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We propose an architecture for quantum computing with spin-pair encoded

qubits in silicon. Electron-nuclear spin-pairs are controlled by a DC magnetic field

and electrode-switched on and off hyperfine interaction. This digital processing is

insensitive to tuning errors and easy to model. Electron shuttling between donors

enables multi-qubit logic. These hydrogenic spin qubits are transferable to nuclear

spin-pairs, which have long coherence times, and electron spin-pairs, which are ide-

ally suited for measurement and initialization. The architecture is scaleable to highly

parallel operation.

We also study the open-system dynamics of a few two-level systems coupled

together and embedded in a crystal lattice. In one case, superconducting quantum

interference devices, or SQUIDs, exchange their angular momenta with the lattice.

Some decaying oscillations can emerge in a lower energy subspace with a longer

coherence time. In another case, the exchange coupling between spins-1/2 is strained

by lattice distortions. At a critical point energy level crossing, four well-spaced spins



dissipate collectively. This is partially true also for the two- or three-SQUID-chain.

These collective couplings can improve coherence times.
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Chapter 1

Introduction

1.1 Solid State Encoded Qubits

A quantum computer comprising many two-level systems, or “qubits,” could,

in principle, evolve a superposition of many different bit-strings into an entangled

state in which “input” and “output” registers are correlated according to the input

and output values of a desired function. The computer’s unitary evolution is, in

effect, parallel processing the different inputs. The entangled state contains corre-

lations which are stronger than what can be explained classically. They are strong

enough that global properties of the function, such as its period, can be obtained

exponentially faster than in a classical computation.

Proposals for quantum computation in the solid state stand to benefit from

the rapid advances in semiconductor electronics and are potentially scalable to large

arrays of qubits controlled by gate electrodes. Example qubits include electron spins

in quantum dots [1], P donor spins in Si [2], Cooper-Pair Boxes [3], and SQUIDs

[4, 5].

The implementation and precise control of a register of quantum bits are

formidable technical challenges. A good design seeks to minimize difficulties in

construction and operation. Sometimes it helps to “encode” each logical qubit,

e.g. α |0〉+β |1〉, in multiple physical qubits, for example in a pair of spins-1/2 with

1



|0〉 ≡ (|↑↓〉−|↓↑〉)/
√

2 and |1〉 ≡ (|↑↓〉+|↓↑〉)/
√

2. Encoding often results in reduced

constraints on computer design [6, 7].

Another issue is the qubits’ unavoidable coupling to environmental noises

which can destroy the quantum information and thwart the computation. The loss

of the quantum information is generally called “decoherence.” When perturbed by a

weak coupling to the environment, most superpositions decay into random statistical

mixtures of stationary states. This is caused by fluctuations in the controlling fields

as well as the absorption and (possibly spontaneous) emission of quanta. Quantum

error prevention techniques have been proposed to lower the error rates below a

threshold 1 error per 104 or 105 gate operations so that quantum error correction

techniques can then realize the power of quantum computation [8].

Qubit encoding is also the key ingredient in quantum error correction, by

providing a redundancy with which to diagnose and correct errors [9], and quantum

error prevention, by storing the logical qubit in a decoherence-free subspace [10, 11,

12]. These subspaces can arise from the symmetries of a collective coupling to the

environment, in which the physical qubits are so close together that each couples,

in effect, to the same environmental variable as the others.

1.2 Overview

This dissertation has two main components. In the first we propose an archi-

tecture for encoded quantum computation using P donor spins in Si. The encoding

has nothing to do with quantum error correction or prevention; instead it facilitates

2



the use of digital control and electron shuttling. These in turn solve a variety of

problems with the original design [2] for unencoded quantum computation with P

donor spins in Si. The proposal is detailed extensively in chapter 2 and concisely in

[13].

In the second, unrelated, component we develop two models for the decoher-

ence of a chain of a few coupled qubits: coupled SQUIDs exchanging their angular

momenta with a crystal lattice (chapter 3); and spins whose exchange coupling is

strained by lattice distortions (chapter 4). We find that some or all of the benefits of

a collective coupling to the environment can be obtained, even for distant physical

qubits, if we arrange a critical level of interaction between the physical qubits. We

also find that, in the SQUID chain, some decaying oscillations can emerge in a lower

energy subspace with a longer coherence time; there are two equally-spaced pairs of

energies, and a superposition of the upper two eigenstates relaxes coherently.

1.3 Hydrogenic Spin Quantum Computing

Donor nuclear spins in silicon are especially good solid state qubits because of

their long coherence times. They can in principle be controlled by hyperfine-tuned

magnetic resonance techniques and coupled by the electron exchange interaction

when carefully tuned surface gate voltages properly position the donors’ electrons [2].

However, this “exchange mediation” is restricted to nearest neighbor interactions

and is extremely difficult to control [14, 15]; the coupling strength is very sensitive

to the electrons’ positions, exhibiting rapid oscillations due to Si band structure

3



[16, 17]. Precise tuning of the hyperfine interaction will also be difficult. In this

work we present an alternative donor spin architecture which tolerates tuning errors

and overcomes nearest neighbor restrictions.

Our proposal relies on the “encoding” of each logical qubit, α |0〉 + β |1〉, in

the Jz = 0 subspace of a pair of spins: |0〉 ≡ (|↑↓〉 − |↓↑〉)/
√

2 and |1〉 ≡ (|↑↓〉 +

|↓↑〉)/
√

2. When the two spins are donor nuclei the qubit benefits from their long

coherence times. On the other hand, measurements are facilitated when the two

spins are electrons [18, 19]. Following Levy, who proposed Heisenberg-only quantum

computing with distinct magnetic moments in a static magnetic field [20, 6, 21], we

will show that when the two spins are an electron and its donor nuclear spin (“a

hydrogenic spin qubit”) the qubits are easier to control and can be coupled, well

beyond their nearest neighbors, with electron shuttling.

In the hydrogenic spin qubit the electron and donor nuclear spins are coupled

by the hyperfine interaction. The ground state coupling for P donors in Si, HA =

A~σe·~σn, is ideally suited to quantum computing because its strength, determined by

the electron-donor overlap, |ψ(0)|2, is a quadratic, and thus insensitive, function of

any small perturbing electric field. We can use a surface “A-gate” voltage to draw

the electron off the nucleus, effectively switching off the coupling (HA → 0) to a

regime which is similarly insensitive to tuning errors. We therefore propose a digital

approach [1], in which the hyperfine interaction is switched on and off in a globally

applied static magnetic field to implement single qubit logic.

Electron spin coherence distances of over 100µm have been demonstrated [22],

so single electron shuttling [23] to remote donor sites is a good candidate for enabling

4



two-qubit interaction. Arrays of “S-gate” electrodes between qubits are thus used to

shuttle individual electrons from site to site. Two qubits become entangled when the

hyperfine interaction is applied between the electron of one qubit and the nucleus

of another. This is analogous to ion-trap proposals in which ions, and thus their

quantum information, can be transported from one local trap to another [24, 25].

This transport is considerably more efficient than a bucket brigade series of nearest

neighbor interactions and can circumvent misbehaved donor sites.

1.4 The Chain-Boson Model

The spin-boson model [26] has been widely applied towards a better under-

standing of the environment’s effect on qubit coherence. In the spin-boson model,

a two-level system is coupled to an environment of oscillators which model a heat

bath, such as is often used in studies of quantum Brownian motion [27, 28]. Because

of the coupling, the system becomes entangled with the bath. When averaged over

environmental outcomes, the system typically loses coherence and thermalizes.

In light of qubit encoding schemes and the desire to process and protect quan-

tum information, it is necessary to study the decoherence of multiple qubits. In the

chain-boson model one embeds a chain of qubits in a bosonic bath so that the qubits

experience a location-dependent interaction with the bath variables.

For a system comprising a register of qubits, two types of system-bath coupling

have already been extensively considered. The simplest is a collective coupling, in

which each qubit couples to the same environmental variable as the rest. This

5



is appropriate to scenarios where the qubits are spaced closer together than the

relevant wavelengths of the bath, i.e. those corresponding to the qubits’ transition

frequencies. The symmetries of the collective coupling can lead, with certain system

Hamiltonians, to decoherence free subspaces [11, 29, 12] and Dicke superradiance

[30, 31].

The other commonly used type of system-bath coupling is the independent

coupling model, in which each qubit couples to its own bath, separate from the

baths used for the other qubits. This is an appropriate model for qubits spaced

farther apart than the relevant wavelengths of the bath. And in the context of solid

state qubits, a significant source of noise is the voltage leads that control the qubits.

With one lead per qubit, the independent baths model is a natural assumption.

The independent coupling model has been used to study the decoherence during

two-qubit logic gates [32, 33] as well as the entanglement rate for coupled qubits

[34].

When there is one voltage lead controlling multiple qubits, one typically uses

the collective coupling model, as each qubit is experiencing the same electronic noise.

A likely scenario for a pair of qubits is an independent lead for each qubit as well as

one common lead. For this case, the disentangling and decohering of the qubits has

been considered [35]. Several works compare the collective and independent bath

scenarios for coupled qubits [36, 37, 38, 39]. Fine-tuning the inter-qubit coupling to

protect against collective dissipation has also been studied [40]. In comparison, the

optimum qubit-qubit coupling was examined for the case of independent dissipation

[41, 42].

6



Most studies fall into these two categories, whether the qubits are coupled

together or not. But for uncoupled qubits there has been careful consideration

of the intermediate scenario, in which the qubits are neither far apart nor close

together [43, 44, 45]. The relaxation and decoherence rates depend on ~k · ~R, where

~R connects the qubits and the ~k are the bath wavevectors that interact with the

qubits. These results make an elegant transition between the two limiting cases of

qubits close together and far apart. In the intermediate scenario the bath can induce

entanglement between uncoupled qubits [46], as can also happen with a collective

coupling to the bath [47].

In this dissertation, an essential point is that in a chain of coupled qubits the

inter-qubit couplings can play a crucial role in determining which are the relevant

bath wavevectors and thus whether the qubits couple collectively or independently

to the bath. In our models, there is a critical point energy level crossing at which

some transition frequencies are so slow that ~k · ~R� 1 even though the qubits may

be far apart with respect to the uncoupled qubits’ transition frequencies. At the

critical point the chain can obtain some or all of the benefits of a collective coupling

to the bath. Another result is the possibility for decaying quantum oscillations to

emerge in a lower energy subspace with an improved coherence time. We believe this

phenomenon is related to some prior research on automatic quantum error correction

[48].

There have been some other works whose equations include the intermediate

regime for coupled qubits [49, 50] but the role of the inter-qubit coupling in deter-

mining the relevant bath wavevectors and their relation to the inter-qubit distance

7



is not evident.

1.5 Key Results

We propose that hydrogenic spin qubits and coherent single electron shuttling

can enable a silicon-based quantum computer featuring digital hyperfine control in-

sensitive to tuning errors, a long-lived nuclear spin memory, a projective readout

scheme, and qubit refrigeration in which 50% of the qubits can be initialized at high

temperature. The computer is scalable to highly parallel operation because digital

shuttling of electrons overcomes nearest neighbor restrictions. Donors can be irreg-

ularly spaced and far apart, allowing for large gate electrodes, and malfunctioning

donor sites can be diagnosed and avoided. These many benefits motivate further re-

search on the coherent shuttling and measurement of electron spins, extremely pure

Si fabrication, encoding and error-correction techniques, optimal control sequences,

and the spin-orbit and dipole-dipole interactions during realistic electrode driven

switching and shuttling.

We also develop a chain-boson model for the open-system dynamics, in the

Born-Markov approximation, of coupled qubits embedded in a bosonic bath and ex-

periencing a location-dependent coupling to the environment. Our master equation

shows how to renormalize the chains and how the coefficients of damping and diffu-

sion lead to relaxation, decoherence, and thermalization, as well as the possibility

for decaying oscillations to emerge in a lower energy subspace (this can occur, for

example, in our SQUID-chain model). By including a location-dependent coupling

8



to the bath, we see a way to use inter-qubit couplings to protect quantum informa-

tion. They can provide a critical point energy level crossing at which some or all

of the benefits of a collective coupling may be obtained. In the exchange-strained

spin-chain, for example, a non-degenerate subspace becomes decoherence-free.
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Chapter 2

Hydrogenic Spin Quantum Computing in Silicon: a Digital Approach

This chapter’s work was a collaboration with Michael Davenport under the

supervision of Dr. Bruce Kane. A concise report has already been published [13].

2.1 Abstract

We suggest an architecture for quantum computing in which pairs of electron

and donor nuclear spins in silicon act as qubits. Levy first proposed Heisenberg con-

trol of qubits encoded in spin-1/2 pairs with distinct Landé g-factors in a magnetic

field [20]. We specialize this idea to P donors in Si. Voltage pulses to electrodes

above donor sites turn the hyperfine interaction on and off. This digital hyperfine

processing is insensitive to tuning errors, minimizes the number and variation of

physical parameters and is easy to model. Pulses to electrodes between sites shuttle

electrons from donor to donor to enable multi-qubit logic. These “hydrogenic spin”

qubits are transferable to nuclear spin-pairs, which have long coherence times, and

electron spin-pairs, which are ideally suited for measurement and initialization by a

projective measurement of singlet vs. triplet charge configuration beneath a single

electron transistor. The architecture is scalable to highly parallel operation. The

clock rate and magnetic field can be tuned for optimal fidelity, adjusting for vagaries

in the pulse shape and strength. Simulated one and two qubit gates take less than
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5µs and have errors less than 10−5 even for fractional variations of field or frequency

as large as 10−5.

2.2 Introduction to the Kane Quantum Computer

A quantum computer comprising many two-level systems, or “qubits,” exhibits

coherent superpositions (the incompatibility of certain observables) and entangle-

ment (strong correlations between qubits). These quantum features may be har-

nessed to solve problems which are essentially impossible for a classical computer,

such as the factorization of large integers or the simulation of many-body quantum

systems [8]. Solid state implementations stand to benefit from the rapid advances

in semiconductor electronics and are potentially scalable to large arrays of qubits

controlled by gate electrodes.

Donor nuclear spins in silicon are especially good solid state qubits because

of their long coherence times. In Kane’s original proposal for a spin based solid

state quantum computer [2] the donor nuclear spins serve as qubits, hyperfine-

tuned magnetic resonance is used to control individual qubits, and adjacent qubits

can be coupled by the electron exchange interaction when carefully tuned surface

gate voltages properly position the donors’ electrons. There are many advantages to

the Kane proposal. It leverages modern semiconductor technologies and the nuclear

spin qubits are well isolated from interaction with the environment.

There are also a number of disadvantages. The exchange-mediated qubit cou-

pling requires the qubits to be in close and regular proximity under nanometer
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sized electrodes, and qubit interaction is restricted to nearest-neighbor coupling.

The electron mediated interaction strength, effected by “J” gate electrodes between

donors, is extremely difficult to control [14, 15]; its strength is very sensitive to the

electrons’ positions, exhibiting rapid oscillations due to Si band structure [16, 17].

the hyperfine interaction, effected by “A” gate electrodes above donors, must be

tuned precisely to resonance with an AC magnetic field which will, in turn, heat the

computer; and readout by singlet vs. triplet charge configuration is not projective

(because the triplet outcome is ambiguous). In this work we present an alterna-

tive donor spin architecture which tolerates tuning errors and overcomes nearest

neighbor restrictions.

2.3 Encoding of Logical Qubits

Any successful implementation of a quantum computer will likely take advan-

tage of error-correction schemes [8] and/or decoherence-free subspaces [11, 29, 51].

In the context of spin based quantum computing, researchers have proposed encod-

ing each logical qubit in multiple spins. We are led to consider the ramifications of

simple encoding schemes in the Kane quantum computer.

Indeed, other proposals for encoded spin based quantum computing do away

with magnetic resonance and exchange mediation, using only spin-spin interaction.

DiVincenzo et. al. showed how to do this with the exchange interaction by encoding

each qubit in three spins [7, 52, 53]. By including a static magnetic field, Levy

proposed Heisenberg-only quantum computing for qubits encoded in the Jz = 0
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Figure 2.1: Schematic of the proposed architecture. Each qubit is encoded in the
spins of an electron and its donor nucleus. “A-gates” above donor sites switch the
electron-donor overlap, and thus the hyperfine interaction, while “S-gates” shuttle
electrons from donor to donor. “Bit trains” of voltage pulses control the computer.
In this instance: the “e1n1” qubit evolves solely due to a uniform magnetic field while
hyperfine interaction within the e2n2 qubit is applied for a single qubit operation.
One clock cycle later: e1n1 will experience hyperfine interactions while e2n2 will not.

subspace of two spins with different magnetic moments [20, 6]. Benjamin specialized

Levy’s idea to square pulses of various strengths and durations [21].

Our proposal relies on the “encoding” of each logical qubit, α |0〉 + β |1〉, in

the Jz = 0 subspace of a pair of spins: |0〉 ≡ (|↑↓〉 − |↓↑〉)/
√

2 and |1〉 ≡ (|↑↓〉 +

|↓↑〉)/
√

2. When the two spins are donor nuclei the qubit benefits from their long

coherence times. On the other hand, measurements are facilitated when the two

spins are electrons [18, 19]. Following Levy, who proposed Heisenberg-only quantum

computing with distinct magnetic moments in a static magnetic field [20, 6, 21], we

will show that when the two spins are an electron and its donor nuclear spin (“a

hydrogenic spin qubit”) the qubits are easier to control and can be coupled, well

beyond their nearest neighbors, with electron shuttling.
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2.4 Digital Hyperfine Control

In the hydrogenic spin qubit the electron and donor nuclear spins are cou-

pled by the hyperfine interaction. The ground state coupling for P donors in Si,

HA = A~σe· ~σn with A = 121.517 ± 0.021 neV [54], is ideally suited to quantum

computing because its strength, determined by the electron-donor overlap, |ψ(0)|2,

is a quadratic, and thus insensitive, function of any small perturbing electric field.

Here ~σ ≡ (σx, σy, σz) are the Pauli operators, labeled by the spin on which they

operate.

