Hydrogenic Spin Quantum Computing in Silicon and Damping and Diffusion in a Chain-Boson Model
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
We propose an architecture for quantum computing with spin-pair encoded qubits in silicon. Electron-nuclear spin-pairs are controlled by a DC magnetic field and electrode-switched on and off hyperfine interaction. This digital processing is insensitive to tuning errors and easy to model. Electron shuttling between donors enables multi-qubit logic. These hydrogenic spin qubits are transferable to nuclear spin-pairs, which have long coherence times, and electron spin-pairs, which are ideally suited for measurement and initialization. The architecture is scaleable to highly parallel operation.
We also study the open-system dynamics of a few two-level systems coupled together and embedded in a crystal lattice. In one case, superconducting quantum interference devices, or SQUIDs, exchange their angular momenta with the lattice. Some decaying oscillations can emerge in a lower energy subspace with a longer coherence time. In another case, the exchange coupling between spins-1/2 is strained by lattice distortions. At a critical point energy level crossing, four well-spaced spins dissipate collectively. This is partially true also for the two- or three-SQUID-chain. These collective couplings can improve coherence times.