATORS

We will in thisappendix consider the possibility of performing experiments

which are sensitive to the direction of propagation of the aravitational wave.

(In the following we call this s.d.p). Certainly since a single detector by itself

has an absorption crossection which varies as where &7 is the

angle between the direction of the incident signal and a normal to the detector, it

will be "weakly" s.d.p. (There is also a polarization dependence 2% where /.~

the angle between the polarization direction and the detector, for simplicity we

consider the case when 7 - = ). As we shall see one may by using several

synchronized detectors obtain an "interference" between the outputs which
will cancel, except when the detector system is looking in the "right" direction.
It turns out however that the maximal signal to noise ratio (that is the signal to

noise ratio when we "look" in the direction of the source) is no greater using

distant "interfering" detectors than /. nearby (noninterfering)

detectors or one detector with n times the mass of one of the n detectors.

which both have the same signal to noise ratio in all directions. Thus it seems

that before starting an interferometric experiment, one should use a non-
interferometric set up to find out if there is any detectable gravitational

radiation, and as a next step worry about pinpointing the source with interferometry.

Let's now consider 7?1 detectors separated by a distance [/ and arranged

o

s in the figure below .

d .
I L=,

‘ 4

e

oo g
&
, :
I
LD ETTRE 7 v s
[ S RN ' -
i

P 4

e
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The Fime delay for signals reaching the +; -

77 detector relative to the
first is

_ / = _
dF = ¥ g S g where < is the speed of light o
ddv= VAF  where Ltz bz Sm P

? /n//l
Consider now the input signals /7% ) fe 7

[
) - 7/
We have /%) =74 and SV ) = Sch-var) ‘The fourier expansion
of these signals are

e——u

/[/)/%}“ /r/;) _‘,”/W-):‘W’L
//

-

- e - - - - - - - - — s

ot
LY - . _;' J /, /Ad’r“
< / £ ) 2 J
2w

Now let's consider the phase space vector (in a coredayiic Zomme )
i 1 o 9 ":.’ft)+
defined by these signals (i.e. multiply by & ) we have
+ N )‘
/ elee £,
v‘/(()/’)”,% b ,j/.w,r"‘/) _ 3
- /--‘”ﬂ/’
oy -, 7%//1/7 ) | P Ve, (F-20)
z . s S (erwe)

where the . ¢ are now comple

IV}, i £, o )
; C e (K50 ST
Thus we can see that the time delay not only shows up as a time delay of
relative to _, "’/

52 but also as a phase lag; &, =, v JF

If we at the arrival time of the signal display the outputs

and - ¥%/4)  in a corotating phase space diagram, we should get something
like:



Jt i, 1 e2)
Fre. F.2. ot i)
4

(1) l N /v) * (1) #(V) 4 U"[‘)/

V) =2

Yy

Clearly the sum lz ‘;/"(J)e_“\)% , has maximum for WVd = ©v.
W

We should thus construct this quantity from the output and find its maximum by
varying eof .

Consider now the output data of the detectors (signals plus noise)

A= s g where SYE) = st

F(Z)

SYt)

L]

Q/({*dé) c —zitl)o J¢

‘((”/{{/ 'J(f*k_j’:‘/‘d_['”””df

Let's now introduce the hypothesis that there are incident signals with
exponential distribution in energy, with an average energy <. and with density

(frequency at occurence) Let's further include in the hypothesis

Vs - 2 I-”/;
that the signal is time delayed by . .~ , and has a phase lag of &/ = b ./7¢ b

. 2 / =gl e s /,‘
in the 7/ .. detector. iie denote this hynothesis bv HelZs S5, 44,

. . ) i, A
Time delaying the data above and multiplying with the phase factor =

we get
¢ /o) \ _

A J = _{ /21/‘ + et

A7E ) \ ) ;’/»( - .l/;_" ,’ “*/,"’_
2 f"//r"',’".’l/ ‘_-; - //Ié/. Bt W (A, 4T )-r spC2)

: ~ -

i ' 22, /¢ - L Lot (d-0¢7) . tn

2L rl g1 r'-i;.f?/l L ce 2l = 7 //‘~ J & + M #

(Note that we have for simplicity left out local disturbances (E, S, )).

ba &
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We omitted the factors multiplying the noise, since statistically it ig

invariant under time translation and phase changes.