As depicted in Figure 2.1, we can use a surface “A-gate” voltage to draw the

electron off the nucleus, effectively switching off the coupling (HA → 0) to a regime

which is similarly insensitive to tuning errors. We can avoid tuning the hyperfine

strength if we work with a digital approach [1], in which the interaction is only on

or off for a sufficient time to give the desired integrated strength; effectively we are

trading tuning complexity for timing complexity. However, at the cost of discretizing

the available integrated strengths, we can compose an integrated “on” pulse with a

“bit train” of pulses from a pulse-pattern generator.

The hyperfine control generates the electron-donor (e−n) spin swap |0〉+ |1〉 ↔

|0〉 − |1〉 and we augment this with a globally applied static magnetic field, which

generates |0〉 ↔ |1〉. For O(1 mT) fields the two generators are of comparable

strength and an alternating series of interactions implements single qubit logic in

direct analogy with Euler’s theorem for constructing an arbitrary rotation from a

sequence of rotations about distinct axes [8].
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2.5 Electron Shuttling

We also want to overcome the restriction to nearest-neighbor coupling and the

difficulties of exchange mediation. Electron spin coherence distances of over 100µm

have been demonstrated [22], so single electron shuttling [23] to remote donor sites is

a good candidate for enabling two-qubit interaction. As shown in Figure 2.2, arrays

of “S-gate” electrodes between qubits are thus used to shuttle individual electrons

from site to site. This is analogous to ion-trap proposals in which ions, and thus their

quantum information, can be transported from one local trap to another [24, 25].

This transport is considerably more efficient than a bucket brigade series of nearest

neighbor interactions and can circumvent donor sites which have been diagnosed as

unreliable for hydrogenic spin quantum computing, due to contamination or poor

donor placement or any other undetermined reason.

Inter-qubit entanglement is necessary for implementing conditional logic op-

erations. Two qubits become entangled when the hyperfine interaction is applied

between the electron of one qubit and the nucleus of another. Speaking intuitively,

a single qubit operation is being performed on a new qubit whose information is

shared non-locally by the two qubits being entangled. Actually, as will be explained

later, it is much more subtle: the operation causes entanglement and decoherence

by coupling to an auxiliary subspace outside the logical subspace, and a sequence of

operations can build up the entanglement while “recohering” the two qubits.
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Figure 2.2: Entangling qubits e1n1 and e2n2. S-gates displace e2 and shuttle e1 to the
vicinity of n2. The A-gate above n2 then applies hyperfine interaction, generating a
partial e1−n2 spin swap within a new qubit e1n2; hyperfine interaction between two
qubits may be viewed, casually, as a single qubit operation on the new qubit whose
information is shared non-locally by the two original qubits.

2.6 The Model Hamiltonian and its Invariant Subspaces

The evolution of the electron and donor spins is described by their Hamilto-

nian,

H =
∑
i,j

Aij~σei
· ~σnj

+
∑

i

B(geµBσ
z
ei
− gnµNσ

z
ni

).

The second term, HB, sums the contribution from all donors and their electrons,

with respective magnetic moments gnµN and geµB, in the vertical magnetic field

B assumed parallel to a (100) lattice plane. It augments the hyperfine contact

term, HA, which is a sum of interactions between electron-donor pairs. Interaction

between the ith electron and the jth donor is either off (Aij = 0) or on (Aij = A). We

assume instantaneous switching and neglect the hydrogenic spin-orbit and dipole-

dipole interactions (which are zero for the ground state and for sufficiently large r

but finite in between) as well as any randomness in the contact strength during the

switch. For P donors in Si the ground and first excited orbitals are separated by ≈ 15

meV corresponding to a period of 0.044 ps; a more realistic adiabatic switch takes

O(3 ps) which is still fast compared to the hyperfine interaction. Any remaining
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Figure 2.3: Magnetic energy levels and invariant subspaces of a two-qubit computer.
Flipping a single electron or single nuclear spin changes the energy by ∆Ee or ∆En

respectively and takes the state to another subspace. Within an invariant subspace,
simultaneous electron and donor spin flips change the energy by ∆Er = ∆Ee+∆En.

hydrogenic spin-orbit and dipole-dipole effects are coherent and can in principle be

compensated by sophisticated control sequences or pulse shaping [55, 56], although

we do not consider them here. Similarly, we neglect the spin-orbit effect at the

interface [57] because, for controlled shuttling of individual spins in Si, it is small,

coherent, and, with further research, characterizable and correctable.

The state space of spins is decomposable into invariant subspaces labeled by

the z component of the total spin; up and down spins are stationary states of HB

while electron-donor spin swaps, generated by HA, preserve the number of up vs.

down spins. Within each invariant subspace flipping an electron spin, which changes

the energy by ∆Ee = 2BgeµB has a compensatory nuclear spin flip, which changes

the energy by a further ∆En = 2BgnµN , and the magnetic energy splittings are

thus integer multiples of ∆Er = ∆Ee +∆En. Transitions between subspaces require

the flipping of one spin or the other and thus there exist nonresonant shifts ∆Ee

and ∆En between subspaces. As a specific example Figure 2.3 shows the magnetic

energy levels and invariant subspaces of a two-qubit computer.
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2.7 Resonant Hyperfine Stepping

It is desirable to generate pure hyperfine evolution even though the mag-

netic field is, in fact, always present. Hyperfine interaction in the magnetic field,

e−i(HB+HA)t/h̄, is a far cry from independent hyperfine interaction e−iHAt/h̄; we are

actually veering “off course” from our desired unitary evolution. To make matters

worse, the magnetic field and hyperfine interaction do not commute, which means

that our course correction cannot be as simple as reversing, for a finite θ pulse, the

magnetic field coupling:

e−iHAt/h̄ 6= e+iHBt/h̄e−i(HB+HA)t/h̄.

However, for a short time step ∆t the course correction is very good despite the

non-commutativity. In fact, by a variant of the Cambell-Baker-Hausdorf formula

[8], we can make a short ∆t hyperfine step with an error O(∆t3) by making ∆t/2

corrections before and after:

e+iHB∆t/2h̄e−i(HB+HA)∆t/h̄e+iHB∆t/2h̄ = e−iHA∆t/h̄ +O(∆t3)

We can thus compose a finite t pulse of hyperfine evolution with a large num-

ber, a, of these short ∆t = t/a steps of hyperfine and magnetic evolution corrected,

on the fly, by time-reversed ∆t/2 steps of solely magnetic interaction. This compo-

sition is the essence of the the Trotter formula [8],

e−iHAt/h̄ ≈ (e+iHB∆t/2h̄e−i(HA+HB)∆t/h̄e+iHB∆t/2h̄)a.

Although the magnetic and hyperfine steps do not commute, the remaining O(∆t3)

error of each short step also shrinks with a decreasing magnetic field (the non-
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I

G

Figure 2.4: Unitary hyperfine evolution implemented by resonant hyperfine stepping
in a magnetic field. The desired hyperfine evolution from I to G, sketched on a
cartoon of the unitary group manifold, is non-trivial because the magnetic field and
hyperfine interaction do not commute. We proceed in smaller steps, sandwiched
between small course corrections made with almost full laps of magnetic evolution.
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commutivity, [HA, HB], scales with B). In other words, we can achieve good fidelity

with sufficiently short ∆t steps and a sufficiently weak field.

Within each invariant subspace the time-reversed magnetic steps are achieved

by incomplete periods of magnetic evolution. A full period is determined by the

energy splitting: TB = h/∆Er (see Figure 2.3). We need only wait for TB−∆t/2 to

achieve the magnetic correction step. In analogy with magnetic resonance techniques

we thus proceed by resonant stepping; for each period of magnetic evolution there

is a short step of HA +HB. This technique is illustrated in Figure 2.4 which shows

a cartoon of the unitary group manifold (not to scale and with fewer dimensions!)

and a desired hyperfine evolution from the identity, I, to a goal transformation, G.

The cartoon shows four steps, each effectively preceeded and succeeded by ∆t/2

corrections. The result is true hyperfine evolution within each invariant subspace.

The use of digital bit trains from a pulse pattern generator considerably sim-

plifies the timing of these operations. We define a bit pulse (one clock cycle) to be

∆t/2; each digital hyperfine step, ∆t, is thus a “two-bit pulse.” For example, we

divide the fixed hyperfine period, TA = h/4A = 8.50847 ns, into 96 clock cycles by

setting the frequency at f = 11.2829 GHz; given this frequency we then divide the

magnetic period TB into 256 clock cycles by choosing a field strength of B = 1.57171

mT. Within an invariant subspace, generating pure hyperfine evolution is now as

simple as turning off certain A-gate voltages (so that the hyperfine interaction is

turned on) for 2 clock cycles out of every 256.

The encoded qubits reside in the Jz = 0 invariant subspace. We can thus

construct logic operations from finite φ pulses of magnetic evolution, (B, φ) ≡
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t

A Digital Hyperfine Step

Figure 2.5: Schematic of a digital hyperfine step. It need not be perfectly square;
it’s simply an integrated step in the right direction. In fact, a gradual turn-on and
turn-off is necessary for adiabatic evolution of the electron wavefunction whose “on-
again then off-again” overlap with the nucleus switches the hyperfine strength. A
reasonable step is 177.26 ps with 30 ps rise and fall times.

e−iHBφTB/h, and θ pulses of pure hyperfine evolution, (A, θ) ≡ e−iHAθTA/h, imple-

mented with resonant hyperfine stepping.

The beauty of this approach is in its simplicity. There is no tuning of the

hyperfine interaction; the purely digital approach means it is either on or off for

the an integrated pulse which is comprised of an integer number of two-bit pulses

between single laps around the group.

In fact, we need not even know the exact strength and shape of the digital

hyperfine step (Figure 2.5). Instead, it can be viewed as a small integrated step in

the right direction. These steps are supposed to be the same for all applied qubit

interactions all the time; qubits’ donor sites not satisfying this criterion are diag-

nosed and simply not used for quantum computation. We composed our hyperfine

interactions with a = 48 laps per 2π pulse; each ∆t step was 177.26 ps. We have

been assuming that the electron-donor overlap is modulated adiabatically by the
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A gate electrode above the donor. For P donors in Si the ground and first excited

states are separated by approximately 15 meV ≈ 22.8 THz so gate voltage rise and

fall times on the order of a few picoseconds should be adequately slow; 30 ps is even

more reasonable.

As an added benefit, resonant hyperfine stepping also maintains the strobo-

scopic synchronization with an isolated qubit precessing in the global magnetic field.

Each step-plus-lap combination matches one full lap for an isolated qubit; whatever

the composed duration of the effective hyperfine pulse may be, it will take an integer

number of magnetic periods, TB.

2.8 Single Qubit Gates

Within a qubit the hyperfine interaction splits the degeneracy of the logical

basis states |0〉 = (|↑e↓n〉 − |↓e↑n〉)/
√

2 and |1〉 = (|↑e↓n〉 + |↓e↑n〉)/
√

2 while the

vertical magnetic field splits |↑e↓n〉 and |↓e↑n〉. There are thus two independent

Hamiltonians for unitary evolution of the qubit: the magnetic field, generating

|0〉 ↔ |1〉, and hyperfine interaction, generating the e−n spin swap |0〉+|1〉 ↔ |0〉−|1〉.

Following Benjamin, these interactions can be visualized as generating Bloch Sphere

rotations. States simply precess about the x and z axes under the magnetic field

and hyperfine interaction respectively. We can implement any single qubit gate by

sequences of such rotations [8]

To be more explicit, consider the Hamiltonian for an electron, with magnetic

moment geµB, and its donor, with magnetic moment gnµn, in an applied magnetic
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Figure 2.6: Eigenvalues and Eigenkets of an en spin-pair. The hyperfine interaction
splits |0〉 and |1〉, generating |0〉 + |1〉 ↔ |0〉 − |1〉, while the magnetic field splits
|0〉 + |1〉 and |0〉 − |1〉, generating |0〉 ↔ |1〉. Arbitrary single qubit operations can
be composed of sequences of these “Bloch Sphere rotations.” A typical magnetic
field strength is 1.57 mT.

field B with hyperfine interaction strength A proportional to the donor overlap of

the electron wavefunction:

H = A~σe·~σn +B(geµBσ
e
z − gnµnσ

n
z ) + AI

The inconsequential absolute energy shift, AI, will help manifest the generators of

Bloch Sphere rotations. In our {|↑e↑n〉 , |0〉 , |1〉 , |↓e↓n〉} basis this Hamiltonian takes

the matrix form

2A+B(geµB − gnµn) 0 0 0

0 −2A B(geµB + gnµn) 0

0 B(geµB + gnµn) 2A 0

0 0 0 2A−B(geµB − gnµn)


Note the center two-by-two block matrix. In the two dimensional logical subspace

with basis {|0〉 , |1〉} the single qubit Hamiltonian comprises B(geµB + gnµn)σx −

2Aσz. We thus have our choice of two generators: HB ≡ B(geµB + gnµn)σx, as-
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Gate Matrix Composition

X

0 1

1 0

 (B, 3π
2

)(A, π)(B, π
2
)(A, π)

Y

0 −i

i 0

 (B, 3π
2

)(A, π)(B, π
2
)

Z

1 0

0 −1

 (A, π)

S

1 0

0 i

 (A, 3π
2

)

H 1√
2

1 1

1 −1

 (B, 3π
2

)(A, 3π
2

)(B, π
2
)(A, π)

L 1√
2

1 −1

1 1

 (B, 3π
2

)(A, 3π
2

)(B, π
2
)

Table 2.1: Some single qubit gates and their composition using B and A rotations.

sociated with the magnetic field, and HA ≡ −2Aσz, associated with the hyperfine

interaction between the first and second spins (the subscripts designate the interact-

ing spins). Since an arbitrary single qubit unitary operation, up to an overall phase,

can be viewed as a rotation about some axis, and any rotation can be composed of

rotations about the x and z axes [8], HB and HA are sufficient for generating any

single qubit gates, such as those in Table 2.1.

Our compositions always total an integer number of (B, 2π) rotations. This

is because we want our perspective to remain synchronized with the other qubits
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which are constantly evolving under the influence of the global magnetic field; we

are adopting a stroboscopic picture in which our desired gate is completed when

an isolated qubit, precessing about its Bloch Sphere x-axis, completes a full ro-

tation. For example, rather than implementing an X gate with (B, π) we use

(B, 3π
2

)(A, π)(B, π
2
)(A, π). (Our hyperfine interactions, such as (A, π), maintain the

same stroboscopic synchronization because they are implemented with resonant hy-

perfine stepping.) We find such a composition for an arbitrary single qubit gate G

by numerically solving the angles for an alternating series of σx and σz rotations,

G = (σz, θn)(σx, θn−1)...(σz, θ2)(σx, θ1)

subject to the stroboscopic constraint for which the total pulse time implements a

full period of magnetic evolution giving the identity transformation: I = (σx, θ1 +

θ3 + ...+ θn−1). Typically, no more than four rotations are needed.

2.9 Two Qubit Gates

Entanglement is a crucial ingredient in canonical two qubit logic gates such as

the Controlled-Z and Controlled-Not, shown here in the two qubit logical basis of

states {|00〉 , |01〉 , |10〉 , |11〉}:

CZ =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
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We create such entanglement when the hyperfine interaction is applied, after

shuttling, between the electron of one qubit and the nucleus of another. Figure 2.2

shows hyperfine interaction between two qubits. One may casually consider the

entangling of two qubits as the manipulation of a new qubit containing information

shared non-locally by the two original qubits.

The two qubit interactions are actually much more subtle because they couple

logical states to auxiliary states outside of the computational basis. Thus the two

qubits temporarily decohere during the entangling operations. However, it is possi-

ble, by a sequence of operations, to build up the entanglement while “recohering”

the qubits with evolution back into the logical subspace.

The coupling to the auxiliary subspace takes place because hyperfine inter-

actions generate e−n spin swaps. In the context of two spin-pair qubits there

is a four spin system, e1n1e2n2. Swapping e1 and n2 generates |↑e1↓n1↑e2↓n2〉 ↔

|↓e1↓n1↑e2↑n2〉 and |↓e1↑n1↓e2↑n2〉 ↔ |↑e1↑n1↓e2↓n2〉. Similarly, swapping n1 and e2

generates |↑e1↓n1↑e2↓n2〉 ↔ |↑e1↑n1↓e2↓n2〉 and |↓e1↑n1↓e2↑n2〉 ↔ |↓e1↓n1↑e2↑n2〉. The

auxiliary space is thus spanned by |↑e1↑n1↓e2↓n2〉 and |↓e1↓n1↑e2↑n2〉

The two qubit scenario makes use of five available generators. The three local

generators are the magnetic field, B, and two hyperfine interactions: within the first

qubit, A11, and within the second qubit, A22.

HB = geµBB(σe1
z + σe2

z )− gnµnB(σn1
z + σn2

z )

A11 = A~σe1·~σn1 A22 = A~σe2·~σn2

The non-local generators are the other two possible hyperfine interactions: between
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the first electron and second nucleus, A12, and between the second electron and first

nucleus, A21.

A12 = A~σe1·~σn2 A21 = A~σe2·~σn1

The logical and auxiliary states span the six dimensional Jz = 0 subspace

of the sixteen dimensional Hilbert space of our four spins. This six dimensional

subspace is invariant under the group action of our five available Hamiltonians;

while logical states may couple to auxiliary states, none couple outside the Jz = 0

invariant subspace. In our

{|↑e1↑n1↓e2↓n2〉 , |00〉 , |01〉 , |10〉 , |11〉 , |↓e1↓n1↑e2↑n2〉}

basis the non-local generators’ matrices reveal the coupling to the auxiliary states

(the first and last rows and columns):

A12 = A



0 1 −1 −1 1 0

1 1 0 0 −1 1

−1 0 1 −1 0 1

−1 0 −1 1 0 1

1 −1 0 0 1 1

0 1 1 1 1 0



A21 = A



0 1 1 1 1 0

1 1 0 0 −1 1

1 0 1 −1 0 −1

1 0 −1 1 0 −1

1 −1 0 0 1 1

0 1 −1 −1 1 0


A logical SWAP operation can be realized very simply by successive e−n spin
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Figure 2.7: A Controlled Z gate. Up to local transformations, an e−n spin swap
between two qubits swaps logical and auxiliary states. Levy proposed sandwiching
a local operation between two such logical-auxiliary swaps [20].

swaps:

SWAP = (A11 + A22, π)(A12 + A21, π) =



0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0



.

