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Chapter 1: Introduction

In applied harmonic analysis, an important problem is, given a function f

that belongs to a certain class of functions in L2pRdq, to find analyzing functions

pψiqiPI , I countable, such that f “
ř

iPI cipfqψi. By manipulating the coefficients

pcipfqqiPI Ă l2pIq and performing synthesis to obtain a function from the coeffi-

cients, we hope to extract important information from the function/signal. Two-

dimensional applications include image denoising, enhancement, segmentation, edge

detection, and compression. The simplest type of useful manipulation we can per-

form is thresholding, that is, setting a certain number of coefficients less than a

given magnitude to 0.

For many applications, it is helpful if we have a sparse representation in which

few coefficients are needed to reconstruct a close approximation to the original func-

tion. Let fN denote the best N-term approximation of f in the sense that it mini-

mizes ||f´fN ||2, over all choices of N -term reconstructions. A natural question then

is, given a class of functions that model images, to find analyzing functions which

provide sparse representations that are optimal, or at least very close to optimal.

Wavelets, which decompose images by location and scale, do not have this property

for images containing lines of discontinuity. Hence, we are led to seek out other

1



representations that additionally take into account directional information.

In this thesis, we explore how the addition of directional information can

be leveraged for image processing and mathematical modeling. In Chapter 2, we

review some preliminaries from Fourier analysis and finite frame theory that will

be used in the following chapters. Next, in Chapter 3, we introduce the continuous

shearlet transform as a special case of the continuous wavelet transform. After

covering discrete shearlets, we define the cartoon-like images and discuss what it

means for a representation to be essentially optimally sparse. We also present the

current numerical implementations of the shearlet transform and explore whether

the theoretical decay rate occurs in practice.

In Chapter 4, we utilize shearlets to analyze LIDAR data of several rural

scenes. Our aim is to detect directional structures such as roads and ditches. The

problem has a number of challenging aspects to it, most noticeably the issue of

filtering out the trees. In our first approach to the problem, we perform a simple

thresholding of the shearlet coefficients. This approach suffers from several short-

comings, such as detecting the edges of trees and being unable to quantify the edge’s

strength. We are then led to a second approach in which we incorporate information

about the local variance, along with the number of small shearlet coefficients. This

approach leads to improved results.

In Chapter 5, we consider the problem of single-image superresolution, i.e.,

increasing an image’s resolution without introducing undesired artifacts. Our focus

is mainly on identifying the location and orientation of strong edges, so that we can

smooth out the jagged edges that result from aliasing. To accomplish this, we utilize

2



the maximum shearlet coefficient, which we prove is effective in an ideal case. We

perform experiments on various images, including a color orthophoto, simple shapes,

and a band from hyperspectral imagery. We demonstrate the value of our approach

both quantitatively and qualitatively by comparing it to existing techniques. This

work is published in [3] and [4].

Finally, in Chapter 6, we develop a 2D probabilistic particle model for the

movement of bacteria in the presence of light, a process called phototaxis. In the

model, particles are restricted to a periodic grid and allowed to move at discrete

time intervals in any of four directions: up, down, left, or right. The probability

that a particle will move in a particular direction is determined by a parameter a

and is weighted by the proportion of its neighbors in that direction. A particle may

also choose not to move in that time interval with probability b. These rules cause

the bacteria to form aggregates, a phenomenon observed in reality. By running the

model many times with different parameters, grid sizes, and starting positions, we

see that in almost all cases, only horizontal or vertical aggregates (but not both)

persist as t Ñ 8. Next, we derive a system of ordinary differential equations

approximating the expected number of particles at each position at time t. Similar

to the discrete model, we observe horizontal and vertical aggregates, though now

both can occur simultaneously. For some values of the parameters, we observe that

the expectations are essentially random. We empirically derive a linear constraint

on the parameters, which we then show accurately predicts the transition from

aggregates to randomness. This is joint work with Doron Levy and is based on

work published in [5].
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Chapter 2: Some Preliminaries

2.1 Basic Fourier Analysis

Since there is no universal agreement as to the precise definition of the Fourier

transform, we set the one we will be using here:

Definition 2.1.1. Let f P L1pRdq. The Fourier transform of f is

f̂pξq “

ż

Rd

fpxqe´2πixx,ξydx.

The transform can be extended to a unitary operator F : L2pRdq Ñ L2pRdq by the

density of L1pRdq X L2pRdq in L2pRdq.

The inverse of the Fourier transform F´1 can be given explicitly for functions

in L1pRdq:

Definition 2.1.2. Let f P L1pRdq. Then the inverse Fourier transform is given by

f̌pxq “

ż

Rd

fpξqe2πixx,ξydξ.

The fact that the Fourier transform is unitary follows from the Parseval-

Plancherel Theorem:

Theorem 2.1.3. Let f, g P L2pRdq. Then

xf, gy “ xf̂ , ĝy,

4



which implies

||f ||2 “ ||f̂ ||2.

Remark 2.1.4. Let G be any locally-compact Abelian group (LCAG). We can

define a unitary operator F : L2pGq Ñ L2pĜq, where Ĝ is the Pontryagin dual of G,

which generalizes the Fourier transform as defined above [6]. (Note that R̂ “ R).

We will be interested in M ˆN images, which can be considered as functions

on G “ ZM ˆ ZN . Let f : G Ñ R represent an image. We can define the discrete

Fourier transform (DFT) of this function on Ĝ “ G by

f̂pω1, ω2q :“
ÿ

pm,nqPG

fpm,nqe´2πixpω1,ω2q,pm{M,n{Nqy

and the inverse DFT by

f̌pm,nq :“
1

MN

ÿ

pω1,ω2qPG

fpω1, ω2qe
2πixpω1,ω2q,pm{M,n{Nqy.

2.2 Finite Frame Theory

Frames, first introduced by Duffin and Schaeffer in [7], are essentially a gen-

eralization of bases, where redundancy is allowed. We review some basic definitions

and theorems from finite frame theory [8]. Similar definitions hold for infinite-

dimensional spaces.

Definition 2.2.1. Let H N be an N -dimensional Hilbert space. A family of vectors

pφiq
M
i“1 in H N is called a frame for H N if there exists constants 0 ă A ď B ă 8

such that

A||x||2 ď
M
ÿ

i“1

|xx, φiy|
2
ď B||x||2 for all x P H N .
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The values pxx, φiyq
M
i“1 are the frame coefficients. The constants A and B

are called the lower and upper frame bounds, respectively. The largest lower frame

bound and smallest upper frame bound, Aop and Bop, are called the optimal frame

bounds. If Aop = Bop, then the frame is called (A-)tight. A 1-tight frame is called

Parseval, since in this case Parseval’s Identity is satisfied, i.e,

M
ÿ

i“1

|xx, φiy|
2
“ ||x||2.

Finite frames are easily characterized since they are simply spanning sets:

Proposition 2.2.2 (Lemma 1.2ii, [8]). Let pφiq
M
i“1 Ă H N . pφiq

M
i“1 is a frame for

H N if and only if it is a spanning set for H N .

Proof. If pφiq
M
i“1 is not a spanning set, there exists a non-zero x in the orthogonal

complement of the span of the pφiq
M
i“1. Hence, there can be no lower frame bound.

Conversely, if pφiq
M
i“1 is not a frame, then we can find a sequence of normalized

vectors pxnq
8
n“1 such that

řM
i“1 |xxn, φiy|

2 ă 1{n for all n P N. Because all vectors lie

on SN´1, by passing to a subsequence, we can assume that the sequence converges

to some x P SN´1. Therefore, the orthogonal complement of the span of the pφiq is

nontrivial, implying that pφiq
M
i“1 is not a spanning set.

Frames have three important associated operators:

Definition 2.2.3. Let pφiq
M
i“1 Ă H N . Let lM2 :“ l2pt1, . . . ,Muq.

1. The analysis operator T : H N Ñ lM2 is defined by

Tx :“ pxx, φiyq
M
i“1 , x P H N .
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2. The synthesis operator is the adjoint operator T ˚ : lM2 Ñ H N given by

T ˚paiq
M
i“1 “

M
ÿ

i“1

aiφi

3. The frame operator S : H N Ñ H N is defined by

Sx :“ T ˚Tx “
M
ÿ

i“1

xx, φiyφi, x P H N .

Much can be said about these operators, but we restrict ourselves to just a few

remarks. First, if pφiq
M
i“1 is a frame for H N , then a matrix representation for its

synthesis operator T ˚ is given by the matrix whose columns are the frame elements:
»

—

—

—

—

—

—

–

| | ¨ ¨ ¨ |

φ1 φ2 ¨ ¨ ¨ φM

| | ¨ ¨ ¨ |

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Since a finite frame is a spanning set, it follows that pφiq
M
i“1 is a frame if and only

if T ˚ is surjective, or equivalently that T is injective. Second, the frame operator

S associated to a frame is a self-adjoint, positive definite operator, and hence is

invertible. That it is self-adjoint is clear from its definition. It is positive definite

since

xSx, xy “ xT ˚Tx, xy “ ||Tx||2 ą 0

for all nonzero x by the injectivity of T . Finally, if S is associated with an A-tight

frame, for all x P H N

xSx, xy “ ||Tx||2 “
M
ÿ

i“1

|xx, φiy|
2
“ xA ¨ Id x, xy

implying that S “ A ¨ Id.

Next, we show that we can reconstruct a vector from its frame coefficients.
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Theorem 2.2.4 (Theorem 1.8, [8]). Let pφiq
M
i“1 be a frame for H N with frame

operator S. Then, for all x P H N

x “
M
ÿ

i“1

xx, φiyS
´1φi “

M
ÿ

i“1

xx, S´1φiyφi. (2.1)

Proof. The first equality follows immediately from applying S´1 to both sides of the

definition of S. The second equality is obtained by replacing x with S´1x in the

definition and using that S´1 is self-adjoint.

Reconstruction formulas as in (2.1) are not unique in general.

Definition 2.2.5. Let pφiq
M
i“1 be a frame for H N . Any sequence of vectors pψiq

M
i“1

in H N such that

x “
M
ÿ

i“1

xx, φiyψi

for all x P H N is called a dual frame for the pφiq. The dual frame given by pS´1φiq
M
i“1

is called the canonical dual frame.

The next proposition explains the use of the word “dual”:

Proposition 2.2.6 (Proposition 1.15, [8]). Let pφiq
M
i“1 be a frame for H N with dual

frame pψiq
M
i“1. Then pψiq

M
i“1 is itself a frame with dual frame pφiq

M
i“1.

Proof. Let Φ and Ψ be the matrices with columns pφiq
M
i“1 and pψiq

M
i“1, respectively.

The hypothesis is equivalent to ΨΦ˚ “ Id. Taking the adjoint of both sides, we

have ΦΨ˚ “ Id, from which the conclusion follows.

Remark 2.2.7. The dual frame for an A-tight frame pφiq
M
i“1 is given by p 1

A
φiq

M
i“1,

providing the reconstruction formula

x “
1

A

M
ÿ

i“1

xx, φiyφi.

8



In particular, Parseval frames are their own canonical dual, with the simple recon-

struction formula

x “
M
ÿ

i“1

xx, φiyφi.

9



Chapter 3: Introduction to Shearlets

3.1 The Continuous Wavelet Transform

Before discussing the shearlet transform, we define the continuous wavelet

transform, of which the shearlet transform ends up being a special case [9].

Definition 3.1.1. The continuous affine systems are

 

ψM,t “ TtD
´1
M ψ “ | detM |1{2ψpMp¨ ´ tqq : pM, tq P Gˆ Rd

(

where ψ P L2pRdq, G is a subgroup of GLdpRq, DM is the dilation operator on L2pRdq

defined by

DMψp¨q “ | detM |´1{2ψpM´1
¨q,

and Tt is the translation operator defined by

Ttψp¨q “ ψp¨ ´ tq.

Definition 3.1.2. The affine group Ad corresponding to an affine system is the set

of parameters pM, tq equipped with the group operation

pM, tq ¨ pM 1, t1q “ pMM 1, t`Mt1q.

Theorem 3.1.3 (Theorem 1, [9]). Let dµ be a left-invariant Haar measure on G Ă

GLdpRq, and dλ be a left Haar measure of Ad. Furthermore, suppose that ψ P L2pRdq

10



satisfies the admissibility condition

ż

G

|ψ̂pMT ξq|2| detM |dµpMq “ 1.

Then any function f P L2pRdq can be recovered via the reproducing formula

f “

ż

Ad

xf, ψM,tyψM,tdλpM, tq, (3.1)

interpreted weakly.

A function ψ satisfying the theorem’s conditions is called a continuous wavelet.

The fact that the conclusion is interpreted weakly means that

xf, gy “

ż

Ad

xf, ψM,tyxψM,t, gydλpM, tq

for all g P L2pRdq, which is equivalent, via the polarization identity to [10]

||f ||22 “

ż

Ad

|xf, ψM,ty|
2dλpM, tq.

Definition 3.1.4. The Continuous Wavelet Transform associated to a continuous

affine system is defined by

L2
pRd
q Q f ÞÑ WψfpM, tq “ xf, ψM,ty, pM, tq P Ad.

Note that the transform is continuous in its translations, but G is allowed to

be discrete. As a special case, letting G “ taId : a ą 0u., we have the (isotropic)

Continuous Wavelet Transform. The admissibility condition for ψ is

ż 8

0

|ψ̂paξq|2
da

a
“ 1

which is commonly known as the Calderón admissibility condition for wavelets.

Letting d “ 1 and G “ t2m : m P Zu results in the dyadic 1-dimensional discrete

wavelet transform.
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3.2 The Continuous Shearlet Transform

We start with a few definitions. Let ψ P L2pR2q. To better analyze anisotropic

features, we introduce the parabolic scaling matrices

Aa “

¨

˚

˚

˝

a 0

0 a1{2

˛

‹

‹

‚

, a ą 0

and the shearing matrices

Ss “

¨

˚

˚

˝

1 s

0 1

˛

‹

‹

‚

, s P R.

Definition 3.2.1. For ψ P L2pR2q, the continuous shearlet system SHpψq is

SHpψq “
 

ψa,s,t “ TtDAaDSsψ : a ą 0, s P R, t P R2
(

.

We can give the parameter space a group structure

pa, s, tq ¨ pa1, s1, t1q “ paa1, s` s1
?
a, t` SsAat

1
q

and we denote this shearlet group S.

Definition 3.2.2. Let ψ P L2pR2q. The Continuous Shearlet Transform of f P

L2pR2q is

f ÞÑ SHψfpa, s, tq “ xf, TtDAaDSsψy, pa, s, tq P S.

For this transform to be useful, we need to be able to invert it, which we can

do if ψ satisfies the admissibility property

ż

R2

|ψ̂pω1, ω2q|
2

ω2
1

dω2dω1 ă 8.

12



Such a function ψ is called an admissible shearlet. We assume that ψ splits up as

ψ̂pωq “ ψ̂pω1, ω2q “ ψ̂1pω1qψ̂2

ˆ

ω2

ω1

˙

. (3.2)

If we further assume that ψ̂1 and ψ̂2 are continuous with supp(ψ̂1q Ă r´c,´bsYrb, cs

and supppψ̂2q Ă r´d, ds for some c ą b ą 0, d ą 0, it follows that ψ is an admissible

shearlet. This is clear since the integral would be of a bounded function over a

bounded region not containing a neighborhood of 0. Note that

ψa,s,tpxq “ a´3{4ψ

¨

˚

˚

˝

¨

˚

˚

˝

1{a ´s{a

0 1{
?
a

˛

‹

‹

‚

px´ tq

˛

‹

‹

‚

.

Define

B “

¨

˚

˚

˝

1{a ´s{a

0 1{
?
a

˛

‹

‹

‚

.

Then

ψ̂a,s,tpωq “ a´3{4e´2πixω,tyFpψpBxqq

“ a´3{4e´2πixω,ty
| detB|´1{2ψ̂ppB´1

q
Tωq

“ a´3{4e´2πixω,tyψ̂paω1,
?
apsω1 ` ω2qq

“ a´3{4e´2πixω,tyψ̂1paω1qψ̂2

ˆ

a´1{2

ˆ

ω2

ω1

` s

˙˙

.