For simplicity we
may now let

- ; L eeds VL () s tev)
v vae) 24P ) pe) = 2l

At the time of signal incidence we have that joint probability distribution for

20t} AL}

et ", A, - s (can be derived similarly to (D.12))
AL N 2
. Sl - =l S //
D w’{:‘w, o S A O /«/‘) & V",_‘ e 7 5‘-'/_*/‘:,-‘_/ Loy
/';:»?f/ e v /. . s %,
& é]// // C L ) ”‘/_/ /‘:n/

The time averaged distribution is »
- sl
/j) /5"' ‘) = // ¥ ) // = o ’ZZM/i'r‘/” 2

}qu/ / 0///4'34 )/ / (‘ V/) 3 % ‘ "‘J/yf - /) (E‘”*/

and thus the evidence for the hypothesis /9{’/'i;—«, Jt)

s 1

VErsus a pure noise hypothesis is

/
L / { /:> / “/
Prm ) 2 ST, S 4 A ,:Lﬁ:w,w,_/
Z”fﬂ"'-'(/ /,‘:”;);-;‘,ﬁf /.z;,,_ : / =/ r»;',m(/?*v,, /"‘““"‘“\ Mty g J/J \
: :—" ﬂ?//\ .—Q/ 3 (’vx‘—’/\*ﬁ r,/) "-'.‘-vx /’{—" l"'//

). 4.)
where {d{®"'= dij*"7(t,At)} is the time and phase delayed output data of

the n detectors at time ti’ i=1,2...N.
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This expression shows that with phase sensitive detection a system
of n nearby detectors (i.e. always interfering constructively) each with

mass m, will have the same sensitivity as one detector with mass nm (if

local nonthermal excitations are not considered). It is further clear that

only in the case of maximal constructive interference will a system of n
detectors, with masses m, have a sensitivity which equals that of a

single detector with mass n m. In other words it does not pay in terms

of sensitivity to set up a multidetector long baseline interferometric

system (while it may of course pay greatly in terms of scinetific

information). It may be however, that for a future generation of supersensitive

detectors, possibly made of high Q saphire, and cooled to millidegrees, Tocal

excitations from external sources will be the main source of uncertainty

in the detection of pulses. In this case a system of "long base Tine"

interfering detectors may be much superior to the usual two- detector system.

Let's now assume that = and F. are known by the experimenter

(from previous non directional experiments). The probability distribution

for = » the phase shift between two detectors, assuming that
the prior distribution in & is constant over -7 Ao + T
is
/ -~
Droiprec) . LP(PISESC)
F(elD E, 5 V,) -



-181-

(’.64"/) p(ﬂé"‘/ﬂéi 3’;9) 5

- JE P b
< revds L el cevaf = (')) s ;-_'.") ‘V‘/
514 e MY i >)/‘_,(,, -
;:';’c’/:,” - = .ej‘//) - L ~(%=s b - i ¥
,::" (//~ 5 ) \/E‘> - RN B A_,__*_(_f:"‘- . i gy i, gl
/4 - A z P i) e, K=t = - -
_ e ¢ (D) (2FED) T V(Y e (55 )

' : ;- - 5T vl g
o $ (ED L, LBy 2 /
/ / 7 P o \ 7 T e ]‘

P s sy S P e i
J(n({ED rCE)) CEI(OWEDdr (EL))

Jee ( e )

The dependence of this distribution on the data points and the

directional hypothesis may be understood by considering the term

-
-

I ~ (V/ &“‘_; Ve » 4 z._ it (v) ) ‘/) r\‘/dv'/’ L
L = __'); o ) oo = i (r’c’b A c / .
v’ >

P y e - . 7 -, (;"/ <
) i & & : g -
- //7 .?{”./4 o & - 2 SV .
J : LS - .

Clearly 7)(9) is Targe if E 1is Targe which is mainly a function
of the interference term [ = /’)’" o2 Lvies "9)/ B
< »

o T
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We have in the above assumed /4 =S/#+Vd¢)  which is a

valid approximation for most of today's detectors (since they have a time

resolution /-c"’ >> 40”2 » and for earthbound detectors 17-4#

will always be less than d-’*af/@/c = 4= jJo~

JE o

With the same technique, that is used when adding up vectors in

diffraction theory (sec. e.g. Feineman (1963), Lectures on Physics Vol. I

page 30-31) we get

,_)/- st ’éf—-diaj
2/
'/fa // YA

- n My (At -427)
Lo (a

Graph 0/ L versuy A48=(67-0)

1. £ .3,
o 2 1

|

| \ /“\

\/ VA
%3 B il o
7. K 2+ 2T 4.5
o 4 2% IE 145 ge

we will have another maximal peak. If we wish to have only

one maximal peak corresponding to a particular direction, we must choose / such
that o (ZA4E)L2T  or Wi dt,, = 2T by = 2y, . Ina

crude sense we can see from the graph that the phase resolution is about %

i
T~
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(the actual resolution depends of course on the signal to noise ratio) so that

Z s L e L] 20 . L, _ 27~ e e
o bp (Sinp - Sinp’) & ZE with 22 = <247, we have (il g -5lp¢4h
4 o 7
s BAP T e BB sy ) o 4

; /
T L= P-4 g
/

If pro we have ¢ <-4 where & is a "crude"

: . / ;
measure i1f the /iicciivntal uncertainty.