The CZ and CNOT are more difficult. But it turns out that in an e−n spin swap

between the electron of the first qubit and the nucleus of the second (A12, π), up to a

local basis change L, the |00〉 and |11〉 states are swapped with the auxiliary states

|↑e1↑n1↓e2↓n2〉 and |↓e1↓n1↑e2↑n2〉 respectively. Another π pulse of hyperfine inter-

action reverses the swap. As illustrated in Figure 2.7, Levy proposed sandwiching

a single qubit gate between two such logical-auxiliary swaps, realizing, up to local

operations, a CZ and CNOT [20].
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The CZ and CNOT can thus be obtained as follows:

L = (B, 3π
2

)(A11 + A22,
3π
2

)(B, π
2
)

L† = (B, 3π
2

)(A11 + A22,
π
2
)(B, π

2
)

CZ = (A11, π)L(A12, π)L†(A22, π)L(A12, π)L†

H†
2 = (A22, π)(B, 3π

2
)(A22,

π
2
)(B, π

2
)

CNOT = H†
2CZH

†
2

Note that we have redefined L to be two simultaneous local transformations (L =

L1⊗L2) and that the Hadamard, H†
2, is performed on the second, not the first qubit

(we use H†
2 instead of H2 because it is faster, in this architecture, than implementing

H2).

A very important lesson drawn from the CZ is that single qubit gates develop a

relative phase between the logical and auxiliary subspaces; it’s crucial for obtaining

the CZ. Even the logical-auxiliary swaps developed e±iφ phases, due to the local
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transformations L and L†. The matrix form for the magnetic Hamiltonian is

HB = B(geµB + gnµn)



0 0 0 0 0 0

0 0 1 1 0 0

0 1 0 0 1 0

0 1 0 0 1 0

0 0 1 1 0 0

0 0 0 0 0 0


which, in the logical subspace, is ∼ σ1

x + σ2
x (each qubit precesses about its x-axis

independently). The single qubit hyperfine generators are

A11 = 2A



1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



A22 = 2A



1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


which, again in the logical subspace, are ∼ σ1

z and ∼ σ2
z respectively (each generates

a z-axis rotation of its relevant qubit).

A useful way to think about an e−n spin swap is as a transfer of our quan-

tum information into a different encoding scheme. For example, consideration of

the (A12, π) pulse of interaction between the first electron and the second donor

reveals a faster CZ and CNOT. The π pulse generates an e−n spin swap between e1

and n2. Specifically, the interaction generates |↑e1↓n1↑e2↓n2〉 ↔ |↓e1↓n1↑e2↑n2〉 and
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|↓e1↑n1↓e2↑n2〉 ↔ |↑e1↑n1↓e2↓n2〉; whatever information was encoded in e1n1e2n2 is

now encoded in n2n1e2e1.

Considering e1n1 as a data qubit and e2n2 as an unentangled ancilla, we see

that the data qubit is now encoded in the n2n1 donor spin-pair. Alternatively, an

e2n2 data qubit has been transferred, with the use of an unentangled ancilla e1n1,

into an e2e1 electron spin-pair.

Sandwiched within the entangling CZ, between the π pulses of A12, there is a

sequence of operations L†(A22, π)L which are local with respect to the e1n1e2n2 en-

coding. We can see that the sandwiched local operations generate the entanglement

when viewed from the n2n1e2e1 encoding (from this perspective they are non-local

operations). The e1n1e2n2 equivalent sequence is

(B,
3π

2
) (A12 + A21,

3π

2
)(B,

π

2
)(A21, π)(B,

3π

2
)(A12 + A21,

π

2
)︸ ︷︷ ︸

N

(B,
π

2
)

in which the underbrace highlights the entangler N and from which we obtain a

faster CZ, requiring two-thirds of the original time, composed of fewer elementary

operations, and giving better fidelity:

CZ = L(B,
3π

2
)N(B,

π

2
)L†.

With N it is possible to show, also, that a faster and better CNOT is

CNOT = (L1 ⊗ Z2)N(L1 ⊗ Z2)
†,

in which single qubit operations,

(L1 ⊗ Z2) = (B,
3π

2
)(A11 + A22, π)(A11,

π

2
)(B,

π

2
),
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Figure 2.8: Operations time line for an entangler. Between shuttling operations
represented schematically by an “S,” the diagram depicts a sequence of on-or-off
A-gate voltages; the bottom line of the figure shows their duration in clock cycles.
Hyperfine interaction is on whenever the voltage is off. The magnetic field is always
on.

augment the entangler. This gate construction refines Levy’s original [20] but it

may not be optimal. Figure 2.8 depicts the actual sequence of A-gate voltages that

implements the entangler, N. The two A gate voltages above the donors, V1 and

V2, are almost always on; the electrons are drawn away from their donors and there

is no hyperfine interaction. Every so often the voltage above a donor is turned off

for two clock cycles; the donor attracts the electron, turning on a two-bit pulse of

hyperfine interaction. Repeating these hyperfine steps every 256 clock cycles, in

resonance with the magnetic laps, generates a finite pulse of high fidelity hyperfine

evolution. Shuttling each electron to the other’s donor can presumably take only

ns, but is delayed to 256 clock cycles to maintain the stroboscopic synchronization

with isolated qubits. Most of the time is spent on the π/2, π, and 3π/2 pulses of

hyperfine evolution, requiring 12, 24, and 36 step-plus-lap combinations respectively.

The 3π/2 and π/2 pulses of magnetic evolution require only 192 and 64 clock cycles

respectively.
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2.10 Gate Times and Errors

Digital processing with resonant hyperfine stepping takes discrete steps around

the unitary group. Shorter hyperfine steps and a weaker magnetic field reduce the

errors. However, commercially available pulse pattern generators are limited to

approximately 12 GHz (hence our choice of f = 11.2829 GHz). Furthermore, the

preponderance of magnetic periods (one for each small hyperfine step) means that a

computation slows with weaker field. There is thus a trade-off between fidelity and

speed.

Our choice of B = 1.57171 mT yields a complete spin swap (the architecture’s

fundamental process) in 0.57µs. When ideally implemented with resonant hyperfine

stepping, its expected error (defined to be the average probability of incorrectly

transforming an initial, arbitrary, two-qubit basis of states) is less than 2.1× 10−7.

The CNOT is our most complicated gate and can be ideally implemented with an

expected error of at most 0.9× 10−6 in 3.22µs.

But it is unrealistic to presume exact values for the frequency, field, and hy-

perfine strength. There may also be variations of hyperfine and/or field strength

from one donor site to the next. Indeed, although isotope purification can remove

most Si29 from the crystal, the remaining impurities cause field variations (although

these fluctuate so slowly that spin-echo techniques may be applicable). Another

complication is that the Landé factor for the electron, ge, could vary by as much as

10−3 between the donor and the Si-barrier interface [54].

We have studied the sensitivity to these parameters by the explicit simula-
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tion of canonical one- and two-qubit logic gates. The threshold theorem [8] for

quantum computation concludes that efficient quantum computing, obtained with

error-correction techniques, is possible when logic gate errors are less than 10−5.

We found that this threshold is obtainable with relative variations in frequency,

field, and hyperfine strength as large as 10−5, 10−5, and 5× 10−4, respectively. The

sensitivity to local variations in these parameters is approximately the same. The

fidelity is comparatively insensitive to the hyperfine strength because our gate com-

positions are predominantly magnetic. Finally, the architecture can tolerate 5×10−3

variations in ge between the donor and the interface.

2.11 Tuneable Fidelity

The use of discrete stepping “coarse-grains” the attainable unitary transfor-

mations. Canonical gates lie on a very coarse “grid” of multiples of π/4 steps (not

a coordinate grid, since [HB, HA] 6= 0, but simply a set of discrete transformations

obtainable by finite steps). The computer must be configured to operate on this

grid; f0 and B0 are restricted to those values that compose gates in integer steps.

For example, (a2π = 48, b2π = 256) realizes a fine grid of (Aij, π/24) and (M,π/128)

transformations.

It may be that the calculated field and frequency for this (a2π, b2π) configu-

ration are only approximations and that the ideal f0 and B0 are slightly different.

As shown in Figures 2.5 and 2.9 the hyperfine step strength and shape may be

such that the discrete steps do not land on the goal transformation, G. Tuning the
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Figure 2.9: Tuning the fidelity. Step sizes can be adjusted, by tuning the clock
frequency and magnetic field strength, until discrete steps attain our goal G.

clock frequency will adjust the step size until G is obtained in an integer number of

hyperfine steps. Similarly, the magnetic field can be tuned until the magnetic lap

around the group is obtained in an integer number of clock cycles.

2.12 The Nuclear Spin-Pair Quantum Memory

A π pulse of hyperfine interaction, (Aij, π), between two qubits generates a

complete spin swap between the electron of one qubit and the donor of the other.

Considered as a switch to a new encoding scheme, this hyperfine “data bus” transfers

one qubit into a nuclear spin-pair and the other into an electron spin-pair. For

example, an en data qubit, with the use of an eAnA “ancilla,” can be transferred,

by resonant hyperfine stepping, into an nAn nuclear spin-pair qubit, as is shown in
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Figure 2.10: Ancilla Facilitated Hyperfine “Data Bus” to a nuclear spin-pair quan-
tum memory. A π pulse of hyperfine interaction between an en qubit and an un-
entangled ancilla qubit eAnA (specifically an e−n spin swap between e and nA) has
transferred en into an nAn storage qubit.

Figure 2.10. Retrieval simply requires another π pulse to repeat the spin swap.

The relatively weak nuclear magnetic moment gives the nuclear spin a long de-

coherence time which makes the nuclear spin-pair qubit a natural quantum memory.

Since the two nuclear spins have the same magnetic moments, their (Jz = 0) qubit

does not respond to the magnetic field. Furthermore, if the data and ancilla were

unentangled before the swap then the data (now encoded in the nuclear spin-pair)

and ancilla (now encoded in the electron spin-pair) remain unentangled, so deco-

herence or collapse of the electron spin-pair will not degrade the memory. (In the

Appendix to this chapter we show that the qubit’s transfer succeeds even when the

ancilla is outside its logical subspace; relative phases developed between invariant

subspaces, by resonant hyperfine stepping, are absorbed solely into the ancilla).

2.13 Readout, Initialization, and Refrigeration

As illustrated in Figure 2.11, the data qubit can, alternatively, be transferred

into an electron spin-pair to facilitate measurement by various proposed methods
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Figure 2.11: Projective Read-Out. An e−n spin swap between spins eA and n has
transferred the en qubit into an eeA read-out qubit above the Tellurium double donor
and beneath the SET, which will detect the singlet vs. triplet charge configuration.

to distinguish singlets and triplets. For an electron spin-pair known to reside in

the logical subspace, these are effectively |0〉 = |singlet〉 vs. |1〉 = |triplet, Sz = 0〉

projective qubit measurements. For example, a Single Electron Transistor (SET)

is capable of very sensitive charge configuration measurements; above a donor it

can detect electrode driven charge density fluctuations associated with the electron

spin-pair singlet [18]. Alternatively, in a quantum dot the electrons’ spin determines

the tunneling of spin-polarized currents [19].

After measurement the collapsed electron spin-pair can be transferred back

into an electron-donor pair via another spin swap. This provides a way to initialize

the computer at high temperature (e. g., 1 K). Readout collapses an electron spin-

pair into a singlet or triplet. The singlet outcome, |↑e1↓e2〉− |↓e1↑e2〉, is immediately

convertible, via a spin swap, to |0〉. The triplet outcome, |↑e1↑e2〉, |↑e1↓e2〉+ |↓e1↑e2〉,

or |↓e1↓e2〉, can be recycled, as depicted in Figure 2.12, through a single qubit |0〉 ↔

|1〉 operation sandwiched between spin swaps, for another chance to obtain a useful

singlet. (In the Appendix to this chapter we show that this cascaded measurement

prevails despite relative phases developed between invariant subspaces.) At high

37



Figure 2.12: Qubit Initialization and Sorting. A singlet outcome is immediately
convertible into |0〉 while the triplet outcome can be recycled through a sequence of
operations into another chance for a useful singlet.

temperature 50% of the electron-donor pairs will obtain |0〉, and by electron shuttling

the successful 50% can be “pooled” into the working part of the computer in analogy

with Kane’s original proposal for on-chip spin refrigeration [58].

2.14 Conclusion

Consideration of a simple encoding scheme for the Kane quantum computer

has led to a modified architecture which overcomes many obstacles to the original

proposal. Resonant hyperfine stepping provides digital control with an extremely

well defined and stable parameter; there is no tuning of the hyperfine strength and

there is no qubit specific tuning; we can optimize the fidelity of the entire computer

by tuning the clock frequency (and thus the bit pulse width) of the bit trains.

Effectively, we have replaced the AC magnetic field with a digital electric field.

Digital shuttling of electrons removes the need for the complicated and difficult

exchange mediated coupling and overcomes the nearest neighbor restrictions. It also

makes the computer easier to fabricate since the donors can be irregularly spaced

and further apart, allowing for larger gate electrodes, and malfunctioning donor sites
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can be diagnosed and ignored, provided there is enough S gate capability to shuttle

other qubits’ electrons around the misbehaving donor.

There is a natural data-bus to a nuclear spin-pair quantum memory or electron

spin-pairs for projective measurement beneath a Single Electron Transistor. The

availability of a projective measurement means we can initialize 50% of the qubits

at higher temperatures, and electron shuttling can then pool initialized qubits into

the working part of the computer. These many benefits were obtained at the cost of

coupling to an auxiliary subspace outside the logical subspace. Therefore the fidelity

depends crucially on tuning the clock frequency and the global magnetic field. We

have investigated the sensitivity of the computer and found that “five nine’s fidelity”

is attainable even for relative variations in field and frequency as large as 10−5.

This work was supported by the National Security Agency. AJS is grateful for

helpful discussions with S. Lomonaco.

2.15 Appendix: Subtleties of Resonant Hyperfine Stepping

Resonant hyperfine stepping yields high fidelity hyperfine evolution within our

Jz = 0 invariant subspace but not in the full Hilbert space ofN spins because relative

phases develop between invariant subspaces. Also, despite the obvious analogy with

electron spin resonance, the resonant hyperfine stepping does not generate the same

evolution as would be obtained in “encoded qubit resonance,” in which a period of

sinusoidal hyperfine interaction is applied for each magnetic lap around the group.
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2.15.1 Relative Phases Between Invariant Subspaces

The relative phases develop because some magnetic energy level differences

between invariant subspaces are not resonant with the energy differences that exists

within the Jz = 0 invariant subspace. For example, in Figure 2.3, there are five

invariant subspaces for four spins. Within any one of these invariant subspaces the

magnetic energy levels are split by integer multiples of Er = 2B(geµB + gnµn) (flip-

ping an electron spin, which changes the energy by ±2BgeµB has a compensatory

nuclear spin flip, which changes the energy by a further ±2Bgnµn) and resonant hy-

perfine stepping works as designed. On the other hand, distinct invariant subspaces

are separated by relative energies (such as En = 2Bgnµn and Ee = 2BgeµB) which

are off resonance; in general, resonant hyperfine stepping implements spin swaps

only up to relative phases between invariant subspaces.

Ordinarily, all processing takes place within the Jz = 0 invariant subspace. But

there are two situations for which we must consider the possibility of off-resonance

hyperfine steps: the hyperfine data bus and the qubit initialization scheme.

In the Hyperfine Data Bus

The unentangled ancilla used in the hyperfine data bus may be outside the

logical subspace, in which case the four-spin ket projects across invariant subspaces.

Specifically, the qubit may be in an arbitrary logical (Jz = 0) superposition while

the ancilla is in a broader arbitrary superposition:

(α |↑1↓2〉+ β |↓1↑2〉)⊗ (a |↑3↑4〉+ b |↑3↓4〉+ c |↓3↑4〉+ d |↓3↓4〉)
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This general logical⊗ancilla ket has components in the Jz = 1, 0, and −1 invariant

subspaces. During resonant hyperfine stepping, the Jz = ±1 subspaces will develop

phases eiφ±1 with respect to the Jz = 0 subspace. However, on account of their

unentangled nature and the fact that the projecting across subspaces originated

from the ancilla, not the qubit, these phases can be entirely absorbed into the

ancilla. For example, after “swapping” spins 2 and 3 we obtain

(α |↑1↓3〉+ β |↓1↑3〉)⊗ (eiφ1a |↑2↑4〉+ b |↑2↓4〉+ c |↓2↑4〉+ eiφ−1d |↓2↓4〉)

The transferred qubit still has components (α, β) in the spin-swapped basis while

the ancilla is modified to have components (eiφ1a, b, c, eiφ−1d). This line of reasoning

applies also to statistical mixtures. resonant hyperfine stepping correctly implements

the hyperfine data bus provided the data spin-pair is logical and is unentangled with

the ancilla.