13



We can compute the continuous shearlet transform as

SHψpfqpa, s, tq “ xf, ψa,s,ty

“ xf̂ , ψ̂a,s,ty

“ a3{4

ż

R2

f̂pωqψ̂1paω1qψ̂2

ˆ

a´1{2

ˆ

ω2

ω1

` s

˙˙

e2πixω,tydω

“ a3{4F´1

ˆ

f̂pωqψ̂1paω1qψ̂2

ˆ

a´1{2

ˆ

ω2

ω1

` s

˙˙˙

ptq

“ a3{4F´1
´

f̂pωqψ̂paω1,
?
apsω1 ` ω2q

¯

ptq. (3.3)

In order to obtain a reproducing formula for shearlets, we impose some assumptions

on ψ1 and ψ2 [11]. First, we assume that ψ1 is a real-valued wavelet in the sense

that it satisfies the Calderón condition (3.1). Second, we assume that ||ψ2||2 “ 1.

Additionally, we assume that ψ̂1, ψ̂2 P C
8pRq with supppψ̂1q Ă r´2,´1{2s Y r1{2, 2s

and supppψ̂2q Ă r´1, 1s. Using our derived expression for the Fourier transform of

ψa,s,t, we see that the support of ψ̂a,s,t is contained in

"

pω1, ω2q P R2 :
1

2a
ď |ω1| ď

2

a
, |s`

ω2

ω1

| ď
?
a

*

from which it follows that shearlets become elongated as aÑ 0.

Theorem 3.2.3 (Theorem 1, [11]). Under the preceding conditions, we have a re-

producing formula for the continuous shearlet system SHpψq.

Proof. Shearlets are a special case of continuous wavelets where

G “ tSsAa : pa, sq P R` ˆ Ru.

In this case, the admissibility condition (3.1) is

ż

R

ż 8

0

|ψ̂pATaS
T
s ωq|

2a´3{2dads “ 1 for a.e. ω P R2.
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This is true since

ż

R

ż 8

0

|ψ̂pATaS
T
s ωq|

2a´3{2dads

“

ż

R

ż 8

0

|ψ̂1paω1q|
2

ˇ

ˇ

ˇ

ˇ

ψ̂2

ˆ

a´1{2

ˆ

s`
ω2

ω1

˙˙
ˇ

ˇ

ˇ

ˇ

2

a´3{2dads

“

ż 8

0

|ψ̂1paω1q|
2

ż

R

ˇ

ˇ

ˇ

ˇ

ψ̂2

ˆ

s` a´1{2ω2

ω1

˙
ˇ

ˇ

ˇ

ˇ

2

ds
da

a

“

ż 8

0

|ψ̂1paω1q|
2da

a
“ 1.

3.3 Discrete Shearlets on R2

We now turn to defining discrete shearlets. Consider the system

tψj,k,m “ DAj
2Sk
Tmψ : j, k P Z,m P Z2

u (3.4)

“ t23j{4ψpSkA
j
2x´mq : j, k P Z,m P Z2

u. (3.5)

Our goal here is to define ψ P L2pR2q in such a way that this system forms a Parseval

frame. As before, we assume (3.2). We choose ψ1 P L
2pRq such that ψ̂1 P C

rpRq for

some r P N and supppψ̂1q Ă r´1{2,´1{4s Y r1{4, 1{2s satisfying

ÿ

jPZ

|ψ̂1p2
jξq|2 “ 1 for ξ P R. (3.6)

Note that (3.6) is satisfied by a discrete wavelet. One choice is the Meyer wavelet

defined by ψ̂Mpξq “ eiπξbpξq where

bpξq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

sinpπ
2
vp3|ξ| ´ 1qq : 1

3
ď |ξ| ď 2

3

cospπ
2
vp3|ξ|

2
´ 1qq : 2

3
ď |ξ| ď 4

3

0 : o.w.

(3.7)
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and v is a function symmetric about p0.5, 0.5q, that is, vpxq ` vp1 ´ xq “ 1 for all

x P R. One possibility is

vpxq :“

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0 for x ă 0

35x4 ´ 84x5 ` 70x6 ´ 20x7 for 0 ď x ď 1

1 for x ą 1.

(3.8)

The choice of v is important since its smoothness is the same as that of ψ̂M , which

affects the decay rate of ψM . The above v is in C3, but we can construct a v P CrpRq

for any r P N [12]:

vpxq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0 for x ă 0

´

ş1

0
trp1´ tqrdt

¯´1
şx

0
trp1´ tqrdt for 0 ď x ď 1

1 for x ą 1.

For ψ2, we prescribe that ψ̂2 P C
8pRq, supppψ̂2q Ă r´1, 1s, and that

ÿ

kPZ

|ψ̂2pk ` ξq|
2
“ 1 for ξ P R. (3.9)

Note that (3.9) implies that the integer translates of ψ2 are orthonormal. Also, due

to the support of ψ̂2, (3.9) is equivalent to

ÿ

k“´1,0,1

|ψ̂2pk ` ξq|
2
“ 1 for ξ P r´1, 1s. (3.10)

One way to construct such a function is to let φ be any C8c pRq function supported

in r´1, 1s and to define

ψ̂2pξq “
φpξq

a

ř

kPZ |φpξ ` kq|
2
.

We have the following result:
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Theorem 3.3.1 (Theorem 3, [11]). Let ψ P L2pR2q be of the form (3.2) where ψ1

satisfies (3.6) and ψ2 satisfies (3.9). Then the system (3.4) is a Parseval frame for

L2pR2q.

Proof.

ψj,k,m “ | detAj2Sk|
´1{2ψppAj2Skq

´1x´mq

“ 2p´3{4qjψpS´kA2´jx´mq

“ 2p´3{4qjψpS´kA2´jpx´ A2jSkmqq

and so

ψ̂j,k,m “ ψ̂pSTk A2jωqe
´2πixω,A

2j
Skmy

“ ψ̂pSTk A2jωqe
´2πixST

k A2j
ω,my.

Using (3.2),

ÿ

jPZ

ÿ

kPZ

|ψ̂pSTk A2jωq|
2
“

ÿ

jPZ

ÿ

kPZ

|ψ̂1p2
jω1q|

2

ˇ

ˇ

ˇ

ˇ

ψ̂2

ˆ

k2jω1 ` 2j{2ω2

2jω1

˙
ˇ

ˇ

ˇ

ˇ

2

“
ÿ

jPZ

|ψ̂1p2
jω1q|

2
ÿ

kPZ

ˇ

ˇ

ˇ

ˇ

ψ̂2

ˆ

2j{2
ω2

ω1

` k

˙
ˇ

ˇ

ˇ

ˇ

2

“ 1 (3.11)
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by (3.6) and (3.9). Now, let f P L2pR2q.

ÿ

j,k,m

|xf, ψj,k,my|
2
“

ÿ

j,k,m

|xf̂ , ψ̂j,k,my|
2

“
ÿ

j,k,m

ˇ

ˇ

ˇ
f̂pωqψ̂pSTk A2jωqe

2πixST
k A2j

ω,my
ˇ

ˇ

ˇ

2

“
ÿ

j,k

2´3j
ÿ

m

ˇ

ˇ

ˇ

ˇ

ż

r´1{2,1{2s2
f̂pA2´jS´kω

1
qψ̂pω1qe2πixω1,mydω1

ˇ

ˇ

ˇ

ˇ

2

“
ÿ

j,k

2´3j

ż

r´1{2,1{2s2
|f̂pA2´jS´kω

1
q|

2
|ψ̂pω1q|2dω1

“

ż

R2

|f̂pωq|2
ÿ

jPZ

ÿ

kPZ

|ψ̂pSTk A2jωq|
2dω

“

ż

R2

|fpxq|2dx by p3.11q

where we have used Parseval’s theorem to remove the sum over translations and

push the absolute value inside the integral.

We can then define the discrete shearlet transform analogously to the contin-

uous transform.

Definition 3.3.2. The Discrete Shearlet Transform of f P L2pRq is

f ÞÑ SHψfpj, k,mq “ xf,DAj
2Sk
Tmψy, : j, k P Z,m P Z2.

3.4 Discrete Shearlets on the Cone

In order to numerically implement the transform, clearly we can only consider

a finite number of shear/scaling parameters. Toward this end, the previous approach

offers several problems. First, we can only cover the vertical axis in the frequency

domain in the limit as j Ñ 8. It is important that we can cover all low frequencies
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since most images have regions that vary little. Second, we have a directional bias,

as directions close to vertical require |s| to become infinitely large. Fixing these

problems leads to a modification on shearlets known as discrete shearlets on the cone

or cone-adapted discrete shearlets. There are several different ways to define these

functions, but they are all similar in that they involve partitioning the frequency

domain, typically into three regions, as depicted in Figure 3.4: the low pass region

C0
“ tpξ1, ξ2q P R2 : |ξ1| ď 1, |ξ2| ď 1u,

the horizontal cone

Ch “ tpξ1, ξ2q P R2 : |ξ2{ξ1| ď 1, |ξ1| ą 1u,

and the vertical cone

Cv “ tpξ1, ξ2q P R2 : |ξ2{ξ1| ą 1, |ξ2| ą 1u.

We then form Parseval frames for the functions whose frequency support falls within

each region. For C0, we use the integer translates of a single φ called the shearlet

scaling function. For Ch and Cv, we use the dilates, shears, and translates of shearlet

generators ψ and ψ̃. Due to symmetry, once we have defined ψpξ1, ξ2q, we can define

ψ̃ by ˆ̃ψ “ ψ̂pξ2, ξ1q. Note that we have fixed both problems: C0 takes care of the low

frequencies, while splitting into two cones ensures that we do not have to use large

shear parameters in order to cover all directions.
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Figure 3.1: Division of frequency domain for cone-adapted shearlets

3.5 Shearlets as Composite Wavelets

Although the above provides a logical succession leading to the discrete shear-

lets, in fact, shearlets were born through the study of affine systems with composite

dilations which were originally defined to have the form

ΨAB “ tDaDbTkψ
l : k P Zn, a P A, b P B, l “ 1, 2, . . . , Lu

where A,B Ă GLnpRq and Ψ “ tψ1, . . . , ψLu Ă L2pRnq [13]. If ΨAB is an orthonor-

mal (ON) basis or a Parseval frame (PF), then Ψ is called an ON AB-multiwavelet

or a PF AB-multiwavelet, respectively. If L “ 1, we use the term wavelet instead

of multiwavelet.

3.6 Optimally Sparse Representations

A useful model for real images is the class of cartoon-like images.
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Definition 3.6.1. The class E2pR2q of cartoon-like images is the set of functions

f : R2 Ñ C that can be decomposed as f “ f0 ` f1χB where B Ă r0, 1s2 has

a boundary that is a closed C2-curve with bounded curvature, fi P C
2pR2q have

supppfiq Ă r0, 1s
2, and ||fi||C2 ď 1 for i “ 1, 2.

Roughly, they are images that are smooth away from a smooth curve of dis-

continuity. It is known that for cartoon-like images, the optimal asymptotic decay

rate of ||f ´ fN ||
2
2 is OpN´2q as N Ñ 8, achieved adaptively:

Theorem 3.6.2 (Theorem 2, [9]). Let f P E2pR2q. There exists a constant C such

that, for any N, a triangulation of r0, 1s2 with N triangles can be constructed so that

the piecewise linear interpolation fN of these triangles satisfies

||f ´ fN ||
2
2 ď CN´2, N Ñ 8.

We would like to achieve this with a nonadaptive process, that is, with fixed

analyzing functions, a feat thought impossible until the invention of curvelets [14].

Wavelets perform optimally on images with point singularities, but only allow

asymptotic mean-squared approximation error of OpN´1q for E2pR2q due to their

isotropic character [15]. In more detail, let

 

ψlj,npxq “ 2´jψl
`

2´jx1 ´ n1, 2
´jx2 ´ n2

˘

: j P Z, 2jn P r0, 1q2, l “ 1, 2, 3
(

be an orthonormal wavelet basis for L2pr0, 1sq. If we limit the scales so that j ď J

for some J P Z, then we need to use translates of a scaling function φ to complete

the basis:

B “ tφJ,nu2JnPr0,1q2 Y tφlj,nujďJ,2jnPr0,1q2,1ďlď3.
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We consider f P BV pr0, 1s2q , i.e.,

||f ||V “

ż 1

0

ż 1

0

|∇fpx1, x2q|dx1dx2 ă 8

where the gradient is taken in the weak sense.

Theorem 3.6.3 (Theorem 9.7, [15]). Let f P BV pr0, 1s2q. Denote by f rBrks the kth

largest wavelet coefficient in absolute value, excluding the scaling coefficients. Let

fN be the best N-term approximation of f using wavelet coefficients. Then we have

the asymptotic decays

|f rBrks| ď Ck´1

and

||f ´ fN ||
2
2 ď C2N´1

for some constant C ą 0.

Since cartoon-like images have bounded variation, we have the same result for

E2pR2q.

We would need to use analyzing functions that can have small support in

many different directions, which traditional wavelets cannot do since they rely on

fixed dilations and translations alone. Two additional operations that we could use

are rotations and shears. Rotations are used in the curvelet transform, which is

essentially optimally sparse for cartoon-like images with mean-squared approxima-

tion error OpplogNq3N´2q, N Ñ 8 [16]. The drawback to curvelets is that most

rotations do not preserve the integer lattice, so there is no direct transition from

the continuum to the discrete setting. Shears can more easily preserve the integer
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lattice and hence provide such a transition. In addition, shearlets can provide the

same asymptotic approximation error. This was first proved in [17]. As before, it is

assumed that ψ satisfies (3.2), ψ̂1, ψ̂2 P C
8pRq, supppψ̂2q Ă r´1, 1s, and (3.10). The

support of ψ̂1 is altered to r´1{2,´1{16s Y r1{16, 1{2s and (3.6) is replaced with

ÿ

jě0

ˇ

ˇ

ˇ
ψ̂1

`

2´2jω
˘

ˇ

ˇ

ˇ

2

“ 1 for |ω| ě 1{8. (3.12)

Due to the support of ψ̂1, we could equivalently sum over all j P Z. Then the

shearlet system

 

ψj,k,mpxq “ 23j{2ψ
`

SkA
j
4x´m

˘

: j ě 0,´2j ď k ď 2j,m P Z2
(

(3.13)

can be shown similarly as above to be a Parseval frame for L2 functions with fre-

quency support in a horizontal cone. An asymptotic decay on the shearlet coeffi-

cients is given by the following theorem.

Theorem 3.6.4 (Theorem 1.1, [17]). Let f P E2pR2q and tsj,k,mpfq “ xf, ψj,k,myu be

the sequence of shearlet coefficients associated with the horizontal cone. Let |spfq|pNq

denote the N th largest shearlet coefficient in absolute value. Then

sup
fPE2pR2q

|spfq|pNq ď CN´3{2
plogNq3{2.

Let fN be the N -term approximation to f using the largest N coefficients. We

have the bound

||f ´ fN ||
2
2 ď

ÿ

mąN

|spfq|2pmq.

Using Theorem 3.6.4 in the above, and the bound

ÿ

mąN

m´3
plogmq3 ď

ż 8

N

x´3
plog xq3 “ OpN´2

plogNq3q
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we have the sparsity result:

Theorem 3.6.5 (Theorem 1.2, [17]). Let f P E2pR2q and fN be the best N term

approximation to f . Then

||f ´ fN ||
2
2 ď CN´2

plogNq3

where C is independent of f and N.

This result was later extended to compactly supported shearlets [18] and 3-

dimensional shearlets [19–21], though in the latter case, the optimally sparse recon-

struction error is OpN´1plogNq2q. Shearlet analogs in higher dimensions have also

been considered [22,23].