I[f the time resolution could be improved significantly and the signals

are pulse-like or have an incoherent form, so that they add up coherently only

when they are added with the correct time delay, one sricer in e / g Fee

/
- L ,‘.2’:///( % Sl & )

The "wrong" maximal peaks will then be reduced, because of the "wrong"

o

corresponding

time delay. This approach would however not be possible with todays' detectors.



APPENDIX F
COMPUTER SIMULATION OF A WEBER TYPE DETECTOR

We will in this section study a special type of signal analysis based

on the quantity /D?’:/J%(X?-ﬂ—jl)j < ) where x and y are

the smoothly filtered output amplitudes. The reason for the interest in

ﬁz is that the Maryland-Argonne detector system more or less consistently
shows presence of signals when this method is used, while kz + yz does not

in general give a significant result. One thingis immediately clear. When

x and y are squared and added, phase information is lost. Thus unless

the signal is of such a nature that it has a tendency not to change the phase

of the detector but only its energy (a situation which must be considered

highly unlikely) the ﬁz method is necessarily not optimal. It could still

2

however, for some reasonable types of signals be "better" than *2 + g,

which is matched to a delta function type signal input. 2

In general if P

is "good" one would expect the similar quantity (x2 + yz)(i2+j2) to be better

since this quantity also registers changes in phase. (Note that

p2 = x2i2+y2y2—2xyiy). One may>by using the "evidence method" (See page
try various types of signals and see if a quantity like @2 or similar comes
up in the final result. For any simpler kind of signal no such terms

have been found. For more complex situations like bursts of stochastic
signals the computations get very involved. It could of course be that

in some cases neither 52 nor i2+y2 is a "good" variable, but that P2 still

is better than k2+y2. We therefore decided tc study the situation with a

computer simulation of a pair of Weber type detectors. First some observations.

-184-
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It is easily seen (from optimal filter theory) that for very narrowbanded
signals on frequency (i.e. long lasting coherent signals with a central
frequency equalling the detector resonance frequency) optimal data analysis

will be based on the sum of the squares of the smoothly filtered output

amplitudes, 1i.e %% + yz (where details of the smooth filter depends on

the exact shape of the signals). This type of signal ought thus to be

2 2

fairly mismatched to x° + ¥, and perhaps better matched to 52 which is

essentially a product of (x2 + y2) and (iz ¥ yz), and perhaps even

more so if the signal is altered to have slight ripples, and thus “excite”

both x2 + yz and iz + jz. These types of signals must be considered

unlikely however., It may not be as unlikely though ,with a signal that
sweeps slowly enough through the resonance of the detector to act like a
long coherent signal, of the kind above. Trials with these types of

signals did not come out in favour of P2 however. If the sweep was slow

enough (0.05 rad/secz) " 52 and kz + 92 were about equally efficient, but the

time delay histogram had a far larger spread around zero than in reality,
and for faster sweep x° + 92 was more efficient. Fairly long bursts of

stochastic pulses seems promising on similar grounds as above, but

"kz + yz" proved in general to be at least slightly more effective also in

this case.

0f these cases all except one, which was equally "good" for ?2 and

N yz. The one exception was for rare

-2

X + yz, turned out in favor of x
(not necessary) short pulses of large magnitude (larger than or equal to

a "kT" pulse). This result is not surprising since for Targe pulses phase
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changes becomes less important.

: 2, .2
was superior to "x© + y™".

One situation however was found when ”ﬁz"

In this and all other cases, the two detectors
were defined by a 40 second damping time and a 0.5 second optimal filter

time. When a frequency offset of 0.5 radians per second (between the detector

and the reference oscillator) was introduced in one channel, the efficiency

of the iz + yz method decreased sharply to become inferior to the 52 method.

Curiously, the §2 method even appeared to improve slightly. The effect was most

pronounced for small signals or a stochastic burst of (small) pulses.

For
0.3 radians the two methods appeared about equal.

These results agree
essentially with what was found with analytical methods by G. Rydbeck and J.