In the Initialization Scheme

With regard to the initialization scheme, we now know that resonant hyperfine

stepping will convert the electron spin-pair singlet into |0〉 regardless of the state of

the facilitating ancilla. On the other hand, the ambiguous triplet outcome, when

tensored with an arbitrary ancilla, gives a four-spin ket projecting across all five

invariant subspaces. This time we cannot simply absorb phases developed between

invariant subspaces into components of the ancilla. However, we can do this for each

term of the superposition of tensor products, as follows. In general we will begin
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with

(α |↑1↑2〉+ β(|↑1↓2〉+ |↓1↑2〉) + γ |↓1↓2〉)⊗ (a |↑3↑4〉+ b |↑3↓4〉+ c |↓3↑4〉+ d |↓3↓4〉)

which will evolve, under a resonant hyperfine stepping implemented “spin swap” to

α |↑1↑3〉 ⊗
∣∣∣ψ1

24

〉
+ β(|↑1↓3〉+ |↓1↑3〉)⊗

∣∣∣ψ2
24

〉
+ γ |↓1↓3〉 ⊗

∣∣∣ψ3
24

〉

where |ψ1
24〉, |ψ2

24〉, and |ψ3
24〉 are modified ancilla states which have absorbed phases

between invariant subspaces. We can then perform the single qubitX gate to convert

|↑1↓3〉+ |↓1↑3〉 into |↑1↓3〉 − |↓1↑3〉 obtaining

α |↑1↑3〉 ⊗
∣∣∣φ1

24

〉
+ β(|↑1↓3〉 − |↓1↑3〉)⊗

∣∣∣φ2
24

〉
+ γ |↓1↓3〉 ⊗

∣∣∣φ3
24

〉

where |φ1
24〉, |φ1

24〉, and |φ1
24〉 have absorbed yet more relative phases. This can be

now be converted, by one last spin swap, into

α |↑1↑2〉 ⊗
∣∣∣χ1

34

〉
+ β(|↑1↓2〉 − |↓1↑2〉)⊗

∣∣∣χ2
34

〉
+ γ |↓1↓2〉 ⊗

∣∣∣χ3
34

〉

with |χ1
34〉, |χ2

34〉, and |χ3
34〉 serving again to absorb phases. The subsequent singlet

outcome obtains with probability |β|2 (the same probability as for the original |↑↓〉+

|↓↑〉). This argument also holds for statistical mixtures. The initialization works as

intended despite the subtleties of resonant hyperfine stepping.

2.15.2 Distinction from Electron Spin Resonance

Even though the hyperfine interaction strength is always positive we are tempted

to imagine the effects of “encoded qubit resonance” (EQR) in which we apply a pe-

riod of sinusuoidal oscillation in the hyperfine strength for each magnetic lap around
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the group, in analogy with electron spin resonance (ESR). It turns out that the ef-

fective generators of EQR are different from those of resonant hyperfine stepping.

For example, qubit resonance within the first qubit results in an effective

generator

AEQR
11 ∼



0 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0



6= A11 ∼



1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


and thus a UEQR

11 hyperfine interaction effected by a π/2 pulse (a π pulse with respect

to the logical subspace) of qubit resonance develops a different logical-auxiliary phase

than the U11 = (A11, π) pulse effected by resonant hyperfine stepping.

UEQR
11 =



−i 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −i



6= U11 =



−1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1


Although the two are identical within the logical subspace, the distinction is impor-

tant when trying to implement two-qubit operations which make use of the auxiliary

subspace. Our gate prescriptions assume the use of resonant hyperfine stepping.
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Chapter 3

Damping and Diffusion of a Few Coupled SQUIDs in a Phonon Bath

3.1 Abstract

We develop a master equation, within the Born-Markov approximation, for a

few superconducting quantum interference devices (SQUIDs) coupled into a chain

and exchanging their angular momenta with a low temperature phonon bath. Our

master equation has four generators; we concentrate on the damping and diffusion

which together cause relaxation and decoherence. The spectrum of the Heisenberg

SQUID chain is such that some decaying oscillations can emerge in a lower energy

subspace; for two equally-spaced pairs of energies, a superposition of the upper two

eigenstates relaxes coherently. It also presents critical point energy level crossings

where even well-spaced large SQUIDs can partially exhibit collective coupling be-

havior that can dramatically reduce certain relaxation and decoherence rates.

3.2 Introduction

A superconducting quantum interference device (SQUID) can be made from

a small strip of aluminum bent into a ring, joined at the ends, and cooled to a

milliKelvin temperature. Aluminum is a superconductor and an aluminum oxide

layer, where the ends meet, forms a “Josephson Junction” potential barrier. Precise
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tuning of an externally imposed magnetic flux can cause coherent quantum oscilla-

tions of the current between clockwise “|↑〉” and counterclockwise “|↓〉” states. The

ground state, |0〉 = (|↑〉 + |↓〉)/
√

2, and first excited state, |1〉 = (|↑〉 − |↓〉)/
√

2,

span the low-energy dynamics of the device and form a logical basis for a qubit of

quantum information, c0 |0〉+ c1 |1〉.

Many SQUIDs can be coupled together into a chain. The aluminum rings are

not actually linked but their proximity allows capacitive and inductive interaction

between nearest neighbor SQUIDs [59, 60]. We are principally interested in using

the chain to encode and protect quantum information [61]. But chains could prop-

agate excitations, qubits [62, 63, 64, 65], and even entangled (strongly correlated)

singlets, (|↑↓〉 − |↓↑〉)/
√

2 [66, 67, 68]. They could also provide long-sought experi-

mental realizations of spin chains which in turn illustrate the correlations and phase

transitions of many-body physics. Cooling a chain to its zero-temperature ground

state can prepare useful entanglement [69]. Ground state entanglement can vanish

abruptly, for example, as spin-spin couplings are adjusted across a critical point

[70, 71, 72]. In that case, it is the intermediate energy states that can possess entan-

glement; their quantum correlations can be evident, at a warmer but not too-high

temperature, when mixed sufficiently into the equilibrium state [73, 74].

The instantaneous state of a spin-chain can be described by a density oper-

ator ρ(t) =
∑

n pn |ψn〉 〈ψn| which averages pure states |ψn〉 〈ψn|, weighted by their

probabilities pn, into a statistical mixture. In the energy eigenbasis, a diagonal el-

ement 〈α| ρ |α〉 is the probability of obtaining the eigenstate |α〉, sometimes called

the population of |α〉. An off-diagonal element 〈α| ρ |β〉 results from including su-
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Figure 3.1: A Heisenberg two-SQUID chain above the critical point Bc cooling from
|11〉 to |00〉. In the process, the states |01〉 ± |10〉 are occupied, resulting in a surge
of the entanglement of formation, even though the ground state is separable and
the large SQUIDs are dissipating independently. (8J/h = 1.0GHz, 2B/h = 1.5GHz,
kBT/h = 0.3GHz, R = 10µm, I = 3µA, ρ = 5g/cm3, c⊥ = 5km/s).

perpositions of eigenstates, e. g. |ψ1〉 = cα |α〉 + cβ |β〉; it has an evolving phase,

〈α| ρ(t) |β〉 = ei(Eα−Eβ)t/h̄ 〈α| ρ(0) |β〉, which indicates the chain’s coherent dynam-

ics. For this reason, these off-diagonal terms are called coherences.

The evolving phase of a coherence corresponds directly to oscillations in some

physical expectation value. This is because the density operator can be written as a

real linear combination of trace-orthogonal Hermitian operators. The coefficients of

the expansion are just expectation values, e.g. Tr[ρ(t)σx/2] is the (time-dependent)

coefficient of σx. In the case of a single spin, its density operator is a real linear

combination of Pauli operators whose coefficients are the components of the spin’s

average polarization. Its precession about the z-axis is indicated by an evolving

phase, but physically we experience oscillating expectation values for x and y mea-

surements.

For several qubits, observing the oscillations corresponding to an arbitrary
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coherence can be complicated; one may implement a rapid unitary transformation

of ρ(t) to effectively transform an easier measurement into the one that will observe

the oscillations. And many repetitions of the same state-preparation ρ(0), evolution,

and measurement are needed for each evolved time t before one can, statistically,

observe the coherences in ρ(t) as an oscillating expectation value.

Usually, when a quantum system is “opened-up” to its finite-temperature en-

vironment, its energies and eigenstates are perturbed and the new energies and

stationary states are viewed as renormalized quantities. Then it equilibrates to a

stationary thermal mixture of these eigenstates. The populations are adjusted, or

interchanged, until a thermal mixture is obtained, in a process we call relaxation.

The coherences will also decay (they must if the equilibrium state is to be station-

ary). Some of this “decoherence” goes along with the relaxation — adjusting the

probabilities of the eigenstates undermines the support for any phase between them

— but it can also be caused by pure dephasing, in which the phase’s probability

distribution spreads, reducing the (averaged) coherence, without adjusting the pop-

ulations. The decay of a coherence is, physically, just the decay of the oscillations in

an expectation value. It’s absolute value is the decaying envelope of the oscillations.

We consider some open-system effects of the SQUIDs’ coupling to phonons. We

suppose the SQUIDs are lithographically etched and deposited into a solid crystal

(e.g. of silicon) which, for simplicity, we assume surrounds the chain. In a SQUID’s

oscillation between current states, the conservation of total angular momentum re-

quires torsional oscillations of the solid and thus the emission and absorption of

phonons; the concomitant phonon-induced decoherence of a single SQUID has al-
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ready been calculated [75].

Working from the total Hamiltonian H = HS + HB + V , describing the

SQUIDS, the bath, and their coupling, we apply master equation techniques from

the quantum Brownian motion model [76, 28], in the Born-Markov approximation,

to a chain of SQUIDs interacting with a phonon heat bath. The resulting genera-

tors of the open-system dynamics are associated with four types of coefficients: the

renormalization, anomalous diffusion, damping, and diffusion. We use the damp-

ing and diffusion to develop a matrix element equation for the populations and

coherences. It gives the relaxation and decoherence rates, as well as the possibility

for coherent oscillations to move from one subspace, where they are decaying, into

a lower energy subspace with a longer decoherence time. A complete network of

selection-ruled transitions leads to thermalization. This is usually the case for large

well-spaced SQUIDs. For small closely-spaced SQUIDs the network is broken by

the degeneracies of their collective coupling to the bath; decoherence and transition

rates can scale with the number of SQUIDs or vanish; some subspaces are protected.

Finally, at the critical point even the large well-spaced SQUIDs can acquire some of

this collective Dicke super- and sub-radiant and super- and sub-decoherent behavior.

3.3 The Unbiased SQUID

The aluminum oxide barrier in the SQUID loop acts as a capacitor upon which

charges q and −q can accumulate. When an external magnetic flux threads the

loop, the supercurrent of paired-electrons attempts to screen the flux by tunneling
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through the thin barrier. The screening flux φ is a conjugate variable to the charge

q: [φ, q] = ih̄. In fact, the Josephson Junction physics is such that the individual

SQUID Hamiltonian is [77]

HSQUID =
q2

2CJ

+
φ2

2L
− EJ cos

[
2e

h̄
(φ− Φx)

]

where CJ is the junction capacitance, L is the loop inductance, EJ is the Josephson

energy, h/2e is the flux quantum, and Φx is the externally imposed flux. The q2/2C

term acts like a kinetic energy term while the rest serves as a double-well potential

for the flux φ. The truncation of the Hamiltonian to a two-level (qubit) system

requires a large level separation in each well, so that only the bottom level of one

well, |↑〉, and the other, |↓〉, are relevant. There remains the possibility of tunneling

through the symmetric barrier, so the antisymmetric combination |1〉 has a higher

energy than the symmetric |0〉. The effective result of this truncation scheme for

the unbiased double-well is

HSQUID ⇒ −Bσx

with |↑〉 and |↓〉 the eigenstates of σz. Here B is not the imposed magnetic field.

Instead, it is an effective magnetic field (in units of energy) appropriate to the natural

precession of our pseudo-spin qubits: coherent quantum oscillations between |↑〉 and

|↓〉.

We are interested in large SQUIDs of radius R = 10µm with a 3µA current

oscillating at 1.0 ± 0.5 GHz. Our decoherence model [75] gives decoherence times

of a few µs which are not inconsistent with those of recent experiments [4, 78]. On

the other hand we will also use small SQUIDs, with R = 10 nm and I = 0.1µA,
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to demonstrate the concept of a collective coupling to the environment even though

the small single SQUID decoherence model predicts times which are extraordinarily

long, e.g. 106 s. The concept of a collective coupling is relevant to the critical point

open-system dynamics of the large SQUIDs.

3.4 The Heisenberg SQUID Chain

For its mathematical simplicity and relevance to quantum information pro-

cessing, we consider the isotropic Heisenberg coupling between nearest neighbor

SQUIDs. In principle this can be engineered with a precise balance of inductive

and capacitive coupling between nearest-neighbor SQUIDs. However, several of our

methods are applicable to other types of coupling. The “antiferromagnetic” (J > 0)

Heisenberg chain of N SQUIDs evolves by its Hamiltonian,

HS =
N∑

j=1

(J~σj · ~σj+1 −Bσx
j ),

assuming periodic boundary conditions ~σN+1 ≡ ~σ1. Here, ~σj are the Pauli matrices

for the jth SQUID, with |↑〉 and |↓〉 the eigenstates of σz.

The Heisenberg and magnetic sums commute and their respective quantum

numbers l and m determine the energy spectrum {lJ −mB} (up to some degenera-

cies not split by J and B). Regardless of N , each eigenstate is a linear combination

of states with the same number of |1〉 vs. |0〉 qubits (m ≡ N0−N1) and is typically

entangled, with the exception of the extremal m states |11 . . .〉 and |00 . . .〉. Increas-

ing B relative to fixed J causes energy-level crossings. At a critical value, Bc, the

ground state changes from entangled to unentangled.
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Figure 3.2: Decaying oscillations emerging in a lower energy subspace. Three large
SQUIDs dissipating independently. |ψ4〉+ |ψ7〉 cooling, through a mixture including
|ψ1〉 + |ψ4〉, to |ψ1〉. The transitions |ψ4〉 ↔ |ψ1〉 and |ψ7〉 ↔ |ψ4〉 are resonant
(∆14 = ∆47). ρ̃47, which decays ∼ e−Γ̄47t, is absorbed into ρ̃14 which decays more
slowly ∼ e−Γ̄14t. It might be easier to start with |↑↑↑〉, which is sufficiently close to
the equal superposition of |ψ4〉 = |001〉+|100〉+|010〉 and |ψ7〉 = |011〉+|110〉+|100〉,
to prepare the coherence which flows into ρ̃14. (6J/h = 1.0GHz, 2B/h = 1.5GHz,
kBT/h = 0.3GHz, R = 10µm, I = 3µA).

The two-SQUID chain’s energies are shown in Figure 3.1; their eigenstates

are |ψ1〉 ≡ |00〉, |ψ2〉 ≡ |01〉 − |10〉, |ψ3〉 ≡ |01〉 + |10〉, and |ψ4〉 ≡ |11〉. For the

three-SQUID chain’s energies, shown in Figure 3.2, we use eigenstates

|ψ1〉 ≡ |000〉

|ψ2〉 ≡ |001〉 − |100〉

|ψ3〉 ≡ |001〉+ |100〉 − 2 |010〉

|ψ4〉 ≡ |001〉+ |100〉+ |010〉

|ψ5〉 ≡ |011〉 − |110〉

|ψ6〉 ≡ |011〉+ |110〉 − 2 |101〉

|ψ7〉 ≡ |011〉+ |110〉+ |101〉

|ψ8〉 ≡ |111〉 .
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3.5 The Harmonic Phonon Bath

The harmonic crystal Hamiltonian is composed of phonon modes labelled by

wavevector ~k and polarization index s. The phonons are annihilated by a~ks and

created by a†~ks
and each contributes an energy h̄ωs(~k):

HB =
∑
~k,s

h̄ωs(~k)a
†
~ks
a~ks =

∑
n

En︷ ︸︸ ︷∑
~k,s

h̄ωs(~k)n~ks |n〉 〈n| .

The eigenstates, |n〉, have a definite number 〈a†~ks
a~ks〉 = n~ks of phonons in each mode,

so that their total energy is En =
∑

~ks h̄ωs(~k)n~ks. The label n stands for the string

of phonon numbers for each mode. We make use of

a~ks |n〉 =
√
n~ks

∣∣∣n~ks − 1
〉

a†~ks
|n〉 =

√
n~ks + 1

∣∣∣n~ks + 1
〉

〈n| a†~ks
=
√
n~ks

〈
n~ks − 1

∣∣∣ 〈n| a~ks =
√
n~ks + 1

〈
n~ks + 1

∣∣∣
HB |n〉 = En |n〉 e±iHBt/h̄ |n〉 = e±iEnt/h̄ |n〉

where
∣∣∣n~ks ± 1

〉
just means, in the string n of phonon numbers, one more or less

phonon in the ~ks mode. For frequencies below a cutoff frequency Λ we assume linear

dispersions, ω1,2(~k) = c⊥ |~k| and ω3(~k) = c‖ |~k|, for transverse (⊥) and longitudinal

(‖) polarizations ês(~k) =
{
k̂⊥1, k̂⊥2, k̂‖

}
. The momentum density at site ~r is

~π(~r) =
−i√
V

∑
~ks

√√√√ h̄ωs(~k)ρ

2

(
a~kse

i~k·~r − a†~ks
e−i~k·~r

)
ês(~k)

with V and ρ the volume and mass density of the crystal.

3.6 The Chain-Bath Coupling

The coupling between the SQUIDs and the crystal arises from the fact that

each SQUID’s current is formed from the electron band states in the reference frame
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co-moving with the lattice sites during the torsional oscillations of the crystal [75].

In the lab frame the electron velocity ~ve must include the speed ~̇u = ~π/ρ of the

lattice sites: ~ve = ~j/(ene) + ~̇u. Here ~j is the current density and e and ne are the

electron charge and number density of the electrons. Their kinetic energy density

ne
1
2
me|~ve|2 thus acquires a cross term ∼ ~j · ~̇u so that the total Hamiltonian must

include an additional V = (me/e)
∫
d3r~j · ~̇u. From this we derive, following [75], the

coupling Vj of an individual SQUID to the crystal and then, because the current

density ~j is the sum of the individual densities ~jj, sum their contributions into the

total coupling V .

The first SQUID has a current Iσz
1 confined to its ring of cross-sectional area

b: ~j1 = (I/b)σz
1φ̂ within the ring, ~j1 = 0 elsewhere. Here φ̂ is the azimuthal unit

vector in cylindrical coordinates centered on the ring. With

~φ~k ≡
∫ 2π

0
dφ

∫ R+
√

b/2

R−
√

b/2
dr r

∫ √
b/2

−
√

b/2
dz φ̂ e−i~k·~r

the Fourier transform of the φ̂ within the ring, we have

V1 =
me

e

I

b
σz

1

−i√
V

∑
~ks

√√√√ h̄ωs(~k)

2ρ

(
a~ks

~φ∗~k − a†~ks
~φ~k

)
· ês(~k).