3.7 Implementations of the Shearlet Transform

We now turn to the various ways the shearlet transform has been implemented

to process 2 and 3-dimensional finite signals. There are currently three freely avail-

able shearlet toolboxes. The first one was developed by Easley, Labate, and Lim in

2008 [24], which we refer to as the local shearlet toolbox. This 2-D implementation

was followed by a 3-D implementation by Negi and Labate in 2012 [25]. The second

toolbox is Shearlab developed by Kutyniok et al. in 2012 [26], which led to Shearlab

3D [27]. Most recently, in 2013, Häuser and Steidl released the Fast Finite Shearlet

Transform (FFST) [12,28]. We describe the first and third toolboxes in some detail

below.
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3.7.1 Local Shearlet Toolbox

The authors of the local shearlet toolbox propose two implementations: one in

the frequency domain and another in the time domain. Both implementations uti-

lize the Laplacian pyramid to separate the image by scale/frequency. The Laplacian

pyramid applies a low pass filter approximating the Laplacian of the Gaussian to

an image, which is then subtracted from the original image, effectively decomposing

the image into a high pass and low pass part. The low pass part is then downsam-

pled and the decomposition/downsampling process is continued until the desired

number of scales is reached or the image can no longer be downsampled. In the

first implementation, the authors perform the pseudo-polar discrete Fourier trans-

form (PDFT), which is an FFT with respect to pseudo-polar coordinates pu, vq P R2

defined by

pu, vq “

$

’

’

’

&

’

’

’

%

pξ1,
ξ2
ξ1
q : pξ1, ξ2q P Ch

pξ1,
ξ1
ξ2
q : pξ1, ξ2q P Cv

where

Ch “
"

pξ1, ξ2q P R̂2 : |ξ1| ě
1

8
,

ˇ

ˇ

ˇ

ˇ

ξ2

ξ1

ˇ

ˇ

ˇ

ˇ

ď 1

*

and

Cv “
"

pξ1, ξ2q P R̂2 : |ξ2| ě
1

8
,

ˇ

ˇ

ˇ

ˇ

ξ1

ξ2

ˇ

ˇ

ˇ

ˇ

ď 1

*

,

are the horizontal and vertical cones, respectively. Our assumptions on ψ̂ and ˆ̃ψ

make these coordinates a natural choice. Next, we perform band-pass filtering,

keeping the frequencies concentrated in each sheared wedge. Performing an inverse

PDFT completes the transform.
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The time-domain implementation (the Non-Subsampled Shearlet Transform,

or NSST) utilizes a non-subsampled Laplacian pyramid and is performed by con-

volving the image with shearing filters to perform band-pass filtering. The authors

provide two choices of filters: a Meyer wavelet window and a simple characteristic

function window. Other choices to be made are the number of scales to consider

(determined by the levels of decomposition of the Laplacian pyramid), the size of

the filters used, and the number of directional subbands at each scale. Choosing

smaller filters makes the transform more local; however, the maximal number of

subbands must be less than the size of the filters. In the original paper, the authors

vary these choices in a denoising application. They conclude that the best choice

is to use Meyer-based shearlet filters of size 16 with 16 directions on the first two

levels of decomposition and filters of size 32 with 8 directions on the third and fourth

levels of decomposition. Only the code for this implementation is publicly available.

3.7.2 Fast Finite Shearlet Transform

The FFST is in some ways the most intuitive implementation of the shearlet

transform. We start by defining the generating shearlet ψ, assuming as allows that

it satisfies (3.2). Define a function b : RÑ R by

bpωq :“

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

sinpπ
2
vp|ω| ´ 1qq for 1 ď |ω| ď 2

cospπ
2
vp1

2
|ω| ´ 1qq for 2 ă |ω| ď 4

0 o.w.
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where v is defined by (3.8), cf. (3.7). Then, ψ1 is given in the frequency domain by

ψ̂1pωq :“
a

b2p2ωq ` b2pωq.

It can be shown that supppψ̂1q “ r´4,´1
2
s Y r1

2
, 4s and that

ÿ

jě0

|ψ̂1p2
´2jωq|2 “ 1 for |ω| ą 1.

Next, ψ2 is defined by

ψ̂2pωq :“

$

’

’

’

&

’

’

’

%

a

vp1` ωq for ω ď 0

a

vp1´ ωq for ω ą 0.

This function has support r´1, 1s and satisfies (3.10).

The FFST uses a modified form of cone-adapted shearlets where the frequency

domain is divided into four non-disjoint sets:

C0 :“ tpω1, ωq P R2 : |ω1| ă 1, |ω2| ă 1u

Ch :“ tpω1, ω2q P R2 : |ω2{ω1| ă 1, |ω1| ě 1{2u

Cv :“ tpω1, ω2q P R2 : |ω1{ω2| ă 1, |ω2| ě 1{2u

Cˆ :“ tpω1, ω2q P R2 : |ω1| ě 1{2, |ω2| ě 1{2, |ω1| “ |ω2|u.

The last region Cˆ is new, representing the intersection of the horizontal and vertical

cones (the seam lines). We also note that C0 now intersects non-trivially with

both cones. This allows our shearlets to transition more smoothly across region

boundaries. We address each region in turn by defining the generating shearlet.

For the low-pass region, C0, we use the Meyer scaling function, whose Fourier
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transform is given by

ϕ̂pωq :“

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1 for |ω| ď 1{2

cospπ
2
vp2|ω| ´ 1qq for 1{2 ă |ω| ă 1

0 o.w.

to define the full scaling function

φ̂pω1, ω2q :“

$

’

’

’

&

’

’

’

%

ϕpω1q for |ω2| ď |ω1|

ϕpω2q for |ω1| ă |ω2|

.

For Ch and Cv, we use

ψ̂hpω1, ω2q “ ψ̂1pω1qψ̂2

ˆ

ω2

ω1

˙

ψ̂vpω1, ω2q “ ψ̂1pω2qψ̂2

ˆ

ω1

ω2

˙

.

Finally, for Cˆ, ψ̂h “ ψ̂v and we use the common values to define ψ̂x there.

Now, let f be an M ˆ N image, considered as a function on the grid G :“

tpm1{M,m2{Nq : m1 “ 0, . . . ,M ´ 1,m2 “ 0, . . . , N ´ 1u with periodic extension.

Define j0 :“ tlog2 maxtM,Nuu. We discretize the parameters as follows:

aj :“2´2j
“

1

4j
, j “ 0, . . . , j0 ´ 1,

sj,k :“k2´j, ´2j ď k ď 2j,

tm :“
´m1

M
,
m2

N

¯

, m P G.

Our shearlets then are given by

ψκj,k,mpxq :“ ψκaj ,sj,k,tm “ ψκpA´1
aj
S´1
sj,k
px´ tmqq, κ “ h, v.
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With this choice of parameters, the shearlets have support entirely within one of

the cones, except for |k| “ 2j. In this case, the shearlets in both cones agree, so we

can choose either function, which we will call ψhˆv. The low-pass region is handled

by translations of the full scaling function: φtpxq :“ φpx ´ tq. With calculations

almost identical to those in (3.3) except in the discrete setting, we can develop

simple formulas for the shearlet coefficients. For instance, in the horizontal cone,

we have

SHpfqpj, k,mq “ xf, ψhj,k,my

“ xf̂ , ψ̂hj,k,my

“ F´1
pf̂pω1, ω2qψ̂p4

´jω1, 4
´jkω1 ` 2´jω2qq

where ω1 “ ´ tM{2u , . . . , rM{2s ´ 1, ω2 “ ´ tN{2u , . . . , rN{2s ´ 1. The Fourier

transforms and inverse Fourier transforms are to be interpreted as discrete Fourier

transforms, and hence can be implemented by 2D FFTs. After a lengthy and

technical series of calculations, it can be shown that the shearlets form a Parseval

frame for L2pGq.

Theorem 3.7.1 (Theorem 3.1, [12]). The discrete shearlet system

tψhj,k,mpxq : j “ 0, . . . , j0 ´ 1,´2j ` 1 ď k ď 2j ´ 1,m P Gu

Y tψvj,k,mpxq : j “ 0, . . . , j0 ´ 1,´2j ` 1 ď k ď 2j ´ 1,m P Gu

Y tψhˆvj,k,mpxq : j “ 0, . . . , j0 ´ 1, |k| “ 2j,m P Gu

Y tφmpxq : m P Gu

forms a Parseval frame for L2pGq.
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3.8 Shearlet Applications in the Literature

Shearlets mainly have applications in image processing tasks. They have been

used for image registration [29], inpainting [30, 31], denoising [24, 32], segmenta-

tion [33, 34], data reconstruction [35], image interpolation [36], and edge detec-

tion/classification [37,38].

Much of the cited literature promotes shearlets as being better than wavelets

at analyzing images with edges, owing to the optimal sparsity of shearlets. It would

then be interesting to check whether we can actually obtain the expected approxi-

mation error decline using the available implementations. Real images are discrete

signals with a limited number of scales, and hence we would not necessarily expect

asymptotic results on continuous signals to carry over. In [24], the authors compare

their frequency-domain approach to an unspecified discrete wavelet transform, as

well as check the rate of error decline as a function of the number of coefficients kept.

They note that if we assume ||f ´ fN ||2 “ CN´α, then a log-log plot of L2 approx-

imation error vs. number of coefficients would have slope ´1 if we have equality in

Theorem 3.6.5. Their first test image is a fingerprint, a prototypical example of an

image with many curves of discontinuity. They account for the added redundancy

of shearlets by multiplying by the redundancy factor. Their results do show lower

error for shearlets as compared to wavelets, at least within the range shown. How-

ever, there is no appreciable difference in the error decline; α « .25 in both cases.

The authors then use a second image containing three concentric circles, from which

they obtain α « .9634, but there is no comparison to the wavelet transform for this
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image.

We decided to investigate this issue further by considering the shearlet trans-

form on two very different images: the cameraman and the mandrill, Figs. 3.2-3.3.

Both were converted to 256ˆ256 grayscale images. The former contains few discon-

tinuity curves while the latter contains a large number. For the shearlet transform,

the FFST implementation was used with four shearing scales, resulting in 3997696

coefficients. This was chosen since it is most similar to the setup for which the

sparsity result was proved. The wavelet transform was a four-level decomposition

using the db4 wavelet, resulting in 72034 coefficients. As in [24], we multiply the

wavelet coefficients by the redundancy factor (« 55.5 here) in order to compare on

the same plot.

The results for the cameraman and mandrill image are found in Figs. 3.4-3.5.

There are three distinct regions for all curves: the left side which corresponds to the

low frequency coefficients, the middle, and the right side where we see the effect of

only having a finite number of scales. We are interested in the middle region whose

approximate slope gives the asymptotic error decay rate. In the cameraman image,

we have α « 1.20 using shearlets and α « 0.98 using wavelets. For the mandrill

image, we have α « 1.17 and α « 0.56, respectively. We observe that shearlets do

give a better error decay rate than wavelets. The difference is most apparent in

the mandrill image, where wavelets perform half as well as shearlets. Furthermore,

shearlets perform about the same regardless of the image’s edginess, whereas wavelet

performance is strongly influenced by the number of edges. In terms of the error

values, wavelets outperform shearlets when few coefficients are kept, but at some
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point this behavior is reversed. For the cameraman image, shearlets give lower error

when more than 80% of coefficients are kept. For the mandrill image, this number

is about 52%, again illustrating that shearlets are most useful on images with many

edges. We should note, however, that the difference in error values may be hard to

interpret due to the fact that 1{256 of the wavelet coefficients are low-pass, compared

to 1{61 of the shearlet coefficients.

Unlike wavelets, this shearlet implementation, and in fact all implementa-

tions, are highly redundant. Therefore, we would only expect shearlets to be useful

in applications for which nonsubsampled wavelets have proved useful, such as de-

noising [39] and edge detection [40]. The wavelet and shearlet reconstructions of

the images resulting in the same error were visually indistinguishable, but the error

distributions were quite different. In the cameraman image, keeping 80% of the co-

efficients resulted in a relative L2 error of 1.74ˆ10´4 using wavelets and 1.78ˆ10´4

using shearlets. In the mandrill image, keeping 56% of the coefficients resulted in a

relative L2 error of 2.00ˆ 10´3 using wavelets and 1.97ˆ 10´3 using shearlets. Fig.

3.6 and 3.7 show the distribution of error in both images. With wavelets (left plot),

the error is small near distinct, strong edges, but is otherwise uniform. With shear-

lets (right plot), the error is not only small at strong edges, but also at weak edges

and textures. Most shearlet error is concentrated in regions that appear constant;

in fact, these regions have many small variations that are invisible to the naked eye.
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Figure 3.2: The cameraman test image.

Figure 3.3: The mandrill test image.
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Figure 3.4: A log-log plot of ||f´fN ||2 vs. N for the cameraman image. The shearlet

curve has α « 0.85. The wavelet curve has α « 0.72. The intersection point of the

curves corresponds to 82.6%.
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Figure 3.5: A log-log plot of ||f ´ fN ||2 vs. N for the mandrill image. The shearlet

curve has α « 0.55. The wavelet curve has α « 0.42. The intersection point of the

curves corresponds to 49.8%.
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Figure 3.6: Concentration of absolute error in the cameraman image using wavelets

(left) and shearlets (right) while keeping 82.6% of the coefficients. The relative L2

errors are 9.40ˆ 10´4 and 9.33ˆ 10´4, respectively.

Figure 3.7: Concentration of absolute error in the mandrill image using wavelets

(left) and shearlets (right) while keeping 49.8% of the coefficients. The relative L2

errors are both 1.90ˆ 10´2.
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Chapter 4: A Shearlet Application to LIDAR

4.1 Introduction

An essential component in the design of high-resolution, multi-resolution, accu-

rate 3D terrain models, is directional information. Traditional wavelets, while able

to detect isolated discontinuities, are isotropic objects. As a result, they are not

very effective in detecting curves of discontinuity. In response to the limitations of

wavelets, many directional representations were proposed, including contourlets [41],

curvelets and ridgelets [42], bandelets [43], wedgelets [44], and shearlets [17]. These

representations not only include translations and dilations, but also geometric tran-

formations that provide orientation information. We focus on shearlets since they

have a solid theoretical backing as well as several efficient numerical implementa-

tions. In this chapter, we utilize shearlets to detect linear and quasilinear structures

in LIDAR images of rural areas.

4.2 What is LIDAR?

LIDAR (Light Detection and Ranging) is a remote-sensing technique that

uses lasers to acquire elevation data of a scene. LIDAR systems require a collection
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vehicle, GPS (Global Positioning System), and INS (Inertial Navigation System)

[45]. In the data collection process, aerial vehicles, such as planes or helicopters,

fly along a survey route while emitting light pulses. The reflected light is received

by sensors on the vehicle; elevation data can be inferred based on the time it takes

for the light to return. Objects on the ground that allow for the passage of some

light, such as trees, result in multiple returns. For instance, some light may be

reflected by the top of a tree, a branch further down, or the ground beneath the

tree. In this way, we are able to receive information on structures normally hidden

under trees. Some LIDAR data also includes intensity values, the strength of the

returning signal, which measures material reflectivity. This can be used to classify

objects by material composition. Recently, LIDAR has become an indispensable

component of self-driving cars with its ability to quickly deliver an accurate map of

the surrounding area [46].

4.3 Road Detection

The topic of road detection by remote sensing is an important and challeng-

ing problem. According to [47], a road must satisfy six physical and geometric

requirements:

1. Its surface must be smooth, without breaks.

2. It must be made of firm material.

3. The steepness must have an upper bound.
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4. The width of the road must have an upper bound (in practice, 146 ft).

5. The local radius of curvature must have an upper bound (in practice, 1200 ft).

6. Roads nearby are connected and form a network.

Some examples of road detection algorithms utilizing aerial LIDAR are found

in [48–50]. There are also algorithms for LIDAR road detection by autonomous

cars [51, 52].