Weber in 1974. In this paper it was found that the detector wil] drift

about 0.1 radians per second in frequency for every 0.04°C dyift in temperature.
It follows that if the frequency drift is not corrected for in the data

analysis, a temperature change of more than 0.12 °C will cause the kz + y2

method to become inferior to the P% method. [t requires a fairly sophisticated

temperature control system to keep variations in temperature within this

Timit. We must thus conclude that of all possibilities tried in this investiga-
tion only frequency drift could account for making ”@2“ superior to "k2+y2”.
Over the next couple of pages we give some time-delay histograms showing

the results of the more interesting cases. (Optimal thresholds are chosen
for these histograms). As an example we also provide a computer printout of
the program output which is a set of (numberical) time delay histograms for
different thresholds. A printout of the computer program itself is also qiven.

The "thermal" rate of coincident threshold crossings N is given on the

graphs. N 1is calculated as the average number of crossings from 6 to 50
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seconds delay. SD(N) is the standard deviation of N and o is defined as

=
i
=|

9% W) where N0 is the number of coincident threshold

crossings at zero delay.

Note on Fig. F3. On account of the large pulse energy and the

relatively short experimental runtime, the delayed rate of crossings is

relatively small. The program provided three pulses of energy 2.2; 0.76

and 0.47 kT, in 8 hours experimental run-time. More realistically, we

should have had one such pulse in 24 to 48 hours or more. Since however

the computer (PDP-11) runtime was about two and a half times longer

than the experimental runtime, this was not possible to do (as I was not

the only user of the computer).
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APPENDIX G
CANCELLATION OF DETECTOR NOISE

This method is also discussed on page 11. Consider a detector equipped

with a strain sensitive device and also with accelerometers on each end, as

described by the figure below.

Fig. G.1
STRAIN -SENSOR .
T A ; R A A AR S SRR &R
é; Derecror sar. /M. =
i
1
Yo
| i
] L
e [ X >
i 1
—_’ f.._

a are equilibrium distances.

may be measured by a capacitor, and the strain
It can be

1 and

The distance a + Z
sensor (which measures changes in 1 + x) may be a P.Z.T. crystal.

shown that the equivalent circuit for this detector is the following

Fig. 6.2
: 2
AR A G Ly W
I, ;‘:; L._g —— Lol P.)
R g
8 T SR A
I: 3 -__ C',‘ L[l
[ Ee— |t
' i (e
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where I, representes "non inertial motion" and 12 "stretch motion" of

the detector, IS represents the gravitational interaction, and

& - /L 7‘ & L—’ f'l Ny ":/. . .
4; /ﬂnl L Cnl vy » Where ; 1S a coupling constant,

and hij the metric perturbation. L, R, and C represent the effective mass,

the damping (with ncise source Vn) and the elasticity of the detector.

C, and R, (with noise source /. ) represents the strain gauge,

and L3, R3 and C3, the mass (m), the damping (with noise source

V3) and the harmonic force (which keeps m 1in place) of the accelerometer.

# represents the device measuring the distance (a +z) between the

detector endface and the mass m, and (with y, ) the associated noise.

As will be seen, the sensitivity using the method of amplitude subtraction

(as outlined on page ) which cancels the detector noise from the

combined output is in most practical cases far inferior to the ordinary

method. The two methods could be used in combination, but the resulting

increase in sensitivity is minimal. The reason for this is that the

"subtraction method",not only subtracts the detector noise but also cancels the
resonating behaviour of the outputs which is needed to "overcome" the

wideband noise sources L{, and [} Only if the noise contribution from

i and v,  are extremely small compared to the detector noise would

the method pay off. We now give a brief calculation comparing the sensitivity

of the two methods for the detector described by figure 7.G, and the equivalent

circuit above. We simplify by assuming that we have a good accelerometer so

that L, , <z and [, are infinite.
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Now define
dlw) = jw (,/ 4 ) 7 Lo ,-
z'wz.'z_fi{_ Vilw)e Vetw) 2
Z.
d[LU/ = , ‘Zf[uj) /,{?,-r f—ffi-(—) /?L . :
/+'LA¢UCZ_QL (._l—— ~ / 7‘_ (/(z(w)
Ry 2."")52 f—é_}_ ]

As we can see both pﬁt and VG have disappeared, and also the
resonance "boosting" ISOU). Let's now calculate the spectral signal
to noise in the two cases; we consider first the spectral signal to
noise of j5 («). Since ¢ (*U > is much less than (’Vnz(‘o)) for
any real detector we neglect this term. We havely/ 2(u$;>= kTR, and

i

(ﬂb£22049)==kTR2. Further we approximate R e —L—

( / . J /

and e - il ) N o+~ — = —

7(4)[' lwg, - o twic, I iCy LW

both of which are extremely good approximations in a real situation.