In the thin ring approximation, |~k|
√
b� 1, the Fourier transform becomes

~φ~k ⇒ −i2πRbJ1(|~k|R sin θ)n̂~k,

where J1(|~k|R sin θ) is the first order Bessel function. The polar angle θ is the angle

between the ẑ-axis of the ring and the wavevector ~k while n̂~k ⊥ ~k lies in the plane

of the ring. Choosing ê1(~k) to lie in the plane of the ring, i.e. ê1(~k) = n̂~k, we obtain

V1 = γ σz
1

∑
~k

√
|~kR| J1(|~kR| sin θ)

(
a~k1+ a†~k1

)
,
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Figure 3.3: Decoherence and Relaxation in two large SQUIDs dissipating indepen-
dently. |00〉 + |11〉 cooling above the critical point. (a) The population dynamics
are the same for an equal mixture of |ψ1〉 ≡ |11〉 and |ψ4〉 ≡ |00〉; only the super-
position is entangled. (b) The entanglement does not oscillate because any phase
between |00〉 and |11〉 may be generated locally. It decays faster than the coher-
ence ρ̃14 ∼ e−Γ̄14t upon which it depends. Later, the populations mix back in some
entanglement. (8J/h = 1.0GHz, 2B/h = 1.5GHz, kBT/h = 0.3GHz, R = 10µm,
I = 3µA).

with coupling constant γ ≡ 2πI(me/e)
√
Rh̄c⊥/2ρV .

Note that the only displacements that couple to the SQUID are torsional,

n̂~k ·~k = 0 ⇔ ∇·~u = 0, and in-plane, consistent with the conservation of total angular

momentum. This is the minimal, required by symmetry, coupling of SQUIDs to the

phonon bath.

The other SQUID rings are centered not at ~r = 0 but are evenly spaced,

a distance d apart, along the x̂-axis. The analysis for each SQUID’s coupling to

phonons is calculated in its own coordinates ~rj centered at ~xj ≡ d(j − 1)x̂ so that

~r = ~xj + ~rj. The creation and annihilation operators’ phase factors e±i~k·~r become

e±i~k·~xje±i~k·~rj while the rest of the calculations, in the ~rj coordinates, are exactly the

same as before. The total coupling is thus

V = γ
∑
j

σz
j

∑
~k

√
|~kR| J1(kxR)

(
a~k1e

i~k·~xj + a†~k1
e−i~k·~xj

)
, (3.1)

where J1(kxR) is shorthand for J1(|~kR| sin θ).

Writing V = γ
∑

j Xjφj emphasizes the bi-linear form, akin to a quantum
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Brownian oscillator’s coupling to an oscillator bath, ∼ xφ, only here we are summing

over several contact-points between the chain and the bath. The chain operators

Xj ≡ σz
j interact with the bath operators

φj ≡
∑
~k

√
|~kR| J1(kxR)

(
a~k1e

i~k·~xj + a†~k1
e−i~k·~xj

)
.

Note that there are selection rules: 〈l′m′| Xj |lm〉 ∼ δm′,m±2. The “interaction

operator” Xj flips the jth |0〉 or |1〉, giving us a non-zero probability only to obtain an

eigenstate with one more |1〉 or |0〉. The allowed bath-driven transition frequencies

are ∆ = [±2B + (l − l′)J ]/h̄; any transitions driven between degenerate states are

necessarily between distinct l and l′ at a crossing of energy levels. For example, the

two-SQUID chain’s interaction operators are, in its eigenbasis,

X1,2 =
1√
2



0 ∓1 1 0

∓1 0 0 ±1

1 0 0 1

0 ±1 1 0


.

They present a “network” of selection-ruled transitions: |ψ1〉 ↔ |ψ2〉, |ψ1〉 ↔ |ψ3〉,

|ψ2〉 ↔ |ψ4〉, and |ψ3〉 ↔ |ψ4〉 with energies 2B and 2B ± 8J .

3.7 The Formalism

We now apply master equation techniques from the model of quantum Brow-

nian motion [76, 28] to the chain of SQUIDs interacting with their phonon bath.

The unperturbed Hamiltonian H0 ≡ HS +HB defines a standard interaction

picture in which the coupling Ṽ (t) = eiH0t/h̄V (t)e−iH0t/h̄ determines the evolution of
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Figure 3.4: Entanglement oscillations in two large SQUIDs dissipating indepen-
dently. |01〉 cooling below the critical point. (a) The population dynamics are the
same for an equal mixture of |ψ2〉 ≡ |01〉−|10〉 and |ψ3〉 ≡ |01〉+|10〉. (b) From their
initial superposition |01〉, the evolving phase between |ψ2〉 and |ψ3〉 drives ≈ 6×105

rapid oscillations of the entanglement of formation (eof); we have plotted a moving
average <eof>, the upper bound (>eof), and the lower bound (<eof) which is the
same as the entanglement of the mixture. Initially, the moving average decays with
the coherence ρ̃23 ∼ e−Γ̄23t but later pulls away to equilibrate. (8J/h = 1.0GHz,
2B/h = 0.5GHz, kBT/h = 0.1GHz, R = 10µm, I = 3µA).

the system-bath density operator w̃(t) to second order as

˙̃w(t) = − i

h̄
[Ṽ (t), w̃(0)]− 1

h̄2

∫ t

0
dt′ [Ṽ (t), [Ṽ (t′), w̃(0)]].

(The overdot denotes d
dt

). Next, we assume the bath is a thermal state ρB =

(e−HB/kBT )/ZB initially uncorrelated with the chain: w̃(0) = ρ(0) ⊗ ρB. Here T is

the temperature and ZB =
∑

n e
−En/kBT is the bath’s partition function. We average

(trace) over the states of the bath to obtain a preliminary equation of motion for

the system:

˙̃ρ(t) = −γ
2

h̄2

N∑
j,k=1

∫ t

0
dt′ TrB[X̃j(t)φ̃j(t), [X̃k(t

′)φ̃k(t
′), w̃(0)]] (3.2)

where we eliminated the first order term with the TrB[φ̃j ρB] = 0 that results from

summing (tracing), in the bath’s energy eigenbasis, over the always-vanishing diag-

onal matrix elements 〈n| φ̃j ρB |n〉 = 0. For example, for j = 1 (when e±i~k·~xj = 1)
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we have

TrB[φ̃1 ρB] =
∑
n

∑
~k

√
|~kR| J1(kxR) 〈n| (ã~k1+ ã†~k1

) |n〉︸ ︷︷ ︸
0

e−En/kBT

ZB

= 0.

For a given (j, k)-pair of SQUIDs, the trace of the nested commutators results

in four integrals. Since they differ only in the permutation of terms, a representative

one is

X̃j(t)
∫ t

0
dt′ X̃k(t

′)

νjk(τ)−iµjk(τ)︷ ︸︸ ︷
TrB[φ̃j(t)φ̃k(t

′)ρB]︸ ︷︷ ︸
Ṽjk(t)−i Ũjk(t)

ρ(0), (3.3)

where the over- and under-braces highlight the time-averaging of the interaction

operator X̃k(t
′), into what we call the noise Ṽjk(t) and susceptibility Ũjk(t) operators,

by the kernels νjk(τ) and µjk(τ) that, with τ ≡ t−t′, are the real and imaginary parts

of the bath correlator TrB[φ̃j(t) φ̃k(t
′) ρB]. In the context of the quantum Brownian

oscillator, these noise and susceptibility kernels are sometimes called, respectively,

the fluctuation ν and dissipation η [28].

The four integrals for each SQUID-pair, originating from the nested commuta-

tors and each contributing a noise and a susceptibility, can be collected to obtain a

“Born” (but not yet Born-Markov) master equation (still in the interaction picture,

still only valid to second order),

˙̃ρ = −γ
2

h̄2

N∑
j,k=1

(
[X̃j, [Ṽjk, ρ̃]]− i[X̃j, {Ũjk, ρ̃}]

)
, (3.4)

where we have used Born’s approximation that replaces ρ(0) with ρ̃(t) ≈ ρ(0).

Born’s approximation adds a self-awareness to the integrated solution for ρ̃(t);

in a small time step dt the instantaneous change dρ̃ depends not on the initial ρ(0)

but on the updated instantaneous ρ̃(t). We will see that this updating is needed
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for the long-time equilibration to thermal equilibrium. The Born master equation,

although technically still only valid to second order, is a plausible guess at the longer-

time open-system dynamics which, like any other theory, can only be supported by

real data or exactly solvable open-systems, like the quantum Brownian oscillator,

and may not be valid in every case.

3.8 The Coefficients

The time-averaging into the noise and susceptibility may be done in a basis of

energy eigenstates |α〉 for which HS |α〉 = Eα |α〉 and h̄∆αβ ≡ Eβ−Eα is the energy

lost in the transition from |β〉 to |α〉. The averages’ matrix elements are

〈α|X̃k|β〉
∫ t

0
dτ (νjk− iµjk)e

i∆αβτ︸ ︷︷ ︸
(D∆

jk
(t)+iA∆

jk
(t))−i(r∆

jk
(t)+iγ∆

jk
(t))

≡ 〈α|Ṽjk|β〉 − i〈α|Ũjk|β〉,

where the coefficients ofDiffusion, Anomalous diffusion, renormalization, and damp-

ing serve to Fourier-sample (at least for t→∞) the real and imaginary parts of the

bath correlator:

D∆
jk(t)=

∫ t
0dτνjk(τ) cos ∆τ A∆

jk(t)=
∫ t
0dτνjk(τ) sin ∆τ

r∆
jk(t)=

∫ t
0dτµjk(τ) cos ∆τ γ∆

jk(t)=
∫ t
0dτµjk(τ) sin ∆τ.

Back in the Schrödinger picture, both the chain and bath are evolving by

coherent oscillations perturbed by the coupling V = γ
∑

j Xjφj. This coupling will

have the greatest effect when the oscillations are resonant, and have little effect for

off-resonant oscillations. In this sense, the evolution of X̃k(t
′) (in the interaction

picture) is sampling the bath correlations at the transition frequencies allowed by
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the selection rules; the noise and susceptibility accumulate these data; and the

instantaneous dynamics of ρ̃ depend on them. Each type of coefficient results in its

own generator of these open-system dynamics and later we consider in detail their

effects.

3.8.1 The Bath Correlator

For now, in order to understand the coefficients, we show that the bath corre-

lator can be written as a frequency integral,

TrB[φ̃j(t) φ̃k(t
′) ρB] =

∫ ∞

0
dω Jjk(ω) coth(

h̄ω

2kBT
) cos(ωτ)︸ ︷︷ ︸

νjk(τ)

−i
∫ ∞

0
dω Jjk(ω) sin(ωτ)︸ ︷︷ ︸

µjk(τ)

,

characterized by bath spectral densities Jjk(ω). To evaluate the correlator we (again)

perform the trace in the bath’s energy eigenbasis by summing over the diagonal

matrix elements:

TrB[φ̃j(t) φ̃k(t
′) ρB] =

∑
n

∑
~k,~k′

√
|~kR||~k′R| J1(kxR) J1(k

′
xR)

×〈n|
(
ã~k1(t)e

i~k·~xj + ã†~k1
(t)e−i~k·~xj

)(
ã~k′1(t

′)ei~k′·~xk + ã†~k′1(t
′)e−i~k′·~xk

)e−En/kBT

ZB

|n〉

=

∑
~k︷ ︸︸ ︷

(V/8π3)
∫ ∞

0

dω ω2

c3⊥

∫ π

0
dθ sin θ

∫ 2π

0
dφ

|~kR| J2
1 (kxR)︷ ︸︸ ︷

ωτR J
2
1 (ωτR sin θ)

×
[
coth(

h̄ω

2kBT
) cos(ωτ)− i sin(ωτ)

]
︸ ︷︷ ︸

(Nω+1)e−iωτ+Nωeiωτ

cos(ωτjk sin θ cosφ)︸ ︷︷ ︸
<[e±i~k·(~xj−~xk ]

.

The steps leading to the second line are as follows. The double sum
∑

~k~k′ collapses

to a single sum
∑

~k (which we convert to a ~k-space integral in spherical coordinates)

because the only non-zero cross-terms ∼ δ~k~k′ . They are

〈n| ã~k1e
i~k·~xj ã†~k′1e

−i~k′·~xk |n〉 = (n~k1 + 1) δ~k~k′e
−iωτei~k·~xjk
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and

〈n| ã†~k1
e−i~k·~xj ã~k′1e

i~k′·~xk |n〉 = n~k1 δ~k~k′e
iωτe−i~k·~xjk ,

where the factors e±iωτ arise from being in the interaction picture. Here we have

abbreviated ω1(~k) = ω for the angular frequency of the mode with wavevector

~k and transverse-in-plane polarization and written ~xjk = ~xj − ~xk for the vector

connecting the (j, k)-pair of SQUIDs. We have also used τR ≡ R/c⊥, which is

half the time it takes a phonon to traverse a SQUID. We switch the order of the

sums,
∑

n

∑
~k ⇒

∑
~k

∑
n, and write Nω ≡

∑
n n~k1

e−En/kBT

ZB
for the thermal-average

occupation number. It sums to

Nω =

∑
n~k1

n~k1e
−h̄ωn~k1

/kBT∑
n~k1

e−h̄ωn~k1
/kBT︸ ︷︷ ︸

1/(eh̄ω/kBT−1)

∏
i6=~k1

∑
ni
e−h̄ωini/kBT∏

i6=~k1

∑
ni
e−h̄ωini/kBT︸ ︷︷ ︸
1

= 1/(eh̄ω/kBT − 1).

Now every function in the bath correlator besides the e±i~k·~xjk is an even function of

~k. The sum over wavevectors thus selects the cos(~k · ~xjk) part of e±i~k·~xjk . Because

the (j, k)-pair of SQUIDs are positioned on the x̂-axis, we use kx = |~k| sin θ cosφ to

obtain cos(~k · ~xjk) = cos(ωτjk sin θ cosφ), with τjk = d(j − k)/c⊥ the phonon transit

time between the SQUIDs. Finally, it can be shown that (2Nω+1) = coth(h̄ω/2kBT )

so that we can write

(Nω + 1)e−iωτ +Nωe
iωτ =coth(

h̄ω

2kBT
) cos(ωτ)− i sin(ωτ).

To complete our analysis of the bath correlator we must integrate over the

modes. It is relatively easy to perform the φ integration
∫ 2π
0 dφ cos(ωτjk sin θ cosφ) =

2πJ0(ωτjk sin θ), while the θ integration

Θjk(ωτR) ≡ 2π
∫ π

0
dθ sin θJ2

1 (ωτR sin θ) J0(ωτjk sin θ)
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requires some approximations. But with Θjk(ωτR) we can write the bath correlator

as an integral over bath frequencies,

TrB[φ̃j(t) φ̃k(t
′) ρB] =

∫ ∞

0
dω Jjk(ω) coth(

h̄ω

2kBT
) cos(ωτ)︸ ︷︷ ︸

νjk(τ)

−i
∫ ∞

0
dω Jjk(ω) sin(ωτ)︸ ︷︷ ︸

µjk(τ)

,

characterized by the spectral densities

Jjk(ω) =
V

8π3

τR
c3⊥

ω3 Θjk(ωτR).

Technically, the ω integration should have an upper limit corresponding to the

maximum wavevector ~k available to the bath. Furthermore, the linear dispersions

ωs(~k) we assumed for the phonon bath do not necessarily apply to the larger ~k. One

can thus introduce a cutoff, or “Debye,” frequency Λ � ∆ by inserting a factor

e−ω/Λ into the ω integrations. This essentially discards from our master equations

any high frequency (ω � Λ) effects of the bath.

3.8.2 The Spectral Densities

It will turn out that the long-time values of the coefficients of damping and

diffusion can be obtained from knowing the spectral densities at reasonable chain

frequencies ∆, while we will make do without ever actually evaluating the coeffi-

cients of renormalization and anomalous diffusion (which would require integrating

to higher bath frequencies). At these reasonable ∆ we can approximate the spectral

densities in two regimes from which we draw our examples: SQUIDs which are far

apart (∆τjk � 1) and close together (∆τjk � 1). In these examples the J and B of

the SQUID chain must be set close-to or far-from any level crossings where ∆ ⇒ 0.
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For the single SQUID (j = k) θ integration we obtain

γ2

h̄2

π

2
Jjj(∆)=

m2
eI

2(πR2)2

3πh̄e24ρc5⊥
∆5

pFq({
3

2
},{5

2
, 3},−(∆τR)2)︸ ︷︷ ︸

3Θjj(∆τR)/2π(∆τR)2

independent of j and with pFq the generalized hypergeometric function. Here we

multiplied by γ2

h̄2
π
2

to get a useful equivalent-rate. Although we use these exact

“pFq” rates in our numerical simulations, it is helpful to know that for a “small

ring” (∆τR � 1) the single small SQUID equivalent-rate is approximately

γ2

h̄2

π

2
J

(S)
jj (∆) ⇒ m2

e

3πh̄e2
I2(πR2)2

4ρc5⊥
∆5

while for a “large ring” (∆τR � 1) the single large SQUID equivalent-rate is ap-

proximately

γ2

h̄2

π

2
J

(L)
jj (∆) ⇒ πm2

e

h̄e2
I2R

4ρc2⊥
∆2.

Next we assume that when ∆τjk � 1 we can neglect the cross term (j 6=

k) spectral densities. The assumption relies on the J0(∆τjk sin θ) kernel of the θ

integration oscillating quickly enough between positive and negative values that the

integral never accumulates any significant value.