4.4 Edge Detection

Since there is typically an abrupt change in signal intensity at the edge of

roads, edge detectors are typically employed in road detection schemes [53]. One

of the most popular edge detectors is the Canny algorithm, as evidenced by the

fact that the original paper [54] has been cited over 20, 000 times. Essentially, the

Canny algorithm looks for local maxima in gradient intensity. The algorithm can

be broken up into four steps. First, a Gaussian filter with standard deviation σ is

applied to the image to remove noise. Second, a numerical gradient is computed at

each point. Third, non-maximum suppression is applied to the gradient magnitudes.

In this step, a point is determined to not be on a edge if its gradient magnitude

is no larger than that of its two neighbors in the gradient’s (quantized) direction,

resulting in edge thinning. Finally, a double thresholding technique called hysteresis

is performed. Two thresholds, Tlow and Thigh, are specified such that Tlow ă Thigh.

If the gradient at a point is larger than Thigh, it is marked as an edge point. The

neighbors of an edge point are then checked for whether their gradients are between
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the thresholds. Any such point is marked as an edge point, and the process continues.

This is an example of edge linking. Below is the output for the Canny algorithm on

the cameraman image with Tlow “ 0.0375, Thigh “ 0.0938, σ “
?

2.

Figure 4.1: Output of the Canny algorithm on the cameraman image. Detected

edges are in white.

4.4.1 Theoretical results for edge detection with shearlets

Shearlets have properties that make them effective edge detectors. We review

some known theory regarding the ability of shearlets to detect edges [37]. To model

an image, let Ω “ r0, 1s2 and decompose Ω as:

Ω “
L
ď

n“1

Ωn Y Γ, where:

1. Each Ωn is a connected open set.
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2. Γ “
ŤL
n“1 BΩn, where each boundary BΩn is a smooth rectifiable curve.

In order to represent images, we consider the set of functions

IpΩq :“ tupxq “
L
ÿ

n“1

unpxqχΩnpxq, x P ΩzΓu,

where the un have bounded partial derivatives and the sets Ωn are pairwise disjoint

in measure.

Theorem 4.4.1 (Theorem II, [37]). Let u P I. If t R Γ, then

lim
aÑ0

a´
3
4SHψpa, s, tq “ 0.

If t P Γ and in a neighborhood of t “ pt1, t2q, the boundary curve is parametrized

as pEpt2q, t2q, and s ‰ ´E 1pt2q, then (4.4.1) also holds. Otherwise, if s “ ´E 1pt2q,

there is a constant C ą 0 such that:

lim
aÑ0

a´
3
4SHψpa, s, tq “ C|rust|,

where rust is the jump of u at t, occurring in the direction normal to the jump.

Intuitively, this means edges can be determined based on the asymptotic decay

of the continuous shearlet transform. This asymptotic decay will be slower when t

is on the boundary, and s corresponds to the normal direction to Ω at t. Thus, the

asymptotic behavior determines both the location of edges and their local orienta-

tion. This result can be improved by incorporating information on the regularity of

u.
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Theorem 4.4.2 ( [37]). Suppose u P IpΩq is Lipschitz of order α near t0 P R2.

Then, for α ě 0,

|SHψupa, s, t0q| ď Ca
1
2
pα` 3

2
q, as aÑ 0.

For α ă 0,

|SHψupa, s, t0q| ď Caα`
3
4 , as aÑ 0.

4.5 Description of the Problem

We are given first return LIDAR data without intensities. The data has al-

ready been preprocessed by gridding, i.e., the non-uniformly sampled data has been

converted to data sampled on a regular grid via interpolation. We are interested

in detecting dirt roads and ditches in rural scenes using shearlets. This problem is

quite difficult for a number of reasons. First, since we do not have intensities, we

cannot use material information to identify the roads. Second, we only have first

return data for scenes with many trees. If we had last return data, we could have an

image where most of the trees are removed. Objects such as trees and bushes result

in large shearlet coefficients in all directions and at all scales. Filtering and thresh-

olding is needed in order to bring out the features we want. Third, the shearlet’s

size causes a “bleeding effect” in which large shearlet magnitudes will be found in

a sizable region near a directional feature. Fourth, the features we seek only show

up in the LIDAR data as weak edges, though optically they would appear much
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stronger. As a result, we can not utilize any methods which rely on edges persisting

across scales such as in [55], since many of the edges are too weak to appear at finer

scales.

4.6 Our Initial Approach

At first, we attempted to use the fact that large shearlet coefficients at fine

scales are indicative of edges. The FFST was not very effective towards this goal;

although we could see our features at the proper scale, the shearlets extended from

the trees and obscured the important features. In effect, the shearlets of FFST do

not decay fast enough for our purposes. See Fig. 4.2 for a demonstration of this

phenomenon.

Figure 4.2: Sum of shearlet coefficients using the FFST Implementation. All values

larger than 7 have been set to 7 for visualization purposes.
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We next tried the local shearlet toolbox, whose implementation via small filters

prevents the above phenomenon. We chose 5 scales: excluding the low pass filter,

we divided each into 16 directions. This is important for our application because

some of our features can only be found at the lower scales, so it is helpful to have

many directions available to us. Another restriction is that all input images must

be square. We managed this by either cutting out a square part of the image (if

it was close to square already) or padding the image with zeros. The latter led to

boundary effects where we padded the image, but was otherwise innocuous.

We consider data from the Mohawk ditch area, which was provided by the

Army Research Labs. Fig. 4.3 shows the original LIDAR data; its resolution, that

is the space between neighboring pixels, is 1 m. The most interesting features are

the vertical and horizontal roads as well as the narrow ditches. In our first attempt

to find the directional features in the data, we sum up the absolute values of the

shearlet coefficients over all directions at fixed scales. We look at the log of the

sum so that our view is not completely dominated by the trees. Figs. 4.4 – 4.7

show these results at each scale. We count the scales from coarsest to finest, so that

scale 1 shows the lowest frequency band (excluding the low-pass region) and scale 4

shows the highest frequency band. At scales 1 and 2, we see the roads and ditches

very clearly. There are also vertical and horizontal lines in the fields that may be

tillage patterns. By scale 3, these patterns have disappeared, though we now see

other non-linear patterns in the bottom fields. At scale 4, some of the ditches have

disappeared and we see another pattern appear in the bottom fields.
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Figure 4.3: Original LIDAR image of the Mohawk ditch scene. The resolution is 1

m.

Figure 4.4: Log of sum of absolute values of shearlet coefficients at Scale 1.
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Figure 4.5: Log of sum of absolute values of shearlet coefficients at Scale 2.

Figure 4.6: Log of sum of absolute values of shearlet coefficients at Scale 3.
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Figure 4.7: Log of sum of absolute values of shearlet coefficients at Scale 4.

We compare these pictures with the result of applying a standard deviation

filter to the data and taking the logarithm, which we will refer to as the logstd of

the image. This is a good way to determine the directional features that exist in the

image, and therefore could potentially be detected. We use the default MATLAB

command stdfilt, which computes the standard deviation of all pixels in a 3-by-3

neighborhood, with symmetric padding on the boundary. The results are in Fig. 4.8.

The standard deviation-filtered image contains many of the same features we saw

in the shearlet coefficients at scales 3 and 4. The horizontal and vertical lines in

the field are invisible, however. Comparing the shearlet images to the standard

deviation filter image, we do see one disadvantage of the shearlet approach: due to

the shearlet support, we can not precisely determine the features’ locations. This is

less of a problem at finer scales where the shearlet support is thinner, but we tend

47



to lose weak edges at fine scales, so exact detection of weak edges is difficult.

Figure 4.8: Logstd of the Mohawk ditch scene.

We would like to take advantage of the fact that shearlet coefficients are large

at points with local direction, say by setting a lower threshold for the sum of the

absolute values of the coefficients. However, trees have much larger shearlet coef-

ficients than our objects of interest, so we also need to set an upper threshold. In

Fig. 4.9, we present the locations at which the this sum is between 0.12 and 1. The

ditches and edges of roads are apparent, but there are quite a few extraneous loca-

tions. One of the biggest sources of these extra locations is the edges of trees, which

cannot be filtered out by thresholding the shearlet coefficients. We next present an

approach that results in fewer false positives.
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Figure 4.9: Locations where the sum of shearlet coefficients is between 0.12 and 1

at scale 3 (in yellow).

4.7 A New Approach

Since our results were less than satisfactory in the previous section, we devel-

oped a different approach. In the ideal case, an image will only have a well-defined

local direction at the features we are interested in. Here, the shearlet coefficients

would be large in a single direction, while being small in the other directions. Hence,

instead of looking for points with large shearlet coefficients, we could equivalently

look for points with many small shearlet coefficients and at least one large coeffi-

cient. Utilizing this for our LIDAR data, we would need to set a lower threshold on

the local standard deviation in order to filter out flat areas. Trees and buildings can

be filtered out either by having an upper threshold for the local standard deviation
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or by having an upper threshold on height with respect to the lowest point. The

latter method can only be effective if the terrain is flat, which is generally not the

case for large scenes. The steps of the new algorithm are as follows.

1. Let A be the original LIDAR image. Define B :“ A´minpAq.

2. Compute the shearlet transform of B. Here, we have defaulted back to using

the FFST. Restrict to a scale of interest.

3. Specify four thresholding parameters: loglow, loghi, elevhi, and shearhi. These

parameters are thresholds on the logstd, the elevation from the minimum

point, and the shearlet coefficient, respectively.

4. Each point that satisfies the standard deviation and elevation thresholds are

candidates for the edge points we are interested in. For each of the points,

record the number of directions whose shearlet coefficient has magnitude below

shearhi.

5. Remove the points that have small shearlet coefficients in all directions.

6. Apply a median filter to the resulting image to clean up the image. The

median filter is determined by a vector mfilt “ rm,ns, where each pixel value

is replace by the median value in an m by n neighborhood.
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4.8 Results

4.8.1 Mohawk Ditch

We return to the Mohawk ditch scene and perform our new algorithm using

the shearlet coefficients at scale 3. As parameters, we choose loglow “ ´2.4, loghi “

0, shearhi “ 0.1, elevhi “ 50, and mfilt “ r5, 3s. To show the effect of the me-

dian filter, we present the output before and after filtering in Figs. 4.10 and 4.11,

respectively. Note that the filter removes some unwanted isolated pixels at the cost

of removing thin edges.

Figure 4.10: Results of the algorithm on the Mohawk ditch scene without the median

filter. Yellow pixels correspond to the strongest directional features, being weakly

directional in 15 of 16 directions, while light blue pixels are weakly directional in

only 1 direction.
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Figure 4.11: Results of the algorithm on the Mohawk ditch scene with the median

filter.

We observe that our new algorithm performs fairly well in detecting the roads

and ditches, without being misled by tree borders. The strong edges (in yellow) for

which 15 of the 16 shearlet coefficients are small correspond to actual roads and

ditches for the most part. We still get false positives for buildings in the lower

left and right; LIDAR intensities could be used to distinguish these buildings from

roads and ditches. The textured area in the middle of the scene is also detected

since locally it is similar to what we are looking for. Placing an upper bound on the

width of detected features may alleviate this issue.

4.8.2 Mohawk Dirt Tracks

We next consider the Mohawk dirt tracks scene. Fig. 4.12 shows the original

LIDAR data and Fig. 4.13 shows the logstd.
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Figure 4.12: Original LIDAR image for the Mohawk dirt tracks scene. The resolution

is 1.4 m.
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Figure 4.13: Logstd of the Mohawk dirt tracks scene.

We are interested in detecting tracks and drainage ditches. We consider the

third scale of shearlet coefficients and use as parameters for the algorithm loglow “

´2, loghi “ 0, shearhi “ 0.1, elevhi “ 100, and mfilt “ r3, 3s. The results of the

algorithm are found in Fig. 4.14.
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Figure 4.14: Results of the algorithm on the Mohawk dirt tracks scene.

Again, we are able to detect the roads. The main source of false positives

for strong edges are the objects that appear to be bushes or other small plants.

Some textured areas between trees are also incorrectly detected. Texture analysis

techniques such as those found in [56] may be helpful here.

4.8.3 Gainesville Track

Our final scene is the Gainesville track scene, which contains a single dirt road

that acts as a weaker edge than those contained in the examples above. As a result,
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we focus on the second scale of the shearlet coefficients. Figs. 4.15 and 4.16 show

the original LIDAR and the logstd of the image.

Figure 4.15: Original LIDAR image for the Gainsville track scene. The resolution

is 0.1 m.
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Figure 4.16: Logstd of the Gainsville track scene. Note the barely detectable dirt

road.

We apply the algorithm with loglow “ ´4, loghi “ 0, shearhi “ 0.1, elevhi “

5, and mfilt “ r5, 5s. The results are in Fig. 4.17
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Figure 4.17: Results of the algorithm on the Gainsville track scene. Yellow pixels

correspond to having 6 out of 8 small shearlet coefficients.

Unlike in the previous two examples, there are no pixels in Fig. 4.17 that have

the maximum number of small shearlet coefficients, in this case seven. For such

hard to detect roads, we pick up the edges fairly well. As in the previous example,

areas between trees are false positives.
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4.9 Conclusions and Future Directions

An aspect of the problem that we are not using is an a priori knowledge of

the global shape of our objects of interest. Clearly, the road pixels differ from the

non-road pixels, which show up as amorphous regions. Image segmentation by shape

has been studied [57–59] and we could attempt to use some of their methods. This

could be challenging because the shapes we extract have many disconnections.

One of the simplest ways to detect global shape is the Hough transform, which

automatically detect lines in an image [60]. It is usually applied to the results of an

edge detector and counts the number of nonzero pixels on several lines, parametrized

by

ρ “ x cospθq ` y sinpθq.

The Hough transform is closely related to the Radon transform, which is defined for

f P SpR2q by

Rpfqpu, sq :“

ż

xu,xy“s

fpxqdx, u P S1, s P R.

We convert Fig. 4.17 into a binary image by setting all points with one or more counts

to 1. This image is then fed into Matlab’s built-in Hough transform functions. The

result of the transform is in Fig. 4.18.
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Figure 4.18: The number of pixels lying on lines determined by θ and ρ.

Plotting the ten most significant lines detected by the transform results in

Fig. 4.19. These lines in fact only correspond to three distinct lines, that is, having

nonconsecutive parameters. Averaging the parameters for each distinct line, we find

that the lines are described by pθ, ρq “ p´15.5, 200q, p´15, 209.5q, and p´14, 170q.

The first two of these lines correspond to the right road, while the third corresponds

to the left road. Thus, global shape methods show promise in allowing us to remove

all false positives from our results.
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Figure 4.19: Plot of the ten most significant lines as determined by the Hough trans-

form, superimposed on the binary-converted results of the algorithm. We observe

that the roads have been detected despite the breaks in the road.
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Chapter 5: Directional Superresolution

5.1 Introduction

Superresolution (SR) is the problem of improving the resolution of an image,

without introducing artifacts. All sensors have a diffraction limit, which restricts

resolving power [61]. Decreasing pixel size improves resolution, but has the draw-

back of also decreasing light, leading to shot noise [62]. Undersampling leads to

aliasing, causing the image to appear blocky. We would like to be able to undo

these distortions.

Superresolution is often phrased as an image recovery problem. Let f be the

observed image and u the image we want to recover. One possible model for single

frame SR is [63]

f “ Dph ˚ uq ` n

where h is a possibly unknown blur filter, D is a down-sampling operator (which

typically introduces aliasing), and n is Gaussian white noise. If we have several

frames, we can use the analogous model

fk “ Dkph ˚ uq ` nk k “ 1, ¨ ¨ ¨ , N

where the downsamplers Dk and noise nk are allowed to vary. This problem is ill-
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posed due to the loss of high frequency information caused by the downsampling.

The problem becomes more tractable with additional information. One common

technique is to combine multiple low resolution images of the same scene with sub-

pixel shifts [62]. Another is to build a dictionary of known high/low resolution pairs

from a set of test images [64]. For this application, we will restrict ourselves to the

simpler model

f “ Du

and assume D downsamples by a factor of 2.

