Multiscale and Directional Representations of High-Dimensional Information Content in Remotely Sensed Data
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
This thesis explores the theory and applications of directional representations in
the field of anisotropic harmonic analysis. Although wavelets are optimal for decomposing functions in one dimension, they are unable to achieve the same success in two or more dimensions due to the presence of curves and surfaces of discontinuity. In order to optimally capture the behavior of a function at high-dimensional discontinuities, we must be able to incorporate directional information into our analyzing functions, in addition to location and scale. Examples of such representations are contourlets, curvelets, ridgelets, bandelets, wedgelets, and shearlets. Using directional representations, in particular shearlets, we tackle several challenging problems in the processing of remotely sensed data. First, we detect roads and ditches in LIDAR data of rural scenes. Second, we develop an algorithm for superresolution of optical and hyperspectral data. We conclude by presenting a stochastic particle model in which the probability of movement in a particular direction is neighbor-weighted.