For ∆τjk � 1, as can happen for “large” SQUIDs at a level crossing where

∆ ≈ 0 or, regardless of ∆, for a few small SQUIDs spaced only a few small SQUID

radii apart, the cross term spectral densities must be considered. It turns out that

to first order in ∆τjk we can use the single SQUID j = k rates for the j 6= k cross

terms. ∆τjk � 1 implies ∆τR � 1 so we start with J1(∆τR sin θ) ≈ 1
2
∆τR sin θ to

obtain

Θjk(∆τR)

∆2τ 2
R/4

⇒

2π
∫

dθ sin3 θJ0(ωτjk sin θ)︷ ︸︸ ︷
4π

∆τjk cos(∆τjk)−(1−∆2τ 2
jk) sin(∆τjk)

∆3τ 3
jk

,
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Figure 3.5: The protected singlet in two small SQUIDs dissipating collectively.
|ψ1〉 + |ψ2〉 + |ψ3〉 + |ψ4〉 cooling above the critical point. The singlet is an in-
variant subspace of both the collective interaction operator Jz = X1 + X2 and the
Hamiltonian H

(1)
S ; it is broken out of the network of allowed transitions. (a) |ψ4〉

flows into |ψ3〉 which flows into |ψ1〉. |ψ2〉 cannot give up |ψ1〉’s usual thermal-share
of its population; they do not approach their thermal (gray) levels. The collective
relaxation rate from |ψ3〉 into |ψ1〉 is double the independent rate. (b) The coherence
ρ̃12, between |ψ1〉 and the singlet |ψ2〉 = |01〉 − |10〉, barely decays; the only mech-
anism for that is the |ψ1〉 → |ψ3〉 transition which is suppressed by the cold bath.
Note also how ρ̃13 grows from the decay of ρ̃34. The subsequent decoherence rate for
ρ̃13 is double its independent dissipation rate. (8J/h = 1.0GHz, 2B/h = 1.5GHz,
kBT/h = 0.3GHz, R = 10nm, I = 0.1µA).
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which, to first order in ∆τjk, are identical to those of a single small SQUID

γ2

h̄2

π

2
J

(S)
j 6=k ⇒

γ2

h̄2

π

2
J

(S)
jj (∆)

and we may as well use the pFq equivalent rates

Again, the pFq equivalent-rates are the ones we use for j = k, and for close-

together SQUIDs satisfying ∆τjk � 1 we also use them for the j 6= k cross terms

(instead of zero, which we use for j 6= k whenever ∆τjk � 1).

This is the provenance of a collective coupling to the bath V = γ(
∑

j Xj)φ1

whose square includes all cross terms equally. In our case,
∑

j Xj =
∑

j σ
z
j ≡ Jz. For

the two-SQUID chain its matrix elements in the eigenbasis are

Jz =
√

2



0 0 1 0

0 0 0 0

1 0 0 1

0 0 1 0


and the network of selection-rules becomes |ψ1〉 ↔ |ψ3〉 ↔ |ψ4〉 while |ψ2〉 is a

protected subspace.

A collective coupling can have degenerate subspaces with which the system

Hamiltonian may (or may not) cooperate, giving a decoherence- and/or relaxation-

free subspace (or not) [12, 29, 79]. On the other hand, when we include all the cross

terms equally, the master equation has N times as many terms, for N SQUIDs, as in

the case of independent dissipation. This can scale the decoherence and relaxation

rates linearly with the number of subsystems [30, 31].
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3.8.3 The Markov Approximation

Instead of attempting the difficult ω integration, we instead now look at how

the time-averaging samples the allowed transition frequencies from the bath. The

sampling is manifested in the coefficients of diffusion, renormalization, anomalous

diffusion, and damping, which convolve a cos ∆τ or sin ∆τ with the νjk(τ) or µjk(τ)

kernels. But the only time-dependent terms in the integrands for the kernels are

cosωτ or sinωτ . Since these time-convolutions are relatively simple, in our calcula-

tion of the coefficients we switch the order of the integrals,
∫
dτ

∫
dω ⇒

∫
dω

∫
dτ .

For the diffusion and damping we find that the integrations
∫ t
0 dτ cosωτ cos ∆τ

or
∫ t
0 dτ sinωτ sin ∆τ are

1

2

[
sin(ω −∆)t

ω −∆
± sin(ω + ∆)t

ω + ∆

]
,

which behave, as t→∞, like Dirac delta functions: π
2

[δ(ω −∆)± δ(ω + ∆)]. This

is because they oscillate with ω at a frequency t everywhere except at ±∆, where

they spike to a height ∼ t and width ∼ 1/t. As long as the frequency of these

oscillations is much faster than any features of the spectral densities (i.e. t� τjk, τR),

of the cutoff (i.e. t� 1/Λ), and of the hyperbolic cotangent (i.e. t� h̄/kBT ) then

the only contribution to the ω integral comes from the spikes at ±∆. Subject to

these rough criteria,

t� τjk, τR t� 1/Λ t� h̄/kBT ,

the coefficients of diffusion and damping approach constant values which, thanks to
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the Dirac delta functions, are easy to identify:

D∆
jk ≡

π

2
Jjk(∆) coth(

h̄∆

2kBT
)e−|∆|/Λ = lim

t→∞
D∆

jk(t)

and

γ∆
jk ≡

π

2
Jjk(∆)e−|∆|/Λ = lim

t→∞
γ∆

jk(t).

For the renormalization and anomalous diffusion, the integrations
∫ t
0 dτ sinωτ cos ∆τ

or
∫ t
0 dτ cosωτ sin ∆τ are

sin2 ω+∆
2
t

ω + ∆
±

sin2 ω−∆
2
t

ω −∆

whose behavior for t→∞ is not so clear. However, for large t these terms oscillate

so fast with ω that they too average away the time dependence and we can at least

define constant values for the renormalization,

r∆
jk ≡ lim

t→∞

∫ ∞

0
dωJjk(ω)e−ω/Λ

[
sin2 ω+∆

2
t

ω + ∆
+

sin2 ω−∆
2
t

ω −∆

]
,

and anomalous diffusion,

A∆
jk ≡

∫ ∞

0
dωJjk(ω) coth(

h̄ω

2kBT
)e−ω/Λ

∫ t→∞

0
dτ cosωτ sin ∆τ,

which we use symbolically without actually ever evaluating them.

In principle, with time-dependent values for the coefficients we could (numeri-

cally) integrate the Born master equation 3.4 using the noises Ṽjk(t) and susceptibil-

ities Ũjk(t) obtained by multiplying the matrix elements of X̃k(t) by time-dependent

coefficients (D∆
jk(t) + iA∆

jk(t)) and (r∆
jk(t) + iγ∆

jk(t)) respectively. In this case the

integrated evolution is called the “exact-Born approximation” [80].
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Figure 3.6: Critical behavior of two large SQUIDs. |ψ1〉+|ψ2〉+|ψ3〉+|ψ4〉 cooling at
the critical point. The distant (e.g. 40µm) SQUIDs are closely-spaced compared to
the level crossing where ∆12 = 0 � 1/τjk; the |ψ1〉 ↔ |ψ2〉 transitions are blocked,
akin to the collective behavior of two small SQUIDs close together. (a) |ψ4〉 flows into
|ψ3〉 and |ψ2〉 = |01〉 − |10〉, whereas |ψ3〉 flows only into |ψ1〉, giving it an excess
population over |ψ2〉 which the chain cannot quickly resolve; the |ψ2〉 → |ψ4〉 →
|ψ3〉 → |ψ1〉 pathway takes an extraordinarily long time (not shown). (b) The
coherence ρ̃12 barely decays; transitions |ψ2〉 ↔ |ψ1〉 are blocked while transitions
from |ψ1〉 and |ψ2〉 are suppressed by the cold bath. Some of the decaying ρ̃34 is
absorbed by ρ̃13. (8J/h = 1.0GHz, 2B/h = 1.0GHz, kBT/h = 0.2GHz, R = 10µm,
I = 3µA).
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Instead, we will make the “Markov” approximation that just uses the constant,

t→∞, coefficients in the Born master equation. In this case the integrated evolu-

tion is called the “Born-Markov approximation.” With constant coefficients, in the

Schrödinger picture the noises and susceptibilities are also constant and therefore

the map L(ρ) = ρ+ dρ is independent of time and is not conditioned on what came

before, akin to the Markov chains of classical probability theory.

One could argue that, for a weak coupling to the bath, the integrated solutions,

to the exact-Born and Born-Markov equations, would not differ substantially in the

time that it takes the coefficients to approach their constant values. Specifically, if

the SQUIDs are not too far apart and not too large, and the cutoff is high enough,

and the bath is not too cold, then there is a finite time t after which the coefficients

are constants; a “sufficiently” weak coupling is one where we can neglect the earlier

time-dependence. Once the coefficients obtain their constant values, the exact-

Born and Born-Markov equations are the same, so the Born-Markov equation is

a good approximation to the exact-Born dynamics for a sufficiently weak coupling

to the bath. It should be kept in mind that even the exact-Born approximation

was just a plausible guess at the longer-time dynamics. Similarly the Born-Markov

approximation is just a guess, whose consequences we explore.

3.9 The Born-Markov Master Equation

Now we recast our Born master equation 3.4 in a form more similar to the

equation for the quantum Brownian motion of an oscillator. This brings out the
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four generators of the open-system dynamics, one for each type of coefficient. We

also make the Markov approximation by using the constant t→∞ coefficients.

As an alternative to calculating the noise and susceptibility in the energy

eigenbasis of HS, we can define amplitude operators X̃∆
k (t) and P̃∆

k (t) to be used in

the Fourier expansion of the interaction operators:

X̃k(t− τ) =
∑
∆≥0

(
X̃∆

k (t) cos(∆τ)− P̃∆
k (t) sin(∆τ)

)
.

In the eigenbasis of HS, the non-zero matrix elements of X̃∆
k are just those matrix

elements of X̃k with energy difference ±h̄∆; multiplying those same matrix elements

by ∓i gives P̃∆
k . (This sign convention is consistent with the matrix elements of a

harmonic oscillator’s position, 〈n| a†+a |n+ 1〉 =
√
n+ 1, and momentum, i 〈n| a†−

a |n+ 1〉 = −i
√
n+ 1.) X̃ 0

k consists primarily of the diagonal matrix elements of X̃k

but also includes matrix elements between degenerate states.

By using these amplitude operators, the time-averaging of X̃k(t
′), by the ker-

nels, gives basis-independent expressions for the noise,

Ṽjk(t) =
∑
∆≥0

(
D∆

jk(t)X̃∆
k (t)− A∆

jk(t)P̃∆
k (t)

)
,

and susceptibility,

Ũjk(t) =
∑
∆≥0

(
r∆
jk(t)X̃∆

k (t)− γ∆
jk(t)P̃∆

k (t)
)
.

We can now make the Markov approximation that uses the constant coefficients,

in place of the time-dependent ones, and substitute these noise- and susceptibilty-

operators into our Born master equation 3.4 to obtain our Born-Markov master
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Figure 3.7: Automatic quantum error correction [48] in three small SQUIDs dissi-
pating collectively. |ψ5〉+ |ψ6〉 cooling to |ψ2〉+ |ψ3〉. (a) The collective interaction
operator Jz = X1 +X2 +X3 breaks the network of allowed transitions into three iso-
lated pieces: |ψ5〉 ↔ |ψ2〉; |ψ6〉 ↔ |ψ3〉; and |ψ8〉 ↔ |ψ7〉 ↔ |ψ4〉 ↔ |ψ1〉. (b) The ρ̃56

coherence flows along with the populations into ρ̃23 because ∆25 = ∆36. Then ρ̃23

never decays; transitions back into |ψ5〉 and |ψ6〉 are suppressed by the cold bath and
are resonant (and therefore coherent) anyway. (6J/h = 1.0GHz, 2B/h = 1.5GHz,
kBT/h = 0.3GHz, R = 10nm, I = 0.1µA).

equation,

˙̃ρ =
γ2

h̄2

N∑
j,k=1

∑
∆≥0

(
i r∆

jk[X̃j, {X̃∆
k , ρ̃}]− i γ∆

jk[X̃j, {P̃∆
k , ρ̃}]−D∆

jk[X̃j, [X̃∆
k , ρ̃]] + A∆

jk[X̃j, [P̃∆
k , ρ̃]]

)
.

(3.5)

This is essentially a Fourier-series version of the Born master equation using Markov

(constant) coefficients. It is reassuring that, in the limit of only one contact point

(no sum over j, k) and only one energy splitting (no sum over ∆) it becomes

˙̃ρ ∼ i r[x̃, {x̃, ρ̃}]− i γ[x̃, {p̃, ρ̃}]−D[x̃, [x̃, ρ̃]] + A[x̃, [p̃, ρ̃]]

which is the well-known [76, 28] Born-Markov equation for the quantum Brownian

motion of an oscillator system (HS = h̄ωsa
†
sas) with a bilinear coupling (V ∼ xφ)

to an oscillator bath.

3.10 The Four Generators

The master equation has four generators, one for each of the coefficients. We

now show, for a weak coupling of our Heisenberg SQUID chain to the bath and
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with J and B set close-to or far-from any resonant pairs of allowed transitions,

that the renormalization and anomalous diffusion contribute effectively Hamiltonian

dynamics, which can be dropped from the master equation by “renormalizing” the

chain Hamiltonian, while the damping and diffusion work together to effectively

decohere and thermalize the system within each network of allowed transitions.

3.10.1 The Renormalization

The renormalization’s contribution to ˙̃ρ is

˙̃ρ
r≡ i

γ2

h̄2

∑
j,k

∑
∆

r∆
jk[X̃j, {X̃∆

k , ρ̃}] = i
γ2

h̄2

∑
j,k

[X̃j, {Ũ r
jk, ρ̃}],

with Ũ r
jk just that part of the susceptibility attributable to the coefficients of renor-

malization. Its matrix elements in the energy eigenbasis are 〈α| Ũ r
jk |β〉 = 〈α| X̃k |β〉 r

∆αβ

jk .

Expanding out the commutators gives

˙̃ρ
r
= i

γ2

h̄2

∑
j,k

(
X̃j Ũ r

jk ρ̃+ X̃j ρ̃ Ũ r
jk − Ũ r

jk ρ̃ X̃j − ρ̃ Ũ r
jk X̃j

)
.

Working now in the energy eigenbasis by inserting resolutions of the identity,

e.g. I =
∑

β |β〉 〈β|, the renormalization’s contribution to the rate of change of a

density matrix element ρ̃αδ ≡ 〈α| ρ̃ |δ〉 is

˙̃ρ
r

αδ = i
γ2

h̄2

∑
j,k

(
∑
βᾱ

X̃jαβX̃kβᾱr
∆βᾱ

jk ρ̃ᾱδ +
∑
βγ

X̃jαβX̃kγδr
∆γδ

jk ρ̃βγ

−
∑
βγ

X̃kαβX̃jγδr
∆αβ

jk ρ̃βγ −
∑
δ̄β

X̃kδ̄βX̃jβδr
∆δ̄β

jk ρ̃αδ̄).

Many terms in this sum are suppressed by selection-ruled resonance conditions. In

the second term, for example, most of the X̃jαβX̃kγδ ∼ e−i(∆αβ+∆γδ)t oscillate so
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Figure 3.8: Critical behavior of three large SQUIDs dissipating independently. |↑↑↓〉
cooling at the critical point. The distant SQUIDs are closely-spaced compared to
the level crossings where ∆12 = ∆13 = ∆23 = 0 and ∆45 = ∆46 = ∆56 = 0. (a)
The |ψ2〉 ↔ |ψ1〉 and |ψ3〉 ↔ |ψ1〉 transitions are cut out of the network while
upward transitions are suppressed by the cold bath; therefore |ψ2〉 and |ψ3〉 have
long-lived populations. (b) ρ̃23 is long-lived because the transitions out of its |ψ2〉
and |ψ3〉 supports are so rare. (6J/h = 1.0GHz, 2B/h = 1.0GHz, kBT/h = 0.1GHz,
R = 10µm, I = 3µA).

quickly, compared to the weak coupling between the chain and the bath, that they

average to zero unless there is a near-resonance ∆αβ ≈ ∆δγ. The second term is thus

effectively a sum over nearly-resonant pairs of allowed transitions from states |β〉

and |γ〉 into |α〉 and |δ〉 respectively. So is the third term, which cancels the second

term because the coefficient of renormalization is an even function of (j, k) and ∆:

r
∆αβ

kj = r
∆αβ

jk = r
∆δγ

jk = r
∆γδ

jk when ∆αβ = ∆δγ. This holds true for nearly- but not

exactly-resonant pairs if the coefficient r∆
jk is a slowly-enough varying function of

∆. To make sure we are close-to or far-from any resonant pairs we must check the

parameters J and B of the chain Hamiltonian:

∆αβ −∆δγ = (lβ − lα + lδ − lγ)J − (mβ −mα +mδ −mγ)B.

Meanwhile, the first and fourth terms are effectively sums over allowed tran-

sitions from states |ᾱ〉 near Eα (∆βᾱ ≈ ∆βα) and states
∣∣∣δ̄〉 near Eδ (∆βδ̄ ≈ ∆βδ)

into those states |β〉 that are accessible by transitions from |α〉 and |δ〉 respec-

tively. By using r
∆δ̄β

kj = r
∆δ̄β

jk = r
∆δβ

jk = r
∆βδ

jk we rearrange the fourth term into
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−∑
δ̄β ρ̃αδ̄X̃jδ̄βX̃kβδr

∆βδ

jk to arrive at

˙̃ρ
r

= i
γ2

h̄2

∑
j,k

[X̃jŨ r
jk, ρ̃] = − i

h̄
[R̃′′

S, ρ̃]

which is just an additional Hamiltonian dynamics in the interaction picture with an

effectively Hermitian

R̃′′
S ≡ −(γ2/h̄)

∑
j,k

X̃jŨ r
jk = −

∑
j,k

X̃j

∑
∆

γ2

h̄
r∆
jkX̃∆

k .