Since we do not assume any information beyond the downsampled image, we

are attempting what is known as single-image superresolution. Simple methods of

single-image SR reduce to image interpolation. Some popular interpolation tech-

niques are nearest-neighbor, bilinear, and bicubic [65]. They use weighted averages

of the values of 1, 4, and 16 nearest neighbors, respectively, to interpolate new val-

ues. All of these techniques lead to jagged edges where aliasing has occurred. More

advanced methods rely heavily on statistical techniques. The New Edge-Directed

Interpolation (NEDI) scheme [66] uses estimates of local covariance at the low res-

olution to interpolate the higher resolution. Directional Filtering and Data Fusion

(DFDF) [67] fuses two estimates of a pixel’s value through linear minimum mean

square-error estimation. Soft Decision Adaptive Interpolation (SAI) [68] uses a 2D

piecewise autoregressive model, where the model parameters are determined by a

soft-decision estimation on groups of pixels. Finally, Kernel Regression (KR) [69]

makes use of non-parametric estimation to denoise and interpolate randomly sam-
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pled data.

Harmonic analysis plays an important roll in several single-image SR tech-

niques. A few authors have developed iterative procedures to impose sparsity in

various transform domains using contourlets [70] and shearlets [36]. The Sparse

Mixing Estimator (SME) approach of Mallat and Yu [71] uses a local mixture de-

composition on the low resolution signal y

y “
ÿ

BPB
ãpBqyB ` yr

where the sum is over small blocks with varying orientations, yB is the signal restrict

to block B, the ãpBq are mixing coefficients computed by orthogonal block matching

pursuit on the fine scale wavelet coefficients, and yr is a residue. Based on the size

of ãpBq, a decision is made as to where and how to directionally interpolate the

image.

5.2 Superresolution by Tight Frames Constructed from Circulant

Matrices

We now summarize the method of constructing tight frames from circulant

matrices due to Bosch et al. [72] Below, bolded letters will always refer to column

vectors.

Definition 5.2.1. A matrix is called circulant if it is in the image of the mapping
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C : Rm Ñ Rmˆm defined by

CpaT q “ Cpra1, ¨ ¨ ¨ , amsq :“

»

—

—

—

—

—

—

—

—

—

—

–

a1 a2 ¨ ¨ ¨ am

am a1 ¨ ¨ ¨ am´1

...
...

. . .
...

a2 am´1 ¨ ¨ ¨ a1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

By a slight abuse of notation, we define C on a column vector b by Cpbq “ pCpbT qqT .

Definition 5.2.2. Let e2 denote the standard basis vector for Rm whose only

nonzero component is a 1 in the second slot. The basic circulant permutation matrix

of order m is

V :“ CpeT2 q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 1 0 ¨ ¨ ¨ 0

0 0 1 ¨ ¨ ¨ 0

...
...

...
. . .

...

0 0 0 ¨ ¨ ¨ 1

1 0 0 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

We list some important properties of circulant matrices here that are straight-

forward to show:

1. V generates a cyclic group of order m with V ´1 “ V T . All elements of the

group have trace 0 except the identity.

2. V T permutes the entries of a column vector cyclicly, i.e,

V Tb “ V T
rb1, b2, . . . , bms

T
“ rbm, b1, b2, . . . , bm´1s

T .

In particular, the jth column of Cpbq is given by pV T qj´1b.
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3. CpaT qCpbq “ CpaTCpbqq.

4. Cpa1
T q ` Cpa2

T q “ Cpa1
T ` a2

T q.

5. If C1 and C2 are circulant, then C1C2 “ C2C1, that is, they commute.

We can now prove the following theorem:

Theorem 5.2.3 (Theorem 3.1, [72]). Let paiq
m
i“1 be a basis for Rm. Define A “

»

—

—

—

—

—

—

–

aT1

...

aTm

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Rmˆm. Denote its inverse by B “ rb1, ¨ ¨ ¨ ,bms P Rmˆm. Then,

m
ÿ

i“1

CpaTi qCpbiq “
m
ÿ

i“1

CpbiqCpa
T
i q “ m ¨ Id.

Proof.
m
ÿ

i“1

CpaTi qCpbiq “
m
ÿ

i“1

CpaTi Cpbiqq “ C

˜

m
ÿ

i“1

aTi Cpbiq

¸

so it suffices to show that
řm
i“1 aTi Cpbiq “ rm, 0, ¨ ¨ ¨ , 0s.

m
ÿ

i“1

aTi Cpbiq “

«

m
ÿ

i“1

aTi bi,
m
ÿ

i“1

aTi V
Tbi, ¨ ¨ ¨ ,

m
ÿ

i“1

aTi pV
T
q
m´1bi

ff

“
“

TrpABq, T rpAV TBq, ¨ ¨ ¨ , T rpApV T
q
m´1Bq

‰

“
“

TrpIdmq, T rpV
T
q, ¨ ¨ ¨ , T rppV T

q
m´1

q
‰

“ rm, 0, ¨ ¨ ¨ , 0s

where we have used that the matrix trace satisfies TrpA1A2q “ TrpA2A1q, whenever

both matrix products make sense.

We immediately have the following corollary:
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Corollary 5.2.4. With the previous hypotheses, the columns of the matrices pCpaiqq
m
i“1

form a frame for Rm with dual frame given by the columns of the matrices p 1
m
Cpbiqq

m
i“1.

In addition, the columns of the matrices pCpaTi qq
m
i“1 form a frame for Rm with dual

frame given by the columns of the matrices p 1
m
CpbTi qq

m
i“1.

An important special case is if the paiq
m
i“1 form an orthonormal basis for Rm.

Corollary 5.2.5. Assume that the vectors paiq
m
i“1 form an orthonormal basis for

Rm. Then, the columns of the matrix rCpa1q, Cpa2q, . . . , Cpamqs form an m-tight

frame for Rm.

Proof. Because A is orthogonal, A´1 “ AT , so bi “ ai in Corollary 5.2.4. Therefore,

the columns of the matrices pCpaiqq
m
i“1 form a frame for Rm with dual frame given by

the columns of the matrices p 1
m
Cpaiqq

m
i“1, i.e., the columns of the matrices pCpaiqq

m
i“1

form an m-tight frame for Rn.

Note that this frame has synthesis operator Φ “ rCpa1q, Cpa2q, . . . , Cpamqs

and analysis operator Φ˚ “ rCpa1q, Cpa2q, . . . , Cpamqs
T , which satisfy ΦΦ˚ “ m ¨Id.

For image analysis, we would like a 2D frame; this is easily accomplished by using

the Kronecker product. Recall that the Kronecker product b has the mixed-product

property : pAbBqpC bDq “ pACq b pBDq.

Theorem 5.2.6 (Theorem 4.1, [72]). Let Φ be the analysis operator for an m-tight

frame of Rn constructed as in Corollary 5.2.5. Then the columns of Φ2D :“ Φ b Φ

form an m2-tight frame for Rn2
.
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Proof.

Φ2DΦ˚2D “ pΦb ΦqpΦb Φq˚

“ pΦb ΦqpΦ˚ b Φ˚q

“ pΦΦ˚q b pΦΦ˚q

“ pm ¨ Idq b pm ¨ Idq

“ m2
¨ Id.

This provides us a 2D tight frame if we identify Rn2
with Rnˆn.

Good choices for the orthonormal vectors that will generate our 2D frame are

l “ r1, 1, 1sT {
?

3

b “ r1, 0,´1sT {
?

2

h “ r1,´2, 1sT {
?

6,

which represent low-, band-, and high-pass filters, respectively. The construction

produces a 9-tight frame for R3ˆ3 with analysis operator

Φ˚2D “ rCplq, Cpbq, Cphqs
T
b rCplq, Cpbq, CphqsT P R81ˆ9.

Applying Φ˚2D to Z P R3ˆ3, we obtain 9 blocks of size 3ˆ 3:

»

—

—

—

—

—

—

–

CplqTZCplq CplqTZCpbq CplqTZCphq

CpbqTZCplq CpbqTZCpbq CpbqTZCphq

CphqTZCplq CphqTZCpbq CphqTZCphq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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If Z is a 3ˆ3 block from an image, we only get information about horizontal, vertical,

and diagonal edges at the center of the block. For instance, the CplqTZCphq block

will be small in the presence of a vertical edge, while the CphqTZCplq block will

be small in the presence of a horizontal edge. To process a more general direction

given by a vector t “ rty, txs
T , we define a “grabbing” function Gt : Rn1ˆn1 Ñ R3ˆ3

by GtpZ̃q “ Z where Zj,k “ Z̃ypj,kq,xpj,kq with

ypj, kq :“ 1` pj ´ 1qty ` pk ´ 1qtx

xpj, kq :“ 1` pk ´ 1qty ` pn´ jqtx

n1 :“ 1` pn´ 1qpty ` txq,

for j, k “ 1, 2, 3. For example, in the case of a 45 degree angle, ty “ tx “ 1 and

n1 “ 5, so

Gt

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

z11 z12 z13 z14 z15

z21 z22 z23 z24 z25

z31 z32 z33 z34 z35

z41 z42 z43 z44 z45

z51 z52 z53 z54 z55

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

»

—

—

—

—

—

—

–

z13 z24 z35

z22 z33 z44

z31 z42 z53

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

By finding the minimizer of the l2 energy of the CplqTZCphq block over all directions,

we can assign a local direction. If the direction found is considered significant and

the region is not of low variance, nearest-neighbor upsampling is applied with a

motion blur in the dominant direction. Otherwise, the algorithm defaults to bicubic

interpolation. The resulting superresolved images have much smoother edges as

compared to bicubic alone.
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5.3 A Shearlet-based Approach to Superresolution

In this section, we develop an algorithm for superresolution utilizing shearlets

to detect position and orientation of edges in order to perform edge smoothing. Local

direction at a particular pixel can be estimated by finding the shearing parameter

which maximizes the magnitude of the shearlet coefficients at a particular scale.

This is an important fact, which we use in our algorithms both in this chapter and

Chapter 4. While intuitively clear, we prove it rigorously for the simple case of

characteristic functions on half-planes. We begin with a few lemmas:

Lemma 5.3.1. Let ψ P SpR2q, r P R. Then

ż

R
ψ̂p´rω, ωqdω “

ż

R
ψpx, rxqdx.

Proof. Define fpyq “
ş

R ψpx, y ` rxqdx.

ż

R
ψ̂p´rω, ωqdω “

ż

R

ż

R2

ψpx, yqe´2πip´rx`yqωdxdydω

“

ż

R

ż

R

ż

R
ψpx, y1 ` rxqe´2πiy1ωdy1dxdω

“

ż

R

ż

R
fpyqe´2πiyωdydω

“

ż

R
f̂pωqdω

“ fp0q

“

ż

R
ψpx, rxqdx.

Let Hyąrx denote the characteristic function of the set tpx, yq P R2|y ą rxu for

some fixed r P R.
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Lemma 5.3.2.

B

By
Hyąrx “ δy´rx

in the sense of distributions.

Proof. Let ψ P C8c pR2q.

x
B

By
Hyąrx, ψy “ ´xHyąrx, ψyy

“ ´

ż

R2

Hyąrxψydxdy

“ ´

ż 8

´8

ż 8

rx

ψydydx

“

ż

R
ψpx, rxqdx

“ xδy´rx, ψy.

Lemma 5.3.3.

{Hyąrx “
1

2πiω2

zδy´rx

where zδy´rx acts by

xzδy´rx, ψ̂y “

ż

R
ψ̂p´rω, ωqdω, ψ̂ P C8c pR2

q.

Proof. Note that {B

By
Hyąrx “ p2πiω2q{Hyąrx “

zδy´rx so the first claim follows. For

the second claim, we use Parseval and the above lemma:

xzδy´rx, ψ̂y “ xδy´rx, ψy

“

ż

R
ψpx, rxqdx

“

ż

R
ψ̂p´rω, ωqdω.
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We can now prove that shearlets detect the direction of discontinuities in half-

planes.

Theorem 5.3.4 (DW). Discretize the position, dilation, and shear parameters and

define ψ as in the FFST. Assume WLOG that |r| ď 1. Let fpx, yq “ Hyąrx and

fix a scale j and position m. For almost all values of r, the shearlet transform

of f,SHpfqpj, k,mq, is only non-zero for two consecutive values of the shearing

parameter k. These values satisfy

|sj,k ´ r| ă
1

2j
.

Furthermore, for the unique k that maximizes |SHpfqpj, k,mq|, sj,k is closest to r

over all k.

Proof.

SHpfqpj, k,mq “ xf, ψjkmy

“ xf̂ , ψ̂jkmy

“

ż

R2

1

2πiω2

zδy´rxpω1, ω2qψ̂jkmpω1, ω2qdω1dω2

“
1

2πi

ż

R

1

ω2

ψ̂jkmp´rω2, ω2qdω2.

By the assumption on r, we are utilizing the vertical cone, hence

ψ̂jkmp´rω2, ω2q “ ψ̂1p4
´jω2qψ̂2p´2jr ` kq expp´2πip´rω2m1{M ` ω2m2{Nqq.

We note that k only occurs in ψ̂2p´2jr` kq, so maximizing this term will maximize

|SHpfqpj, k,mq|. The function ψ̂2 is a non-negative, smooth function supported
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on r´1, 1s that is strictly increasing on r´1, 0s and strictly decreasing on r0, 1s.

The support assumption implies that the term is 0 unless ´1 ă ´2jr ` k ă 1, or

equivalently, |sj,k ´ r| ă 1
2j

. Since the shearlets’ slopes differ by 1{2j, this occurs

for two consecutive values of k, except in the case when r and a shearlet’s slope

are exactly equal. Here, only one value of k leads to a non-zero shearlet coefficient.

Furthermore, the above term will be maximized when ´2jr ` k is closest to 0, or

when r is closest to k
2j
“ sj,k, the slope of the shearlet’s center. There is a unique

such k, unless r is equidistant between two shearlet directions. Here, two values

of k give identical shearlet coefficients. This completes the proof when |r| ď 1. A

symmetric argument, using the definition of ψ in the horizontal cone, shows the

result for |r| ą 1.

5.4 Description of Algorithm

Our algorithm is described below. Theorem 5.3.4 plays a crucial roll here since

it provides guarantees on how well we can resolve the slope of directional features.

The input image I may be grayscale or RGB. In the latter case, we perform the

algorithm on each slice and reconstruct the color image at the end. Hence, we may

assume that I is an M ˆN matrix. We scale its entries so that they lie in r0, 1s.

1. Apply the Fast Finite Shearlet Transform [12], [28] to I. This produces shearlet

coefficients up to
X

1
2

log2pmaxtM,Nuq
\

scales. If we label the scales from

coarsest to finest scale starting at j “ 1, we have 2j`1 matrices of size M ˆN

at the jth scale, each corresponding to a different direction approximately
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equally spaced. We fix a scale j that best captures the features of interest. In

all of our test images, we found that j “ 3 was optimal, giving us 16 directions.

Denote these directional matrices D1, ..., D2j`1 .

2. Upsample I by a factor of n P N using bicubic interpolation to acquire Ĩ.

3. Upsample each of the directional matrices by a factor of n P N using bicubic

interpolation to acquire D̃1, ..., D̃2j`1 .

4. Assign each pixel in Ĩ a local direction based on which directional matrix

contains the shearlet coefficient of largest magnitude. Pixels are assigned no

dominant direction as determined by one of the following three methods:

(a) The maximum coefficient is below a certain threshold. We found empir-

ically that a threshold of 0.04 works well for all of our test images, but

this parameter can be tuned.

(b) The local standard deviation in a 5 ˆ 5 neighborhood is below a certain

threshold. We chose a threshold of 0.06.

(c) It is not picked as an edge by a ‘thickened’ edge detector. In more de-

tail, we apply the Canny edge detector with low/high thresholds 0.1{0.3

and default σ to Ĩ, then thicken the edges using the MATLAB function

‘imdilate’ with a dilation neighborhood of ones(3). Any pixel set to 0 in

this process is considered to have no local direction.

For all three methods, pixels close to the image boundary (say within 10

pixels) are also assigned no direction since the FFST gives spurious directional
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information near the boundary.