Thus we have:

S (V3 1) =
5
B [ L, we, . ;::;J«~ e as

(¢
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The spectral signal to noise of diw)

is,
S—_— ‘
Snlcdiw) = ljl(ﬁ) £e
K7
.- Z w‘/ ;7 &
sn( V5 /<) has maximum for (O = o £,

) ¢
Z wo / ‘[QI z'f E’-QL)
Thus if (R12+ RTRZ)) ZLUJ'L 2

1 Sn(Vzlw) has no maximum (which is

not Tikely to occur in a real situation). We give a typical plot of

Sn(djew) and Sn(VZ/w)

Fig. 6.3 TS“
S/M("/L/“)) ; Zw":'/-,1>('ezf/2.‘:?z_)
«.{u{([/cu)
>
w
TSM.
S lel|w) i ,Za)u"‘/;,‘-(t//g'lwge.p]_)
S (V2 /)
; >
w

(Note that the scaling is arbitrary).
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For the Weber 1973 set-up S (Vo (9
S (dlw)

=5 -/o¢
Clearly the subtraction method is not useful in practice for such detectors,
and is not likely to be for any efficient (high Q) detector.

The scheme may be useful in other types of gravitational radiation
experiments however. Consider for example (a Forward type) Laser inter-
ferometry experiment over large distances as described by the fiqure below.

One would probably want to set up such an experiment in a desert, and use

evacuated tubes for the Taser rays, to avoid convective disturbances on

the ray.

Figure G.4

It is essential for this experiment that the masses, A,B and C are
completely free, so that vibrations in the earth's crust do not interfere

with the experiment. This may be technically hard to accomplish. To get
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around this problem one may mount a seismometer on each of the masses to
monitor "non free" motion, and subtract any such motion from the motion
registered by the interferometer. It may in fact be technically even simpler
not to have the masses free, but have them mounted solidly on the earth,
which would be possible with the above scheme.

The sensitivity of this detector depends mainly on the resolution of
the interferometer. It has been reported (T.J. Sejnovski 1974) that
Forwards strain sensitivity is given by (with our notation)

dilw) o = yfw) 2+ (07 (2T rad 5o )%
over a bandwidth, 1,3 to 20 kHZ. (¢) between A and B and Band C in his
experiment is approximately 2.5 meters. In the experiment described above
this length could be increased by at least a factor of 104. Thus in
this case 41["‘”/4 = ollw) -2 - [0o7%° [27')/0(-[/.‘,6)”/2_. Atfw)/L
due to a gravitational wave is 41/ZAQ§Q - jf'léa‘““/ (where 4,
is the deviation from the flat metric, along the direction of the detector
arms). Thus the sensitivity limit in ‘A,‘ is

/L,, < oliw) H-107%° (27 "ﬂf/,/:c,-c) "/A. Multiplying with h(-)
(in the manner described by optimal filtering), squaring and taking

expectation value, we get

/

| > 2 : _ , i
//z/od Y (W)/ 2 /.{/od brw) 16 g0t (2T raclSee)

or

Joo hitw) 2 152y 1077 sec.
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i i i d to
Now the spectral power per/cm2 of the grav1tat1ona1 wave is relate

hy @) as

Plwy - €2t (yga)” bl 7 thues

A 3 B e 2 o8 ergssecs .
clew /)[w Ty 2 & /6 . jO 10 erys SCC it A
/ MJ 20w

For a pulse centered around 1.3 kHz the total Energy per cm2 must thus
be at least E = (2 )2(1_3)2 103 erqs/cmz s 3 104 ergs/cm2 for the pulse
to be seen by the detector. This compares favorably with todays room
temperature detectors. The "bare" detector (Weber type) sensitivity

is about 5-10 ergs/cm®*  This sensitivity however is appreciably
reduced for the "dressed" detector if the radiation is wide banded.

It is further possible that improved interferometry techniques will be

developed in the future.
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T.J. Sejnowski (1974) Physics Today, page 40 , January 1974.




a(t)
B(t)

f(t-t")

j
Rijkl

A

<}

x|

=

Sn

NOTATIONS AND SYMBOLS

Half length of detector

White noise

Filtered white noise (colored noise)

Square of amplitude quantity such as x2, 22, X2+92, etc.
Filter function

metric perturbations

Riemann curvature tensor

X, y etc. usually means x, y optimally filtered with respect
to a delta function input sigmal (approximates ox/dot, ay/ot).

If v is a source voltage, ¥ 1is the corresponding final

detector output voltage

A state vector usually in complex notation is denoted by an

arrow-bar.

Filtered variable x

Inverse detector damping time
Inverse detector resolution time
Spead of sound in detector material
Signal to noise ratio

Quality factor
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