3.10.2 The Anomalous Diffusion

The anomalous diffusion’s contribution to ˙̃ρ is

˙̃ρ
A≡ γ2

h̄2

∑
j,k

∑
∆

A∆
jk[X̃j, [P̃∆

k , ρ̃]] = −γ
2

h̄2

∑
j,k

[X̃j, [ṼA
jk, ρ̃]],

for which we use 〈α| ṼA
jk |β〉 = 〈α| X̃k |β〉 iA

∆αβ

jk , i.e. the matrix elements of that part

of the noise attributable to the anomalous diffusion. The expansion of ˙̃ρ
A

in the

energy eigenbasis is thus

˙̃ρ
A

αδ = −iγ
2

h̄2

∑
j,k

(
∑
βᾱ

X̃jαβX̃kβᾱA
∆βᾱ

jk ρ̃ᾱδ −
∑
βγ

X̃jαβX̃kγδA
∆γδ

jk ρ̃βγ

−
∑
βγ

X̃kαβX̃jγδA
∆αβ

jk ρ̃βγ +
∑
δ̄β

X̃kδ̄βX̃jβδA
∆δ̄β

jk ρ̃αδ̄).

The selection-ruled resonance conditions are the same as before, but the coefficient

of anomalous diffusion, while still an even function of (j, k), is an odd function of ∆

and we now use A
∆αβ

kj = A
∆αβ

jk = A
∆δγ

jk = −A∆γδ

jk to cancel the second term with the

third. Similarly, we use A
∆δ̄β

kj = A
∆δ̄β

jk = A
∆δβ

jk = −A∆βδ

jk to arrange the fourth term

into −∑
δ̄β ρ̃αδ̄X̃jδ̄βX̃kβδA

∆βδ

jk and arrive at

˙̃ρ
A

= −γ
2

h̄2

∑
j,k

[X̃jṼA
jk, ρ̃] = − i

h̄
[Ã′′

S, ρ̃]
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which is again just an additional Hamiltonian dynamics in the interaction picture

with an effectively Hermitian

Ã′′
S ≡ (γ2/ih̄)

∑
j,k

X̃jṼA
jk =

∑
j,k

X̃j

∑
∆

γ2

h̄
A∆

jkiP̃∆
k .

It is temperature dependent because (recall)

A∆
jk =

∫ ∞

0
dωJjk(ω) coth(

h̄ω

2kBT
)e−ω/Λ

∫ t→∞

0
dτ cosωτ sin ∆τ.

3.10.3 Renormalizing the Chain

We now show that, to second order in the coupling, the effective Hamiltonian

dynamics of the combined renormalization and anomalous diffusion can be removed

from the master equation by adding them into a renormalized chain Hamiltonian

H
(1)
S = HS +H ′′

S in which

H ′′
S ≡ R′′

S + A′′
S =

∑
j,k

XjWjk,

and 〈α|Wjk |β〉 ≡ 〈α| Xk |β〉 (γ2

h̄
A

∆αβ

jk − γ2

h̄
r
∆αβ

jk ). We can think of this as a shift

to the chain Hamiltonian. If H ′′
S commutes with HS then the shift just alters the

chain’s energies, whereas if they don’t commute then the chain’s eigenstates are

also perturbed by the bath (in the sense that shifted chain eigenstates are needed

to describe the oscillatory portion of the chain’s open-system dynamics).

When we include the shift in a new Hamiltonian for the chain we must exclude

it from the coupling, V (1) ≡ V − H ′′
S ⊗ IB, so that the total Hamiltonian H =

H
(1)
S +HB + V (1) remains the same as before. The renormalized chain Hamiltonian

H
(1)
S redefines the interaction picture. Specifically, we use H1 ≡ H

(1)
S + HB to
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define the new interaction picture coupling Ṽ (1)(t) ≡ eiH1t/h̄(V −H ′′
S)e−iH1t/h̄, where

Õ(t) = eiH1t/h̄Oe−iH1t/h̄ now denotes an operator O in this new interaction picture.

Then we proceed exactly as before, and discard the third and fourth order terms

(i.e. Ṽ H̃ ′′
S, H̃ ′′

SṼ , and H̃ ′′2
S ) that arise from the nested commutators, to arrive again

at our Born-Markov master equation, but this time in the interaction picture of

H
(1)
S with its concomitant new energies, transition frequencies, and eigenstates. The

master equation is augmented this time by the non-vanishing single commutator,

− i

h̄
TrB[Ṽ (1)(t), w̃(0)] = − i

h̄
[−H̃ ′′

S, ρ(0)] 6= 0.

This appearance of −H̃ ′′
S = −R̃′′

S−Ã′′
S in the new interaction picture serves to cancel,

to second order, the effective Hamiltonian dynamics H̃
′′(1)
S = R̃

′′(1)
S + Ã

′′(1)
S that

results from the renormalization and anomalous diffusion in this second iteration of

the derivation. Only the damping and diffusion remain in the Born-Markov master

equation.

This renormalized Hamiltonian is the one we observe when we study a system

in its environment. In quantum process tomography, for example, one prepares a

variety of initial states and then studies, at a variety of times, their evolving ex-

pectation values for a complete set of incompatible observables. In this way one

can reconstruct the evolution of the initial states. Some have oscillating expecta-

tion values (perhaps with a decaying envelope) while others do not (although they

may still relax and thermalize). The latter may be interpreted as the stationary

eigenstates, while the oscillation frequencies give the energies. These eigenstates

and energies are those of the shifted Hamiltonian, since the system was observed
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during its interaction with its environment.

We would like now to concentrate on the damping and diffusion. Later on,

to make concrete sense of these two generators, our examples use the familiar and

useful energies and eigenstates of the Heisenberg SQUID Chain. In other words, we

assume that the renormalized Hamiltonian is

H
(1)
S =

N∑
j=1

(J~σj · ~σj+1 −Bσx
j ),

as though the “bare” SQUIDs were engineered with a slightly different original

Hamiltonian HS, including a “counter term” that happens to cancel the renormal-

ization and anomalous diffusion caused by their crystal environment. This engi-

neering may actually be quite difficult, relying perhaps on many trials and errors.

In any case, our general discussion of the damping and diffusion is in terms of the

renormalized energies and the matrix elements in the renormalized eigenbasis.

3.10.4 The Damping and Diffusion

The effect of the remaining diffusion and damping is

˙̃ρ = −γ
2

h̄2

N∑
j,k=1

(
[X̃j, [ṼD

jk, ρ̃]]− i[X̃j, {Ũγ
jk, ρ̃}]

)

with 〈α| ṼD
jk |β〉 = 〈α| X̃k |β〉D

∆αβ

jk and with 〈α| Ũγ
jk |β〉 = 〈α| X̃k |β〉 iγ

∆αβ

jk , again just

those parts of the noise and susceptibility attributable to the diffusion and damping.

We can combine the two coefficients into a rate

Γαβ
jk ≡

γ2

h̄2 (γ
∆αβ

jk +D
∆αβ

jk ) =
γ2

h̄2

π

2
Jjk(∆)[1 + coth(

h̄∆

2kBT
)]
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(apart from a factor e−|∆|/Λ ≈ 1 when Λ � ∆). Then in terms of the coherences

ρ̃αδ ≡ 〈α| ρ̃ |δ〉 and populations ρ̃αα the expansion of ˙̃ρ in the eigenbasis of H
(1)
S is a

matrix element equation for

˙̃ραδ = −
∑
j,k

(
∑
βᾱ

X̃jαβX̃kβᾱΓβᾱ
jk ρ̃ᾱδ −

∑
βγ

X̃jαβX̃kγδΓ
δγ
jk ρ̃βγ

−
∑
βγ

X̃kαβX̃jγδΓ
αβ
jk ρ̃βγ +

∑
δ̄β

X̃kδ̄βX̃jβδΓ
βδ̄
jk ρ̃αδ̄),

where we have used the evenness of D∆
jk and oddness of γ∆

jk with respect to ∆ to

combine the two generators into this one expression.

With the rate Γαβ
jk neither an even nor odd function of ∆αβ there are no more

index gymnastics with which to cancel terms, although the selection-ruled resonance

conditions are the same as before and eliminate many of the X̃jαβX̃kγδ. In the first

and fourth terms, the remaining transitions from states near Eα (∆βᾱ ≈ ∆βα) and

Eδ (∆βδ̄ ≈ ∆βδ) tend to decrease ρ̃αδ in proportion to ρ̃αδ as well as in proportion

to nearby (in energy) matrix elements ρ̃ᾱδ (in the same column) and ρ̃αδ̄ (in the

same row). In the second and third terms, the remaining nearly-resonant pairs of

transitions from |β〉 and |γ〉 into |α〉 and |δ〉 (∆αβ ≈ ∆δγ) tend to increase ρ̃αδ in

proportion to those matrix elements ρ̃βγ within, and/or nearly within, the diagonal

that includes ρ̃αδ (when the density matrix is stretched to be linearly spaced with

increasing energy). When δ = α this diagonal is the central diagonal, sometimes

called the diagonal.

Two general features of these coupled first order differential equations are

decoherence and relaxation. Decoherence is caused by transitions from |α〉 and |δ〉,

∂ ˙̃ραδ

∂ρ̃αδ

= −
∑
j,k

(
∑
β

X̃jαβX̃kβαΓβα
jk −

0︷ ︸︸ ︷
X̃jααX̃kδδΓ

δδ
jk
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Figure 3.9: A cartoon of the matrix element equation for damping and diffusion.
When the density matrix elements are arranged by increasing energy: ˙̃ραδ decreases
in proportion to nearby matrix elements in the same row, ρ̃αδ̄, and column ρ̃ᾱδ; and
it increases in proportion to matrix elements ρ̃βγ within, and/or nearly within, the
diagonal that includes ρ̃αδ.

−X̃kααX̃jδδΓ
αα
jk︸ ︷︷ ︸

0

+
∑
β

X̃kδβX̃jβδΓ
βδ
jk)≡−Γ̄αδ

(here the second and third terms vanished because of our specific selection rules),

and is exacerbated by transitions from nearby states. Setting δ = α we see the

relaxation dynamics, in that the population ρ̃αα is flowing to and from the ρ̃ββ at the

selection-ruled transition rates 2
∑

jk XjαβXkβαΓβα
jk ρ̃αα and 2

∑
jk XjαβXkβαΓαβ

jk ρ̃ββ. A

stationary (and thermal) balance is eventually reached at ρ̃ββ/ρ̃αα = Γβα
jk /Γ

αβ
jk =

e−h̄∆αβ/kBT (at which point the populations’ effect on the off-diagonal coherences

˙̃ραδ,

−
∑
j,k,β

X̃jαβX̃kβδ(Γβδ
jk ρ̃δδ︸ ︷︷ ︸
ᾱ=δ

−Γδβ
jk ρ̃ββ︸ ︷︷ ︸
γ=β

−Γαβ
jk ρ̃ββ︸ ︷︷ ︸
γ=β

+ Γβα
jk ρ̃αα︸ ︷︷ ︸
δ̄=α

),

also vanishes). The decay of the coherences allows the relaxation to proceed to

a thermal equilibrium ρT ≡ e−H
(1)
S /kBT/ZS provided the network of selection-ruled

transitions does not isolate any subspace(s). For isolated networks each subspace

will obtain its own a stationary thermal balance of populations constrained by the
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total available initial probability to be in that subspace.

Remarkably, the decay of ρ̃αδ is offset, as it is on the central diagonal, by the

nearly-resonant pairs of transitions into |α〉 and |δ〉 from any matrix elements ρ̃βγ

within, and/or nearly within, the off-center diagonal that includes ρ̃αδ. Indeed, a

population-like coherence flow is established between ρ̃αδ and ρ̃βγ that is primarily

into the lower energy subspace when the temperature is low; quantum oscillations

which are decaying in one subspace can in principle emerge in a lower energy sub-

space.

3.11 Numerical Simulations

We simulate the effects of the matrix element equation in a variety of scenarios

for two- and three-SQUID chains. In all cases we choose J and B to set the chain

close-to or far-from resonant pairs of transitions (we can run at the critical point be-

cause of its exactly-resonant pairs). That way we can and do discard the oscillating

coefficients from the equation, since their effect would average to zero anyway. The

matrix element equation becomes a coupled first order differential equation with

constant coefficients which we numerically integrate [81].

We consider large SQUIDs, R = 10µm with I = 3µA, and small SQUIDs,

R = 10nm with I = 0.1µA. In both cases we imagine them to be spaced 4R apart

in a solid crystal with mass density ρ = 5g/cm3 and sound velocity 5km/s. We

set the Heisenberg splitting at 1.0GHz = 8J/h for a two-SQUID chain and 1.0GHz

= 6J/h for a three-SQUID chain. We then choose SQUIDs with frequencies of
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2B/h = 0.5, 1.0, or 1.5 GHz (below, at, or above the chain’s critical point). We

set the temperature to be 1/5 the SQUID frequencies, i.e. kBT/h = 0.1, 0.2, or 0.3

GHz.

Although larger SQUIDs are possible, these parameters keep the photon-

induced decoherence rates [75], in the absence of shielding, well below our phonon-

induced rates. But still these SQUIDs’ 4R separation is large enough to discard the

j 6= k cross terms. At the critical point, where ∆ = 0 � 1/τjk, the cross term rates

Γ∆=0
jk are identical to the j = k rates. They also vanish, because of the super-ohmic

spectral densities which decrease, as ∆ → 0 faster than coth(h̄∆/2kBT ) → ∞.

On the other hand, the small SQUIDs’ 4R separation is small enough to achieve a

collective coupling to the bath for all ∆.

In either case the matrix elements of the interaction operators are used to

calculate all the constant coefficients in the matrix element equation and we then

proceed with the numerical simulations for any initial state ρ(0).

3.12 Discussion

The relaxation and decoherence will thermalize the SQUIDs when the network

of selection-rules is complete. For example, for two large SQUIDs dissipating inde-

pendently, the matrix elements of the interaction operators show that the network

of selection-rules is |ψ1〉 ↔ |ψ2〉, |ψ1〉 ↔ |ψ3〉, |ψ2〉 ↔ |ψ4〉, and |ψ3〉 ↔ |ψ4〉. There

is a reasonable pathway from any eigenstate to any other and these examples lead to

thermalization. However, in the case of small SQUIDs close together there is a col-
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lective coupling Jz and the network (for two SQUIDs) becomes |ψ1〉 ↔ |ψ3〉 ↔ |ψ4〉

while |ψ2〉 is a protected subspace. We attempt to summarize with a schematic:

4 4 4

↗↙ ↘↖ ↗↙ ↗↙ ↘↖

3 ind 2 3 col 2 3 cri 2

↘↖ ↗↙ ↘↖ ↘↖

1 1 1

in which the first and second networks are those of independent and collective dis-

sipation. The third network is at the critical point ∆12 = 0 for which the network

is |ψ1〉 ↔ |ψ3〉 ↔ |ψ4〉 ↔ |ψ2〉. Being at the critical point severs the |ψ1〉 ↔ |ψ2〉

link, as was done in the collective case, for ∆12τjk = 0 � 1, but not the |ψ2〉 ↔ |ψ4〉

link for which ∆14τjk � 1. The only allowed transitions out of |ψ1〉 and |ψ2〉 are

suppressed by the cold bath which is loath to supply the necessary energy. This

helps to protect the population of |ψ2〉 and the coherence ρ̃12.

3.13 Conclusion

A chain of a few coupled SQUIDs exchanging their angular momenta with

a phonon bath can be studied, in the Born-Markov approximation, with master

equation techniques from the quantum Brownian motion model. The renormaliza-

tion and temperature-dependent anomalous diffusion can be used to renormalize the

Hamiltonian for the chain. In the new eigenbasis the damping and diffusion give

a matrix element equation showing decoherence, relaxation, and the possibility for
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decaying quantum oscillations to emerge in a lower energy subspace. The relaxation

adjusts the populations of the eigenstates and undermines their support for any

superposition (coherence) between them, leading to decoherence.

The cascade of populations can occupy entangled states of intermediate energy,

resulting in a surge of the entanglement of formation that indicates the number

of singlets needed to form, from local operations and classical communication, an

ensemble of SQUID pairs ρ(t) [82]. The entanglement is induced even though the

SQUIDs are dissipating independently.

The level spacings in the Heisenberg SQUID chain include pairs of resonant

transitions which are necessary for coherent oscillations to decay into a lower energy

subspace where they can decohere more slowly. In this phenomenon, a superposi-

tion of two eigenstates relaxes coherently into a superposition of two lower-energy

eigenstates with the same energy difference as the upper two.

Small SQUIDs close together exhibit a collective coupling to the bath which

can give a protected subspace and enhanced or suppressed transition and deco-

herence rates. In effect, the network of selection-ruled transitions is broken into

isolated pieces. When the level spacings cooperate to allow coherence flow in these

sufficiently isolated pieces, decaying quantum information can reappear and be sus-

tained in a lower energy subspace; this is the idea behind “automatic quantum error

correction” [48].

Another feature of the Heisenberg SQUID chain is the critical point level

crossings where an allowed transition vanishes along with its frequency. The network

of selection-rules in effect acquires some features of the collective behavior as ∆τjk →
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0 � 1; even large SQUIDs spaced well apart, when tuned to the critical point, can

have extended coherence times.
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Chapter 4

Damping and Diffusion of A Heisenberg Few-Spin Chain in a

Phonon Bath

4.1 Abstract

We apply the chain-Boson model of Chapter 3 to the case of a few spins

whose exchange coupling is strained by quantized lattice distortions. Here we use

the generators of renormalization and anomalous diffusion to renormalize the chain,

although our emphasis is still on the damping and diffusion which together cause

relaxation and decoherence. The exchange-strain operators sum to zero, so a collec-

tive coupling vanishes. We consider a strong exchange coupling between the spins

so that the bath wavelengths that interact with the chain are much shorter than

the inter-spin distance and the chain behaves as if it is dissipating into indepen-

dent baths at each site. But the introduction of next nearest-neighbor exchange, or

“frustration,” presents a critical point energy level crossing where even distant spins

obtain the collective coupling which protects states from decay.