5. Apply a motion blur filter of length t2.5nu in each of the 2j`1 directions Ĩ, to

produce Ĩ1, ..., Ĩ2j`1 .

6. Replace the pixel values of Ĩ by their corresponding blurred version based on

the previously assigned local direction.

7. Output the superresolved image.

5.5 Experiments and Results

For our test image, we chose a 512 ˆ 512 section of a color orthophoto with

5 cm spatial resolution of an area in Zeebruges, Belgium (Fig. 5.1). The data

was provided for the 2015 IEEE GRSS Data Fusion Contest. 1 We downsampled

the original by a factor of 2 by removing every odd-indexed row and column, thus

obtaining a low-quality/aliased image which we seek to superresolve. Fig. 5.2 shows

the result of upsampling through bicubic interpolation alone. Note the jaggedness

of the edges. We then performed our algorithm to the image. Fig. 5.3 shows the full

direction map for the green channel, i.e., the direction of largest shearlet magnitude

for each pixel in the second channel. The other channels have similar direction

maps, so we arbitrarily choose the green channel for brevity. Directions vary from

1 (vertical) to 16 (line of slope 4). Recall that we have three different methods for

determining which pixels have a locally dominant direction.

1http://www.grss-ieee.org/community/technical-committees/data-fusion
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We display the direction maps, where the darkest blue represents no local

direction, as well as the resulting superresolved images. We also processed the

image with Mallat’s SME method for comparison, see Fig. 5.10. Fig. 5.11 shows a

100 ˆ 100 subset comparing bicubic, SME, and our algorithm using method 1. We

see that bicubic convolution leads to many jagged edges, which both SME and our

algorithm fix. On one hand, SME gives sharper edges than our algorithm, which is

expected since we use blurring on the edges. On the other hand, SME caused some

artifacts that appear as lines on the roof. Additionally, Mallat’s algorithm is much

slower than ours: running on a MacBook Pro with a 2.6 GHz Intel Core i5 processor

and 16 GB of RAM, SME took 705 seconds, compared to 3 seconds for our methods.

We could easily process more/larger images in a reasonable time, with the biggest

bottleneck being the initial computation of the shearlet transform.
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5.6 Figures

Figure 5.1: The original, high-resolution image of an aerial view of an area in

Zeebruges, Belgium.
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Figure 5.2: The image superresolved by bicubic convolution.
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Figure 5.3: The full direction map as determined by the largest shearlet coefficient.

The directions vary from 1 (vertical) to 16 (line of slope 4).
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Figure 5.4: The direction map obtained using Method 1 to remove pixels if their

largest shearlet coefficient is below 0.04.
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Figure 5.5: The superresolved image using Method 1.
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Figure 5.6: The direction map obtained using Method 2 to remove pixels if their

local standard deviation in a 5ˆ 5 neighborhood is below 0.06.
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Figure 5.7: The superresolved image using Method 2.

83



Figure 5.8: The direction map obtained using Method 3 to remove pixels if they are

not in a thickened edge, as determined by the Canny algorithm.
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Figure 5.9: The superresolved image using Method 3.
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Figure 5.10: The superresolved image using Mallat’s Sparse Mixing Estimators.
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(a) Original (b) Bicubic

(c) SME (d) Our algorithm (Method 1)

Figure 5.11: A comparison of the three methods on a zoomed-in area of the image.

5.7 Further Analysis of Method 1

5.7.1 Synthetic Experiments

We decided to further analyze Method 1 of the above algorithm since it gives

good results and relies solely on shearlet information. First, we considered synthetic

experiments. Since our algorithm incorporates anisotropic information, we wanted

to study their efficacy on images that have very prominent directional content. We

constructed 1024ˆ 1024 half planes in MATLAB, at various slopes. Two such half
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planes appear in Figure 5.12.

Figure 5.12: Half planes of slope 3 and .5, respectively.

We hypothesized that our anisotropic algorithms would efficiently capture the

directional content, and produce high-quality superresolved images. Since there is

only one major feature in these images, it may be difficult to interpret the results

via visual inspection. Hence, to judge the quality of our superresolution algorithms

for these half planes, we compute the peak signal to noise ratio (PSNR) for each

of of the half planes, superresolved with either our shearlets method, circulant ma-

trices, or bicubic. This measures the overall quality of the method by considering

superresolution as a recovery problem. Recall that the PSNR in dB of a degraded

image I with respect to the true image Iref is defined by 10 log10ppeakval
2{MSEq

where peakval is the largest possible value that can occur in the image and MSE

is the Mean Square Error, given by

1

MN

M
ÿ

i“1

N
ÿ

i“1

rIpi, jq ´ Iref pi, jqs .

In this case, we downsample the planes to be 512ˆ 512, then apply our super-
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resolution algorithms to double this resolution back to 1024ˆ1024. We then compare

these images with the original planes to compute the PSNR. The values of PSNR

for each of our methods for planes at different slopes appear in Table 5.1. We test

our shearlet superresolution algorithm with 16 pj “ 3q and 32 pj “ 4q directions,

as these methods produce slightly different results. The shearlet superresolution

algorithms are run with the threshold parameter T “ .05.

Slope Shearlet (j “ 3) Shearlet (j “ 4) Circulant Matrices Bicubic

1/5 34.25 34.28 33.64 34.20

1/4 34.30 34.41 33.60 34.21

1/3 34.01 34.19 33.36 33.76

1/2 34.59 35.32 33.43 34.37

1 35.23 35.38 34.51 35.40

2 31.81 32.18 31.00 31.52

3 34.41 34.61 33.77 34.22

4 33.04 33.11 32.24 32.61

5 34.26 34.29 33.78 34.21

Table 5.1: The PSNR values for various methods on angled half planes.

We note that for all cases except one (slope 1), our shearlet-based approach

with 32 directions performs the best, followed by the approaches with 16 directions,

bicubic convolution, and circulant matrices, in that order. It is not surprising that

using higher frequency shearlets on a perfect edge works better than using lower fre-

quency shearlets since the algorithm more precisely locates the edge. The circulant
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matrices method surprisingly performs the worst of all methods. We hypothesize

that this is due to the initial step of nearest-neighbors interpolation, which intro-

duces a large amount of error that can not be fixed later by the motion blur. The

effect is most prominent on straight, single-pixel edges. Finally, it is interesting

to note that none of our methods improved upon bicubic in the slope 1 case. We

believe that this is due to the fact that the ideal line is maximally jagged, so any

attempts to remove jaggedness only reduces similarity to the ideal image.

The differences can also be seen visually. In Fig. 5.13, we present the center

256ˆ256 subset of the superresolved half plane of slope 1{2. All directional methods

appear better than bicubic interpolation.
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(a) Shearlets(j “ 3) (b) Shearlets(j “ 4)

(c) Circulant matrices (d) Bicubic

Figure 5.13: Comparison of methods for the half plane of slope 1{2. Only the

center 256ˆ256 pixels are shown for ease of visualization. Note that the directional

methods produce fewer jagged edges.

We next considered a synthetic experiment on a circle, which appears in Figure
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5.14. We again performed superresolution with our shearlet algorithm, the circulant

matrix algorithm, and bicubic interpolation, and computed PSNR in a method

identical to the one discussed above. The results appear in Table 5.2.

Figure 5.14: Synthetic circle to be tested.

Shearlet (j “ 3) Shearlet (j “ 4) Circulant Matrices Bicubic

30.90 30.88 30.56 30.30

Table 5.2: The PSNR values for the circle.

For the circle experiment, the shearlet algorithms give very similar error and all

anisotropic methods outperform bicubic interpolation. We conclude that in the case

of simple, synthetic experiments, shearlet-based superresolution provides superior

performance when compared to conventional bicubic interpolation. The circulant

matrix method underperforms on straight lines by PSNR, but works better than

bicubic for curved lines.
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5.7.2 Hyperspectral Experiments

We also tested our algorithms on real data. We utilized a hyperspectral data

set of the University of Houston and surrounding area, which consisted of 144 bands

of size 349 ˆ 1905. This dataset has a spectral resolution of 2.5 m, and spectral

resolution of between 380 nm and 1050 nm. We extracted the information from band

70, for its relatively high contrast, and rescaled the data so that all values lay between

0 and 1. For convenience, we extracted a 256 ˆ 256 subset from the upper right of

the image. We performed superresolution experiments with our shearlet algorithm

with 16 directions, the circulant matrices algorithm, and bicubic interpolation. We

note that in accordance with the bound on the number of directions generated by

the shearlet algorithm, this image is too small to consider 32 shearlet directions.

To detect pixels with local direction, we set the threshold T “ .02. The images

resulting from these experiments appear in Figure 5.15. The direction map for the

shearlet algorithm appears in Figure 5.16.
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(a) Original scene of Houston (b) Shearlets

(c) Circulant matrices (d) Bicubic

Figure 5.15: Original image of Houston and results of our superresolution experi-

ments. Notice that the algorithms based on anisotropic harmonic analysis produce

smoother edges, when compared to bicubic interpolation.
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Figure 5.16: Direction map for the shearlet algorithm applied to the Houston scene.

There are 16 possible local direction for each pixel, varying from 90˝ (blue) to « 256˝

(red). The darkest blue corresponds to no assigned local direction.

We quantitively analyzed the results of our algorithm as before, by comput-

ing PSNR. The results appear in Table 5.3. We again see from these results that

our shearlet algorithm gives superior performance over simple bicubic interpolation.

However, we don’t have the large gains in PSNR that we saw in the synthetic exam-

ples. We find that our algorithm has difficulty distinguishing textures from edges,

as both have large shearlet coefficients. As a result, textures become blurred, de-

creasing PSNR in these areas. Distinguishing textures from edges is notoriously

difficult [73]. In addition, textures are hard to superresolve; bicubic interpolation

may in fact be one of the best ways to superresolve textures, unless we assume fur-

ther structure such as self-similarity [74]. To improve upon our method, we would

first need to be able to filter out textures. In the Zeebruges image, many of the
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textures, such as the roof shingles, were ignored by focusing on the second finest

scale. Therefore, the method works best when the image’s maximum dimension is

256 or larger, allowing us to filter out the textures, while still reasonably begin able

to detect the edges.

Shearlet (j “ 3) Circulant Matrices Bicubic

32.23 32.15 32.18

Table 5.3: The PSNR values for the University of Houston scene.

5.8 Conclusions and Future Directions

In general, anisotropic harmonic analysis provides a powerful set of techniques

for superresolution in terms of visual quality. One of the greatest challenges for our

algorithm is superresolving images with many textures without oversmoothing. In

future work, we would like to find a method for filtering out the textures so as to only

smooth the edges. In addition, we would like to consider more sophisticated ways

of improving edges beyond motion blurring, which tends to decrease image sharp-

ness. We will further study Mallat’s SME method, which makes use of directional

interpolation, to determine if shearlets can offer any improvements.
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Chapter 6: Directionality in Cell Biology: Phototaxis

6.1 Introduction

Directionality is of fundamental importance to science and mathematics. In

many image processing applications, it is the most directional features, the edges,

which are of primary concern. We seen this in with road detection (Chapter 4)

and superresolution (Chapter 5). It has been hypothesized that the edges of an

image are sparsely represented in the human visual cortex [75]. The human eye

is naturally drawn toward the edges of an object, so preserving them is key for

producing high quality images. Remote sensing techniques, such as radar, sonar,

and LIDAR, involve emitting signals in the form of sound or light. Signals that

return to the emitter provide information for the direction of important features.

Dimensionality reduction techniques that require the computation of eigenvectors,

such as Laplacian eigenmaps, work by detecting the most significant directions,

and hence features, in the data. In this chapter, we explore how directionality is

important in the field of cell biology. This is joint work with Doron Levy and is

based on work published in [5].
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6.2 Preliminaries

In a series of recent works [76–81], mathematical models were developed to

describe various aspects of the motion of the cyanobacteria Synechocystis sp., which

are coccoidal bacteria that move towards light, a motion known as phototaxis. As

a result of this motion, finger-like appendages form on a large scale [82, 83]. In

contrast, in regions of low and medium density, cells follow a quasi-random pattern

of motion in which small aggregates form, yet bacteria may still move in various

directions without any observable bias in the direction of the light source.

This quasi-random motion in regions of low-density was the focus of the works

in [77, 78] in which mathematical models were developed to describe the emerg-

ing patterns of motion. The approach was to construct stochastic particle models

in which individual particles could move according to a prescribed set of rules at

discrete time steps. The rules of motion allowed the particles to persist in their

previous direction of motion, become stationary or start moving if already station-

ary, and change the direction of their motion. When a particle changes its direction

of motion, it can only choose to move towards one of its neighbors. Particles can

detect their neighbors within a given detection range.

In order to gain a better understanding of the mathematical model, a one-

dimensional version of the stochastic model from [77, 78] was developed, in which

particles were constrained to move on a one-dimensional lattice [76]. In this context,

it became possible to develop a system of ODEs that quantify the expected number

of particles at each position, following the method outlined in [84]. The results

98



of the stochastic model agreed in many cases with the results of the deterministic

model, depending on the choice of parameters. In addition, randomly chosen initial

conditions in the deterministic model led to the formation of aggregates in most

cases.

In this chapter, we generalize the one-dimensional model from [76] to motion

on a two-dimensional lattice and use numerical simulations to study the emerging

patterns. Similar to [76], our study starts with a stochastic particle system and

proceeds with a system of ODEs that captures the averaged behavior of the discrete

system.

It is important to note that this study is an example of a flocking model.

Mathematical models of flocking phenomena have became very popular in recent

years, most of which intend to describe a process in which self-propelled individual

organisms act collectively. Examples for such models include flocking models for

fish [85–88], birds [89, 90], and insects [91, 92], among many others. Various mech-

anisms have been proposed in the literature for changing the direction of motion.

In [90], Reynolds models a flock of birds using the rules of collision avoidance, veloc-

ity matching, and attraction within a certain radius. Vicsek et al. propose a simple

model where the only rule is for each individual to assume the average direction

of its neighbors, with some random perturbation [93]. In the model of Couzin et

al., particles have a zone of repulsion, a zone of orientation in which they match

their neighbors’ directions, and a zone of attraction [94]. The Cucker-Smale model

proposes that a bird changes its velocity at each time step by adding a weighted

average of the differences between its velocity and those of other birds [89]. In
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contrast, our approach requires a particle to move towards one of its neighbors.

The structure of this chapter is as follows. After reviewing the one-dimensional

models in Section 6.3, we introduce the two-dimensional stochastic particle model in

Section 6.4.1. Multiple simulations of the stochastic particle model are conducted in

Section 6.4.2. We observe the formation of horizontal and vertical aggregates whose

lengths depend upon the choice of parameters.

In Section 6.5.1, we derive a system of ODEs that captures the averaged be-

havior of the stochastic particle model. The correspondence between the stochastic

particle model and the ODEs model is demonstrated in Section 6.5.2. The ODEs

system also results in a formation of aggregates, at least when the model parameters

are confined to a certain range. Concluding remarks are provided in Section 6.6.

6.3 Review of the One-Dimensional Models

We start by reviewing the one-dimensional model from [76]. Consider a set of

N particles that occupy the k vertices of a one-dimensional lattice. There are no

restrictions on the number of particles that can occupy each bin. We fix a detection

radius D ě 1, which determines how far away a particle can detect neighboring

particles. At every discrete time-step, each particle can either

(i) persist in its last direction with probability a,

(ii) become stationary with probability b,

(iii) choose to move towards another particle within its detection radius with

neighbor-weighted probabilities.
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If we denote the position of the nth particle at time t P N by xnptq and the direction

of last movement by pnptq P t˘1u, the rules of motion are

xnpt` 1q ´ xnptq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’
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’

%

pnptq, w.p. a,

0, w.p. b,

1, w.p. p1´ a´ bq
νrnptq

νnptq
,

´1, w.p. p1´ a´ bq
νlnptq

νnptq
,

(6.1)

where νrnptq and νlnptq denote the number of particles at time t that are positioned

within a neighborhood of size D centered at the particle n to the right and to the

left, respectively. The sum of these two quantities is denoted by νn :“ νrn ` νln.

Particles that are located at the same position as particle n are excluded from this

sum.

Note that these rules are not enough to determine the process since we must

also specify rules for movement on the boundary. A simple choice is of a periodic

lattice. By doing so, we have a discrete-time Markov process in which the state at

each time consists of the positions of the particles as well as the directions of their

last movement. Other types of boundary conditions can be used.

The process is difficult to analyze except by simulation, hence in [76], a

reaction-diffusion master equation (RDME) is developed that describes how the

probabilities of all of the possible states of the systems change in time. The state of

the system at any time can be defined by the vectors t~r,~l, ~rs, ~lsu, which records the

number of right-moving, left-moving, right-moving but currently stationary, and

left-moving stationary particles at each position. Define the probability density
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function P p~r,~l, ~rs, ~ls, tq, which describes the chance of the system being in a certain

state at time t. In this case, the RDME can be described by

BP

Bt
p~r,~l, ~rs, ~ls, tq “

k
ÿ

i“1

rPr p the state is entered by a particle in bin i moving rightq

´ Pr pthe state is exited by a particle in bin i moving rightqs

`

k
ÿ

i“1

rPr pthe state is entered by a particle in bin i moving leftq

´ Pr pthe state is exited by a particle in bin i moving leftqs

(6.2)

`

k
ÿ

i“1

rPr pthe state is entered by a particle in bin i becoming stationaryq

´ Pr pthe state is exited by a particle in bin i becoming stationaryqs .

Using the explicit forms of the expressions in (6.2), ODEs are derived for the ex-

pected number of each type of particle in each bin. For example, multiplying (6.2)

by ri, summing over all possible states, and switching the order of differentiation and

summation, results in an ODE for the expected number of right-moving particles in

bin i. For more details, we refer to [76]. The resulting system is

dRi

dt
“ apRi´1 `R

s
i´1q `

〈
ni´1c

r
i´1

〉
´Ri,

dRs
i

dt
“ bRi ´ p1´ bqR

s
i , (6.3)

dLi
dt

“ apLi`1 ´ L
s
i`1q `

〈
ni`1c

l
i`1

〉
´ Li,

dLsi
dt

“ bLi ´ p1´ bqL
s
i .

Here, ni corresponds to the total number of particles in bin i, and 〈x〉 is the expected

value of x. The first equation in (6.3) corresponds to right moving particles in bin
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i, Riptq. This population consists of right-moving and stationary particles from bin

i ´ 1 that persist into bin i, and particles in bin i ´ 1 moving to the right with a

neighbor-weighted probability cri´1. All right-moving particles leave the system at

every time step, either by persisting in their motion to the right, becoming station-

ary, or choosing to move toward a neighboring bin. The second equation in (6.3)

corresponds to right-stationary particles Rs
i . These consist of right-moving particles

that become stationary with stopping probability b, accounting for particles that

leave the stationary state with probability 1 ´ b. Similar expressions are given by

equations three and four in (6.3) for the left-moving and the left-stationary parti-

cles. In practice, in order to simulate the system (6.3), the expected values of the

products are replaced by the products of the expected values. Although this is only

true for uncorrelated random variables, qualitative agreement is obtained between

the discrete and ODEs model.

6.4 A Two-Dimensional Stochastic Particle Model

6.4.1 Model Formulation

Assume that N particles are located on the vertices of a k ˆ k periodic lat-

tice. As in the one-dimensional model, we assume that particles remember their

previous direction of movement and can either continue in that direction, choose a

new direction, or remain stationary. The detection radius D can be generalized to

2-D by counting the particles within a Euclidean distance of D. To simplify the

calculations, we fix the detection radius to be 1 so that particles can only detect
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adjacent particles.

We denote the number of particles detected by the nth particle to the left,

right, up, and down at time t by νlnptq, ν
r
nptq, ν

u
nptq, and νdnptq, respectively, with

νn “ νln ` νrn ` νun ` νdn. Let xnptq be the position of the nth particle on the

lattice with respect to some arbitrary origin at time t . Let a be the probability of

persistence and b the probability of becoming or remaining stationary. Finally, let

pnptq be the vector representing the last direction of movement for particle n. The

resulting rules of motion are

xnpt` 1q ´ xnptq “
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pnptq, w.p. a,

0, w.p. b,

p1, 0q, w.p. p1´ a´ bq
νrnptq

νnptq
,

p´1, 0q, w.p. p1´ a´ bq
νlnptq

νnptq
,

p0, 1q, w.p. p1´ a´ bq
νunptq

νnptq
,

p0,´1q, w.p. p1´ a´ bq
νdnptq

νnptq
.

(6.4)

If a particle has no neighbors, νn “ 0, then we choose to increase the probability of

particle n becoming stationary to 1´ a.

6.4.2 Simulations of the Stochastic Model

All discrete simulations are conducted using the NetLogo multi-agent program-

able modeling environment (ccl.northwestern.edu/netlogo). We start by uniformly

distributing 4000 particles on a 21ˆ 21 grid. Each particle is assigned a memory in
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the form of a last direction of motion (left, right, up, or down) with equal probabil-

ities. The initial distribution of particles with their associated memories is shown

in Fig. 6.1. We use these initial conditions for all simulations on the 21ˆ 21 grid.

The initial configuration is then advanced in time, until t “ 1500, with different

values of the parameters. Figures 6.2-6.6 show snapshots of the simulation for a

persistence probability a P t0.1, 0.2, 0.3, 0.4, 0.5u in which the probability to remain

stationary is set as b “ 0. In these figures, arrows indicate the direction of movement

of particles that are located in any given bin. Bins with no arrows have no particles

in them. Each bin may have more than one particle, and hence the total number of

arrows in all figures is less than the number of particles (which is 4000).

We define an aggregate as a group of particles occupying horizontally or ver-

tically adjacent bins traveling in the same or opposite directions. In all figures,

we see that the particles form horizontal and/or vertical aggregates, which coalesce

into fewer aggregates as time elapses. As the value of the persistence probability a

increases, the length of the aggregates seem to increase. For example, when a “ 0.1,

the average length of the aggregates (ignoring insignificant ones) is approximately 8,

while for a “ 0.2, the average length of the aggregates is approximately 12. When

a “ 0.3 (Fig. 6.4), the limit aggregates span the entire length of the grid. In general,

the average length of significant aggregates does not appear to change significantly

after an initial transient period. We can propose an explanation for the relationship

between a and aggregate length. The length of an aggregate can only increase if an

end particle moves away from its neighboring particles, which occurs with probabil-

ity a when it is facing away from the aggregates. This increase in length can only be
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maintained if a significant number of other particles also choose to move to the new

endpoint; however, it is much more likely that the new endpoint will move back to

its previous position when a is small, so the aggregates length remains unchanged.

When the persistence probability is a “ 0.5 (Fig. 6.6), aggregates are very

slow to form. This is due to the high probability of particles continuing their last

movement, as opposed to moving towards other particles. At large times, we are left

with two long aggregates: one horizontal and one vertical. They eventually coalesce

into a single long aggregate (not shown).

We note that if we assume a constant nonzero probability of continuing in the

same direction, the system is never reaches a steady state and, in particular, stable

length-one aggregates do not form. If we set both parameters to 0 for our current

initial conditions, the system quickly enters steady state with only aggregates of

length two (Fig. 6.7).

We now investigate the impact of the probability of remaining stationary, b,

on the emerging dynamics. We use the same initial configuration given by Fig. 6.1,

fix the persistence probability as a “ 0.3, and vary b P t0.1, 0.2, 0.3, 0.4, 0.5u. The

results of these simulations are shown in Figs. 6.8´6.12.

Most of these results are quite similar: many long aggregates, both horizontal

and vertical, form quickly. As time elapses, they coalesce into fewer aggregates,

which are all only horizontal or vertical. Most aggregates span the entire grid, but

we can also get smaller aggregates as in Fig. 6.8 and 6.11. As b increases, it takes

longer for significant aggregates to form. This makes sense since a particle is more

likely to remain stationary. When we continue the simulation past t “ 1500, we
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are eventually left with purely horizontal or vertical aggregates, though the exact

number varies. These results are not shown for the sake of brevity. We hypothesize

that this will always be true for any initial conditions as long as the parameters are

large enough, though how big the parameters need to be is dependent on grid size

and number of particles. We advanced time for the parameter choice a “ 0.1, b “ 0

to t “ 5000, but we continue to have both types of aggregates (Fig. 6.13).

It is important to note that since the model is stochastic, the outcomes for a

given initial configuration is not unique. This is demonstrated in Fig. 6.14 in which

we show different results that are obtained at t “ 1500 for the same initial conditions.

In most cases (Fig 6.14a, c, d, e, f), purely horizontal or vertical aggregates are all

that remain. In Fig. 6.14b, however, we have both horizontal and vertical aggregates

that will coalesce if we wait sufficiently long.

6.5 An ODEs Model

6.5.1 Model Derivation

Since simulating a large number of particles on a large grid is computationally

intensive, we derive a system of ODEs to determine the mean number of particles in

each bin. Let P “ P pΨq denote the probability of the system being in a given state

Ψ “ pr, l, u, d, rs, ls, us, dsq. Here, r is a kˆk matrix that denotes the number of right-

moving particles at every node. Similarly, l, u,and d are matrices that correspond

to the number of left, up, and down-moving particles in every node, respectively.

The variables with a superscript “s” correspond to the stationary particles and are
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divided into four groups based on the last direction of motion that brought them to

their present location, a direction which they remember.

Generally, the evolution of the probability is given by:

BP

Bt
pΨ, tq “

ÿ

i,j,D

„ˆ

Probability that a particle moves out of node pi, jq

in direction D to enter the state tΨ, tu

˙

´

ˆ

Probability that a particle moves out of node pi, jq

in direction D to leave the state tΨ, tu

˙

`
ÿ

i,j

„ˆ

Probability that a particle in node pi, jq becomes stationary

to enter the state tΨ, tu

˙

´

ˆ

Probability that a particle in node pi, jq becomes stationary

to leave the state tΨ, tu

˙

.

(6.5)

The summation over the direction D corresponds to a summation in all directions:

left, right, up, and down.

Let P̃ p., .q denote the probability P of a state with a specified change. For

example, P̃ prij`1, ri`1,j´1q is P with the number of right-moving particles at node

pi, jq, rij, increased by one, and the number of right-moving particles at pi ` 1, jq

decreased by one. Note that P̃ is not a function; it is notation that greatly simplifies

the derivation below. We recall that vrij denotes the number of particles within the

detection range to the right of node pi, jq, and that vij is the total number of particles

within the detection range in all directions surrounding node pi, jq. Accordingly, we

define

crij “ p1´ a´ bq
vrij
vij
,

as the probability that a particle at pi, jq chooses to move to the right. In addition,
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we define the probability

crij “ p1´ a´ bq
vrij ´ 1

vij ´ 1
.

crij is the probability that a particle at pi, jq chooses to move to the right when the

number of particles to the right of pi, jq within the detection range is vrij´1 and the

total number of particles within the detection range in all directions surrounding

pi, jq is vij ´ 1. Similar quantities are defined for the other directions (left, up, and

down).

To address the terms in (6.5), we start by considering the ways for the system

to enter the state Ψ with a particle moving right from position pi, jq. There are 8

ways in which a right-moving particle from pi, jq will result in entering the given

state:

1. A right-moving particle moves out of pi, jq to the right to enter the state

Ψ. We assume that in a small time step, only one particle can move at a

time and it can only move a single space. Therefore, the only way this can

occur is if there were previously rij ` 1 right-moving particles at pi, jq and

ri`1,j ´ 1 right-moving particles at pi` 1, jq. Since there is one fewer particle

at pi`1, jq compared to state Ψ, there are νij´1 detectable particles and νrij´1

detectable right-moving particles. There is an additional particle at pi, jq, but

recall that this is not counted as a detectable particle. Hence, the rate at

which these particles could move to the right is the sum of the persistence

probability and the neighbor-weighted probability, i.e., a ` crij. Accordingly,

the probability that a particle moves out of pi, jq to the right to enter the state
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Ψ is pa` crijqprij ` 1qP̃ prij ` 1, ri`1,j ´ 1q.

2. A left-moving particle moves out of pi, jq by choosing to move to the right:

crijplij ` 1qP̃ plij ` 1, ri`1,j ´ 1q.

3. An up-moving particle moves out of pi, jq by choosing to move to the right:

crijpuij ` 1qP̃ puij ` 1, ri`1,j ´ 1q.

4. A down-moving particle moves out of pi, jq by choosing to move to the right:

crijpdij ` 1qP̃ pdij ` 1, ri`1,j ´ 1q.

5. A right-moving but stationary particle initiates a motion to the right:

pa` crijqpr
s
ij ` 1qP̃ prsij ` 1, ri`1,j ´ 1q.

6. A left-moving and stationary particle moves to the right:

crijpl
s
ij ` 1qP̃ plsij ` 1, ri`1,j ´ 1q.

7. An up-moving and stationary particle moves to the right:

crijpu
s
ij ` 1qP̃ pusij ` 1, ri`1,j ´ 1q.

8. A down-moving and stationary particle moves to the right:

crijpd
s
ij ` 1qP̃ pdsij ` 1, ri`1,j ´ 1q.

Combining these eight paths of entering the state Ψ, we obtain the total prob-
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ability of entering state Ψ via a particle moving to the right into bin pi, jq:

pa` crijqprij ` 1qP̃ prij ` 1, ri`1,j ´ 1q ` crijplij ` 1qP̃ plij ` 1, ri`1,j ´ 1q

` crijpuij ` 1qP̃ puij ` 1, ri`1,j ´ 1q ` crijpdij ` 1qP̃ pdij ` 1, ri`1,j ´ 1q

` pa` crijqpr
s
ij ` 1qP̃ prsij ` 1, ri`1,j ´ 1q ` crijpl

s
ij ` 1qP̃ plsij ` 1, ri`1,j ´ 1q (6.6)

` crijpu
s
ij ` 1qP̃ pusij ` 1, ri`1,j ´ 1q ` crijpd

s
ij ` 1qP̃ pdsij ` 1, ri`1,j ´ 1q.

Our goal now is to derive an expression for the expectation of the number of the

right-moving particles at node pm,nq, rmn. Hence, we multiply (6.6) by rmn and

sum over i, j, and all possible states Ψ.

Assume for simplicity that neither m nor n are 1 or k. We consider the first

term in (6.6), and change variables r1ij “ rij ` 1 and r1i`1,j “ ri`1,j ´ 1. If pi, jq ‰

pm,nq and pi, jq ‰ pm´ 1, nq, then (after returning to our original variables) we are

left with rmnpa`c
r
ijqrijP . If pi, jq “ pm,nq, then we have prmn´1qpa`crmnqrmnP . If

pi, jq “ pm´ 1, nq, we get prmn` 1qpa` crm´1,nqlm´1,nP . Therefore, the contribution

of first term in (6.6) is

ÿ

i,j,Ψ

rmnpa` c
r
ijqrijP ´ pa` c

r
mnqrmnP ` pa` c

r
m´1,nqrm´1,nP. (6.7)

For the second term in (6.6): If pi, jq ‰ pm´ 1, nq, we get rmnc
r
ijlijP , while if

pi, jq “ pm ´ 1, nq, we get prmn ` 1qcrm´1,nrm´1,nP . Therefore, the contribution of

the second term in (6.6) is

ÿ

i,j,Ψ

rmnc
r
ijlijP ` c

r
m´1,nlm´1,nP. (6.8)

Similar expressions hold for the other terms in (6.6).
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We now return to (6.5) and consider ways for the system to leave a state due

to a particle moving right. There are 8 ways for the system to leave state Ψ due

to the motion of a particle to the right. These can be represented by the following

expression:

´
“

pa` crijqrijP ` c
r
ijlijP ` c

r
ijuijP ` c

r
ijdijP ` pa` c

r
ijqr

s
ijP ` c

r
ijl
s
ijP ` c

r
iju

s
ijP ` c

r
ijd

s
ijP

‰

.

(6.9)

The terms in (6.9) represent a loss for the system, which is the reason for the negative

sign. We multiply (6.9) by rmn and sum over i, j and all states Ψ. After combining

the result with the contributions obtained by doing the same to (6.6), we have

´ 〈pa` crmnqrmn〉`
〈
pa` crm´1,nqrm´1,n

〉
`
〈
crm´1,nlm´1,n

〉
`
〈
crm´1,num´1,n

〉
`
〈
crm´1,ndm´1,n

〉
`
〈
pa` crm´1,nqr

s
m´1,n

〉
`
〈
crm´1,nl

s
m´1,n

〉
`
〈
crm´1,nu

s
m´1,n

〉
`
〈
crm´1,nd

s
m´1,n

〉
,

(6.10)

where 〈x〉 denotes the expectation of x, i.e.,
ř

Ψ xP pΨq. Combining terms multiplied

by crm´1,n and defining ηm,n as the sum of all particles at pm,nq (stationary and

moving), we can simplify (6.10) as

a
`

〈rm´1,n〉`
〈
rsm´1,n

〉˘
`
〈
crm´1,nηm´1,n

〉
´ 〈pa` crmnqrmn〉 . (6.11)

In order to obtain the ODE for 〈rmn〉 we have to account for additional items, i.e.,

the right-moving particles that choose to move in a different direction or become

stationary. We omit the details for the sake of brevity. Once all terms are accounted

for, the resulting equation becomes

d 〈rmn〉
dt

“ a
`

〈rm´1,n〉`
〈
rsm´1,n

〉˘
`
〈
crm´1,nηm´1,n

〉
´ 〈rmn〉 . (6.12)
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We now define Rmn “ 〈rmn〉, Rs
mn “ 〈rsmn〉 , and use similar notation for the other

directions. After switching back to i and j as indices, the ODE for right-moving

particles reads

dRij

dt
“ a

`

Ri´1,j `R
s
i´1,j

˘

`
〈
cri´1,jηi´1,j

〉
´Rij. (6.13)

When i or j is 1 or k, equations (6.13) are valid with the appropriate adjustments

due to the periodic boundary conditions.

Repeating the derivation in all other directions we obtain the system

dRij

dt
“ a

`

Ri´1,j `R
s
i´1,j

˘

`
〈
cri´1,jηi´1,j

〉
´Rij,

dLij
dt

“ a
`

Li`1,j ` L
s
i`1,j

˘

`
〈
cli`1,jηi`1,j

〉
´ Lij,

dUij
dt

“ a
`

Ui,j´1 ` U
s
i,j´1

˘

`
〈
cui,j´1ηi,j´1

〉
´ Uij,

dDij

dt
“ a

`

Di,j`1 `D
s
i,j`1

˘

`
〈
cdi,j`1ηi,j`1

〉
´Dij, (6.14)

dLsij
dt

“ bLij ´ p1´ bqL
s
ij,

dRs
ij

dt
“ bRij ´ p1´ bqR

s
ij,

dU s
ij

dt
“ bUij ´ p1´ bqU

s
ij,

dDs
ij

dt
“ bDij ´ p1´ bqD

s
ij.

The form of the ODEs in (6.14) is intuitive. For example, consider the equation for

Lij. There are two possibilities for the number of left-moving particles at pi, jq to

increase. First, a most recently left-moving particle at pi`1, jq could continue in its

previous direction with probability a. Second, any particle at pi` 1, jq could choose

to move to the left with probability p1´a´ bq multiplied by the ratio of particles to

the left versus all detectable particles. Also, after an infinitesimal amount of time,
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all particles at pi, jq have either moved elsewhere or become stationary, hence the

´Lij term. Similarly, the form of the equation for Lsij is also clear: increases occur

when left-moving particles become stationary with probability b, while decreases

occur when stationary particles become non-stationary with probability 1´ b.

6.5.2 Simulations

We follow [76] and approximate expectations of quotients and products of

random variables by quotients and products of expectations to close the system.

We would like to see how the ODE model compares to an ensemble average of

the discrete model. First, we randomly place 1000 particles on an 11 ˆ 11 grid

and assign each particle a memory in the form of its last direction of motion, with

equal probabilities for each direction. These initial conditions are then used for

simulating the dynamics of both models. We then run the simulations until the

configuration reaches a steady state (t “ 1000 for the ODE model and t “ 500 for

the stochastic particle model). The stochastic particle model is run in NetLogo and

the ODE model is run in Matlab using ODE45 with default parameters. We run

the stochastic model 5000 times and average over all simulations. The results are

shown in Fig. 6.15 for a variety of a and b values.

We note that there are both similarities and differences between the ODE

and averaged results. In Fig. 6.15 a, b, and c, the ODEs give a few aggregates

that increase in length as a increases, as observed in the discrete model simulations.

Most of these aggegates can also be seen in the corresponding ensemble average, but
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the number of particles found in these positions is much smaller, as the averaging

procedure causes the particles to be more spread out. In addition, the averaged

pictures have aggregates where no aggregates appear from the ODEs. For instance,

in Fig. 6.15 b and c, we have both horizontal and vertical aggregates on the right

side, but only horizontal aggregates on the left. We have seen that, except for small

values of the parameters, only purely horizontal or vertical aggregates arise. The

ODEs, therefore, seem to give results comparable to an individual realization of the

model, rather than an average. We also note that in Fig. 6.15 d, the ODEs show

little variation in the number of particles found in each position. We discuss this

further below.

We now proceed to simulate the ODE model in different setups. We initialize

the system by taking the number of left, right, up, and down moving particles

on each position to be Poisson with mean 2. We assume no stationary particles

initially. Fig. 6.16 shows a time series of the ODE model on a 50 ˆ 50 grid with

20208 particles. By time t “ 100, distinct aggregates have begun to form. As time

progresses, aggregates coalesce and become more Gaussian.

Fig. 6.17 shows the results obtained at t “ 1000 when b “ 0 and a P

t0.1, 0.2, 0.3, 0.4u. For a “ 0.1, many small peaks form. For a “ 0.2, we have

fewer and broader peaks. Gaussian behavior is apparent for a “ 0.3. Finally, for

a “ 0.4, there are no aggregates; this demonstrates a breakdown in the ODEs when

the parameters become too large. It may be that this behavior is linked to the loss

of preferential locations for aggregates to form in the discrete model.

In Fig. 6.18, we fix b “ 0.1 and vary a. Results are shown at t “ 1000.
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There is no significant difference between the results shown in Fig. 6.18 and those

that were shown in Fig. 6.17. The only noticeable difference is that Fig. 6.18c

contains non-Gaussian aggregates. In fact, if we run the simulation for a longer

time, Gaussian-type aggregates emerge. This is shown in Fig. 6.19 for time t “ 2000.

Such aggregates take a longer time to form due to the nonzero probability to remain

stationary, b.

The simulations shown so far suggest that the only types of long-term behavior

we get are Gaussian or random. However, this is not the case: for example, if we let

pa, bq “ p0.35, 0q, we always have non-Gaussian behavior no matter how long we run

the simulation (see Fig. 6.20). As demonstrated on the 11 ˆ 11 grid, what we are

seeing in the ODE simulations is reminiscent of an individual simulation rather than

an ensemble average. Accordingly, simulations of the discrete model on the larger

grid also show the same patterns: horizontal and vertical aggregates that coexist at

large times, whose lengths increase with a, and with the number of particles in each

bin decreasing with their distance from the middle of their aggregate.

By running simulations for many more choices of parameters, we discover that

whether aggregates form does not depend solely on the value of a` b. For example,

aggregates form for pa, bq “ p0.2, 0.2q, but not for p0.4, 0q. Nevertheless, there does

appear to be a constraint on some linear combination of the parameters. To find

this constraint, we note that aggregates form for a “ 0 and any 0 ď b ă 1. In some

cases, we have numerical problems solving the ODE with a “ 0 for large times, so

instead we stop these simulations at t “ 100. We also note that aggregates form

for pa, bq “ p0.367, 0q, but not for p0.368, 0q. Hence, we hypothesize an approximate
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constraint for aggregate formation as a{.368 ` b ă 1. This constraint accurately

predicts aggregate formation in every instance when we vary both a and b over the

set t0, 0.1, 0.2, . . . , 1u (see Fig. 6.21). In addition, the constraint correctly predicts

that aggregates do not form for pa, bq “ p0.3, 0.19q but do form for p0.3, 0.182q (see

Fig. 6.22).

In order to test whether this constraint depended on the specific initial condi-

tions, we rerun the above calculations with new Poison-distributed initial conditions.

We find that the same approximate constraint holds true for these cases as well, even

if we alter the mean of the distribution. We also checked whether the constraint de-

pended on the specific distribution used to generate the intial conditions. Choosing

the distribution to be uniform on t0, 1, 2, . . . , 8u led to the constraint a{.357`b ă 1.

6.6 Conclusions

In this chapter, we generalized the one-dimensional model of Galante and

Levy [76] to two dimensions. At every time step, particles may persist their motion

in their current direction with probability a, remain stationary with probability b, or

move toward one of their neighboring particles with equal probabilities. Since there

are no exclusion principles in place, multiple particles are allowed to occupy every

spot on the lattice, and hence when a particle changes its direction of motion, the

new direction is chosen based on a probability that is proportional to the fraction

of the neighboring particles in any given direction.

All simulations demonstrated that the limit pattern that emerges is a collection
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of vertical and/or horizontal aggregates. The lengths of the aggregates increases with

the persistence probability a. This can be explained by the fact that aggregates can

only increase in length when a particle on the aggregate edge persists, which is

unlikely for small a. When a is fixed and the probability to remain stationary

b varies, we note again the emergence of aggregates, the number of which steadily

decreases as time elapses and aggregates coalesce. This occurs more rapidly for small

values of b as expected. Our simulations suggest that we will always be left with

purely vertical or horizontal aggregates if the simulations are run for a sufficiently

long time, assuming there’s a non-zero probability of particles moving towards their

neighbors and the parameters are not too small.

The discrete system was followed by a system of ODEs that was derived in

order to capture the time evolution of the expected number of particles. Since this

requires us to estimate expectations of products and quotients by products and

quotients of expectations, we run Monte Carlo simulations of the discrete model

to compare to the ODE results. Though quantitatively different, the ODE model

captures much of the behevior seen in individual runs of the particle model. We

then run the ODE model for fixed b and varying a. As in the discrete simulations,

we obtain aggregates whose lengths increase with a. Unlike the discrete simulations,

the ODEs transition into randomness when a linear combination of the parameters

becomes too large. This raises some questions including: Why does this transition

occur? Why is the constraint linear? Why is the constraint largely unaffected by

the initial conditions, including the particular distribution used? These questions

can form the topic of further study.
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In addition, we would like to study the effects of increasing the detection

radius, as was done in [76]. This is non-trivial since particles would then be able

to detect other particles in directions other than those in which they are allowed

to move. If, say, D “
?

2, four diagonal positions would also be detectable. We

would need to develop new rules for how these particles would affect the neighbor-

weighted probabilities. For example, particles in the upper-left diagonal should

contribute to the probability of motion in both the up and left directions. These

contributions should be inversely proportional to their distance. Another possible

addition to the model would be allowing particles to move in the diagonal directions.

Incorporating both of these modifications would make the model more realistic and

give rise to more complex dynamics. However, the development of a corresponding

ODEs model from these rules is a much more difficult task, and the derivation was

already quite complicated for our simple rules, as seen in 6.5.1. Instead, we should

more thoroughly investigate the discrete model by determining and mathematically

proving the limit dynamics when we allow for more directional freedom.
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6.7 Figures
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(a) Left-moving particles
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(b) Right-moving particles

 

 

5 10 15 20

2

4

6

8

10

12

14

16

18

20

0

1

2

3

4

5

6

7

8

(c) Upward-moving particles
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(d) Downward-moving particles

Figure 6.1: Initial configurations for the discrete model. 4000 particles are uniformly

placed on a 21 x 21 grid and are assigned memory (their last direction of motion).

The number of particles in every grid-point is shown based on their assigned memory
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(a) t “ 250 (b) t “ 500 (c) t “ 750

(d) t “ 1000 (e) t “ 1250 (f) t “ 1500

Figure 6.2: Snapshots of the discrete model with a=0.1, b=0. Initially, 4000 particles

are randomly placed on a 21 x 21 grid and given a last direction. The arrows indicate

the direction of movement. Each bin may have more than one particle.
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(a) t “ 250 (b) t “ 500 (c) t “ 750

(d) t “ 1000 (e) t “ 1250 (f) t “ 1500

Figure 6.3: Snapshots of the discrete model with a=0.2, b=0.
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(a) t “ 250 (b) t “ 500 (c) t “ 750

(d) t “ 1000 (e) t “ 1250 (f) t “ 1500

Figure 6.4: Snapshots of the discrete model with a=0.3, b=0.
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(a) t “ 250 (b) t “ 500 (c) t “ 750

(d) t “ 1000 (e) t “ 1250 (f) t “ 1500

Figure 6.5: Snapshots of the discrete model with a=0.4, b=0.
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(a) t “ 250 (b) t “ 500 (c) t “ 750

(d) t “ 1000 (e) t “ 1250 (f) t “ 1500

Figure 6.6: Snapshots of the discrete model with a=0.5, b=0.
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(a) t “ 100 (b) t “ 200 (c) t “ 300

(d) t “ 400 (e) t “ 500 (f) t “ 600

Figure 6.7: Snapshots of the discrete model with a=0, b=0.
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(a) t “ 250 (b) t “ 500 (c) t “ 750

(d) t “ 1000 (e) t “ 1250 (f) t “ 1500

Figure 6.8: Snapshots of the discrete model with a=0.3, b=0.1.
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(a) t “ 250 (b) t “ 500 (c) t “ 750

(d) t “ 1000 (e) t “ 1250 (f) t “ 1500

Figure 6.9: Snapshots of the discrete model with a=0.3, b=0.2.
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(a) t “ 250 (b) t “ 500 (c) t “ 750

(d) t “ 1000 (e) t “ 1250 (f) t “ 1500

Figure 6.10: Snapshots of the discrete model with a=0.3, b=0.3.
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(a) t “ 250 (b) t “ 500 (c) t “ 750

(d) t “ 1000 (e) t “ 1250 (f) t “ 1500

Figure 6.11: Snapshots of the discrete model with a=0.3, b=0.4.
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(a) t “ 250 (b) t “ 500 (c) t “ 750

(d) t “ 1000 (e) t “ 1250 (f) t “ 1500

Figure 6.12: Snapshots of the discrete model with a=0.3, b=0.5.

Figure 6.13: The discrete model with a “ 0.1, b “ 0 advanced to t “ 5000. Both

types of aggregates are still observed.
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(a) (b) (c)

(d) (e) (f)

Figure 6.14: Various possible outcomes at t=1500 for the same initial condition from

Fig. 6.1. Here, a=0.3, b=0.1.
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(a) a=0.1, b=0.1
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(b) a=0.2, b=0.1

 

 

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

11

0

5

10

15

20

25

30

35

40

45

 

 

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

11 5

6

7

8

9

10

11

12

13

14

(c) a=0.3, b=0.1

 

 

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

11 8.23

8.24

8.25

8.26

8.27

8.28

8.29

8.3

 

 

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

11
6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

(d) a=0.4, b=0.1

Figure 6.15: Comparisons between the ODE model (left) and the stochastic model

averaged over 5000 runs (right)
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Figure 6.16: Time Evolution of ODE with a=0.3, b=0 on a 50 x 50 grid.
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Figure 6.17: Results from the ODE model at t “ 1000 for b “ 0 and a “

0.1, 0.2, 0.3, 0.4.
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Figure 6.18: Results from the ODE model at t “ 1000 for b “ 0.1 and a “

0.1, 0.2, 0.3, 0.4.
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Figure 6.19: Results from the ODE model at t “ 2000 for a “ 0.3, b “ 0.1.
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Figure 6.20: Results from the ODE model at t “ 1000 and 5000 for a “ 0.35, b “ 0
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