4.2 Introduction

A pair of magnetic ions in a crystal experience an exchange coupling which

arises from Coulomb interaction and the Pauli exclusion principle. The anti-symmetric
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spin configuration |↑↓〉 − |↓↑〉 requires a symmetric charge configuration, and vice-

versa. The charge configurations have distinct “overlap integrals” and there is a con-

comitant energy difference between the spin configurations. The coupling thereby

causes coherent quantum oscillations between, for example, |↑↓〉 and |↓↑〉.

Several spins can be uniformly spaced in a line with spin-spin couplings to

form a spin-chain. The coupling between nearest-neighbor spins can be “frustrated”

by an exchange-like coupling between next-nearest-neighbors. If the frustration

increases beyond a critical point then it, instead of the nearest-neighbor exchange,

will determine the ground state. For four spins with periodic boundary conditions,

there is a complete dimerization of the ground state, in which next-nearest-neighbor

spins pair up in singlets:

|↑↑↓↓〉 − |↑↓↓↑〉 − |↓↑↑↓〉+ |↓↓↑↑〉 = (|↑1↓3〉 − |↓1↑3〉)(|↑2↓4〉 − |↓2↑4〉).

In this paper we consider some open-system effects of the spin-chain’s coupling

to phonons. When the spins are magnetic ions in a crystal lattice the overlap integral

will diminish with the distance between them [83]. The nearest-neighbor exchange

coupling is strained by the distortion of the lattice and therefore the evolution of the

spin-chain depends on the lattice configuration, and vice versa. Exchange-strained

spins have a long history in Spin-Peierls phase transitions [83] and are relevant to

the decoherence of spin qubits in quantum dots [84].

Our system is loosely modeled on the inorganic spin chain CuGeO3. We as-

sume our magnetic ions are 0.3 nm apart, and their nearest neighbor exchange is

strained by 7.166 meV/nm; a 10% change in the spins’ separation would change the
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Figure 4.1: A Heisenberg four-spin chain at the critical point cooling from√
2 |ψ8〉+ |ψ9〉+ |ψ10〉. At the critical point there is an energy level crossing where

∆ → 0 and the bath wavelengths which interact with the chain are longer than the
inter-spin spacings. This gives a collective coupling to the bath, which vanishes for
exchange-strained spins; the open-system dynamics are dramatically different from
the separate-baths approximation normally used for distant qubits. E8 and E9,10

are not degenerate; the state is evolving in the Schrödinger picture. (J0 = 103.4
meV, F0 = J0/2, γ′ = 5.238 × 10−7 meV ps, h̄Λ = 6.582 × 105 meV, kBT = 41.36
meV).

exchange strength by 0.22 meV. We choose a nearest neighbor exchange of 103.4

meV, much stronger than CuGeO3’s approximately 7 − 11 meV [85, 86]. In this

way we avoid the complications of intermediate bath wavelengths interacting with

the chain; our point that there is an advantage to being at the critical point would

be true in either case. We run our simulations at kBT = 41.36 meV, which is cold

compared to the strong exchange coupling.

As in chapter 3, we work from the total HamiltonianH = HS+HB+V , describ-

ing the spins, the bath, and their coupling, and apply master equation techniques

from the quantum Brownian motion model [76, 28], in the Born-Markov approxima-

tion. In this chapter the inter-qubit coupling is strained by the phonon heat bath (as

opposed to the environment’s perturbation of individual-qubit dynamics in chapter
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3). The renormalization and anomalous diffusion are used to renormalize the chain,

introducing and/or modifying the frustration, as well as introducing other less sig-

nificant temperature dependent terms. Again we use the damping and diffusion

together to develop a matrix element equation for the populations and coherences,

and it gives the relaxation and decoherence rates. But in the case of exchange-

strained spins there are isolated networks of exchange-strain selection rules so that,

rather than complete thermalization, a relative thermalization occurs in each sub-

space. The collective exchange-strain vanishes. This is relevant to the critical point

open-system dynamics, for which even distant spins acquire the collective behavior

and are protected from decay.

4.3 The Heisenberg Spin Chain

The bath-free evolution of our Heisenberg chain of N spins is described by its

system Hamiltonian,

HS =
N∑

j=1

(J0 ~σj · ~σj+1 + F0 ~σj−1 · ~σj+1).

We will consider cases with and without the bath-free frustration F0. In anticipation

of the renormalized energies and eigenstates we begin by discussing

H
(1)
S =

N∑
j=1

(J ~σj ·~σj+1 +F ~σj−1 ·~σj+1 +S ~σj−1 ·~σj ~σj+1 ·~σj+2−S ~σj−1 ·~σj+1 ~σj ·~σj+2),

in which we use a renormalized exchange J and frustration F as well as a third

term S which will also arise from the interaction with the bath. Again we assume

periodic boundary conditions.
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For four spins the J , F , and S sums commute and their respective quantum

numbers l, f , and s determine the energy spectrum {lJ + fF + sS} (up to some

remaining degeneracies). These terms commute also with the magnetic sum Jz =

∑
j σ

z
j so that each eigenstate is a linear combination of states with the same number

m ≡ N↑ − N↓ of |↑〉 vs. |↓〉 spins and is typically entangled, with the exception of

the extremal m states |↑↑ . . .〉 and |↓↓ . . .〉. Increasing F relative to fixed J causes

energy-level crossings. At a critical value, Fc, the ground state changes.

We use the four-spin chain for our numerical simulations. The m = ±4 eigen-

states are

|ψ1〉 = |↑↑↑↑〉 and |ψ16〉 = |↓↓↓↓〉 .

In the m = 2 subspace we use

|ψ2〉 ≡ |↑↑↑↓〉 − |↑↑↓↑〉+ |↑↓↑↑〉 − |↓↑↑↑〉

|ψ3,4〉 ≡ |↑↑↑↓〉 ∓ |↑↑↓↑〉 − |↑↓↑↑〉 ± |↓↑↑↑〉

|ψ5〉 ≡ |↑↑↑↓〉+ |↑↑↓↑〉+ |↑↓↑↑〉+ |↓↑↑↑〉 .

The m = −2 states |ψ12〉 thru |ψ15〉, which have the same energies, can be obtained

by flipping every spin, ↑↔↓. In the Jz = 0 subspace, with |ψ±〉 ≡ |↑↓↑↓〉 ± |↓↑↓↑〉,

we use

|ψ6〉 ≡ |↑↑↓↓〉+ |↑↓↓↑〉+ |↓↑↑↓〉+ |↓↓↑↑〉 − 2 |ψ+〉

|ψ7〉 ≡ |ψ−〉

|ψ8〉 ≡ |↑↑↓↓〉 − |↑↓↓↑〉 − |↓↑↑↓〉+ |↓↓↑↑〉

|ψ9〉 ≡ |↑↓↓↑〉 − |↓↑↑↓〉

|ψ10〉 ≡ |↑↑↓↓〉 − |↓↓↑↑〉

|ψ11〉 ≡ |↑↑↓↓〉+ |↑↓↓↑〉+ |↓↑↑↓〉+ |↓↓↑↑〉+ |ψ+〉 .
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Figure 4.2: Relaxing from a nearly-degenerate subspace into a mix of distinct ener-
gies (E9,10 and E7).

√
2 |ψ8〉+|ψ9〉+|ψ10〉 cooling below the critical point. (J0 = 103.4

meV, F0 = 0).

Their various quantum numbers and energies are

m α⇒ |ψα〉 l f s Eα

±4 1, 16 4 4 0 4J + 4F

2, 12 −4 4 −16 −4J + 4F − 16S

±2 3, 4, 13, 14 0 −4 8 −4F + 8S

5, 15 4 4 0 4J + 4F

6 −8 4 24 −8J + 4F + 24S

7 −4 4 −16 −4J + 4F − 16S

0 8 0 −12 −24 −12F − 24S

9, 10 0 −4 8 −4F + 8S

11 4 4 0 4J + 4F

.

The critical point level crossing between |ψ6〉 and |ψ8〉 occurs at Fc = J/2 −

3S ≈ J/2 assuming S is small. When J dominates the Hamiltonian, |ψ6〉 is the

ground state whereas when F dominates, the ground state is the completely dimer-

ized |ψ8〉.

Keep in mind, however, that it is HS, with the same eigenstates but different

energies , i.e. with J → J0, F → F0, and S = 0, that we use to describe the
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chain’s free evolution as we develop the master equation. From it we will derive

the renormalized H
(1)
S with the frustration F and other term S induced by the

interaction with the bath.

4.4 The Harmonic Phonon Bath

The harmonic crystal Hamiltonian is very similar to what we used in the

SQUID chain example. But for frequencies below a cutoff frequency Λ we assume lin-

ear and isotropic dispersions, ωs(~k) = c |~k| for polarizations ês(~k) =
{
k̂⊥1, k̂⊥2, k̂‖

}
.

(Introducing distinct transverse and longitudinal sound speeds would just result in

a complicated geometric factor in the spectral densities.) The displacement at site

~xj is

~u(~xj)=
1√
V

∑
~ks

ês(~k)
√
h̄√

2ρωs(~k)

(
a~kse

i~k·~xj + a†~ks
e−i~k·~xj

)

with V and ρ the volume and mass density of the crystal and the ~xj = d(j − 1)x̂

are the spins’ equilibrium positions spaced a distance d apart along the x-axis.

4.5 The Chain-Bath Coupling

The overlap integral diminishes with the distance between the spins and we

must therefore alter the exchange coupling J0 to account for the displacements of

the nearest-neighbor spins from their equilibrium positions. The distance between

adjacent spins grows by ux
j+1 − ux

j , to first order in the displacements, where ux
j is

the displacement of the jth spin in the x̂ direction (along the chain). We keep the
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equilibrium J0 in the chain Hamiltonian HS and add the coupling

V = J ′
N∑

j=1

~σj · ~σj+1(u
x
j+1 − ux

j )

with J ′ the sensitivity of the exchange energy to a change in the adjacent spins’

separation. We assume that the longer-range frustration is less sensitive to strain

and neglect it altogether. This is especially valid in the absence of any bath-free

frustration (F0 = 0), but we also consider F0 ≈ J0/2 and F0 ≈ J0 for which our

results are an approximation only to those cases where the frustration strain is much

less than the exchange strain, F ′ � J ′.

We can rewrite the exchange-strain coupling as

V = J ′
N∑

j=1

(~σj−1 · ~σj − ~σj · ~σj+1)︸ ︷︷ ︸
Xj

ux
j = J ′

N∑
j=1

Xju
x
j (4.1)

to emphasize the bi-linear form, as we did in Chapter 3. The chain operators

Xj ≡ ~σj−1 · ~σj − ~σj · ~σj+1 interact with the bath operators ux
j .

Note the selection rules: 〈l′m′| Xj |lm〉 ∼ δm′,m. The “interaction operator”

Xj does not drive transitions between distinct m,m′. This is because the ~σj · ~σj±1

commute with Jz and, since we order our eigenstates with decreasing m, the Xj

are block-diagonal in the energy eigenbasis of HS. On the other hand there can be

transitions between distinct l, l′.

For example, in the m = ±2 subspaces the interaction operators for a four
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spin chain are

X1,2 =



0 ∓2 −2 0

∓2 ±2 0 0

−2 0 ∓2 0

0 0 0 0


; X3,4 =



0 ±2 2 0

±2 ±2 0 0

2 0 ∓2 0

0 0 0 0


.

The Xj vanish in the m = ±4 (one-dimensional) subspaces, while in the Jz = 0

subspace they are

X1,2 =



0 0 ∓2
√

3 0 0 0

0 0 0 ±2 −2 0

∓2
√

3 0 0 0 0 0

0 ±2 0 ±2 0 0

0 −2 0 0 ∓2 0

0 0 0 0 0 0


and

X3,4 =



0 0 ∓2
√

3 0 0 0

0 0 0 ∓2 2 0

∓2
√

3 0 0 0 0 0

0 ∓2 0 ±2 0 0

0 2 0 0 ∓2 0

0 0 0 0 0 0


satisfying X1 + X2 + X3 + X4 = 0. These interaction operators present separate

“networks” of selection-ruled transitions: within the m = 2 subspace,

{|ψ2〉 ↔ |ψ3〉 , |ψ2〉 ↔ |ψ4〉},
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and this is isolated from an identical |ψα+10〉 network in the m = −2 subspace, both

of which are isolated from the Jz = 0 subspace in which

|ψ6〉 ↔ |ψ8〉

is isolated from

{|ψ7〉 ↔ |ψ9〉 , |ψ7〉 ↔ |ψ10〉}.

Given these selection rules, the only non-vanishing transition energies are h̄∆1 =

4J0−8F0 and h̄∆2 = 8J0−16F0; With more general values for J , F , and S (i.e. after

we renormalize), they would be h̄∆1 ≡ 4J − 8F + 24S and h̄∆2 ≡ 8J − 16F − 48S.

It is always true that, for these exchange-strained interaction operators, a

collective coupling vanishes:
∑

j Xj = 0. In this case the exchange-strain does not

disturb the chain at all. A collective coupling arises when the spins are very close

together compared to the bath wavelengths that interact with the chain; the adjacent

spins are pushed to and fro in tandem by the long-wavelength passing phonons and

their separation does not change appreciably.

4.6 The Formalism

The formalism is very much the same as in the SQUID chain, only we are

using ux
j in place of φj and the interaction operators Xj are also different from those

of the SQUID chain.
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Figure 4.3: Decoherence and Relaxation in a Heisenberg four-Spin Chain. |ψ6〉+|ψ8〉
cooling below the critical point. (J0 = 103.4 meV, F0 = 0).

4.7 The Coefficients

4.7.1 The Bath Correlator

To evaluate the correlator we (again) perform the trace in the bath’s energy

eigenbasis by summing over the diagonal matrix elements:

TrB[ũx
j (t) ũ

x
j (t

′) ρB] =
1

V

∑
n

∑
~ks,~k′s′

ex
s(
~k)ex

s′(
~k′)h̄

2ρ
√
ωs(~k)ωs′(~k′)

×〈n|
(
ã~ks(t)e

i~k·~xj + ã†~ks
(t)e−i~k·~xj

)(
ã~k′s′(t

′)ei~k′·~xk + ã†~k′s′(t
′)e−i~k′·~xk

)e−En/kBT

ZB

|n〉

=
1

V

∑
~k︷ ︸︸ ︷

(V/8π3)
∫ ∞

0

dω ω2

c3

∫ π

0
dθ sin θ

∫ 2π

0
dφ

1︷ ︸︸ ︷∑
s

ex
s(
~k)2 h̄

2ρω

×
[
coth(

h̄ω

2kBT
) cos(ωτ)− i sin(ωτ)

]
︸ ︷︷ ︸

(Nω+1)e−iωτ+Nωeiωτ

cos(ωτjk sin θ cosφ)︸ ︷︷ ︸
<[e±i~k·(~xj−~xk ]

.

The double sum
∑

~ks~k′s′ collapses to a single sum
∑

~ks (which we convert to a ~k-space

integral, in spherical coordinates, of the sum over s) because the only non-zero cross-

94



2 4 6 8 10 12 14
t �ns�0.02

0.04

0.06

0.08

0.1

0.12

Relaxation and Decoherence

�Ψ6 �
�Ψ7 �

�Ψ11 ��Ρ� 67 �
�Ρ� 611 �

�Ρ� 711 �

Figure 4.4: Extended coherence and relaxation times for low-lying states; times are
in nanoseconds, not picoseconds. |↑→↑→〉 cooling below the critical point. Only
the Jz = 0 subspace is shown. It is isolated from the others. Also, |ψ6〉, |ψ7〉, and
|ψ11〉 lie at the bottom of their mutually-isolated networks of allowed transitions.
Upward transitions are suppressed by the cold bath. (J0 = 103.4 meV, F0 = 0).

terms ∼ δ~k~k′δss′ . They are

〈n|ã~kse
i~k·~xj ã†~k′s′e

−i~k′·~xk |n〉=(n~ks + 1)δ~k~k′δss′e
−iωτei~k·~xjk

and

〈n|ã†~ks
e−i~k·~xj ã~k′s′e

i~k′·~xk |n〉=n~ksδ~k~k′δss′e
iωτe−i~k·~xjk , .

The isotropy of the linear dispersions simplifies the sum of the squares of the x-

components of the (orthonormal) polarization vectors:
∑

s e
x
s(
~k)2 = 1.

To complete our analysis of the bath correlator we must integrate over the ~k-

space. It is relatively easy to perform the φ integration,
∫ 2π
0 dφ cos(ωτjk sin θ cosφ) =

2πJ0(ωτjk sin θ), and the θ integration

Θjk ≡ 2π
∫ π

0
dθ sin θ J0(ωτjk sin θ) = 4π

sin(ωτjk)

ωτjk
,
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leaving only the integration over bath frequencies ω:

TrB[ũx
j (t) ũ

x
j (t

′) ρB] =
∫ ∞

0
dω Jjk(ω) coth(

h̄ω

2kBT
) cos(ωτ)︸ ︷︷ ︸

νjk(τ)

−i
∫ ∞

0
dω Jjk(ω) sin(ωτ)︸ ︷︷ ︸

µjk(τ)

,

characterized by the spectral densities

Jjk(ω) =
h̄

4π2ρc3︸ ︷︷ ︸
γ

ω
sin(ωτjk)

ωτjk

Λ2

Λ2 + ω2

which vanish for ωτjk � 1 or, on the other hand, become identical for ωτjk � 1:

Jjk(ω) ⇒ Jjj(ω) ≡ γ ω
Λ2

Λ2 + ω2
,

where for convenience we use the coupling constant γ ≡ h̄/4π2ρc3.

In this case of the spins’ exchange-strained coupling to the bath we use a

different form of cutoff, Λ2

Λ2+ω2 , than in the SQUID-chain. For the spin-chain the

spectral densities are only linear in ω and this cutoff is strong enough for, and

popular for, ohmic (linear in ω) spectral densities [76].

4.7.2 The Markov Approximation

Again we rely on the Dirac delta function behavior of the
∫ t
0 dτ cosωτ cos ∆τ

and
∫ t
0 dτ sinωτ sin ∆τ to pick out the constant coefficients of diffusion and damping.

We discard the factor Λ2/(Λ2 +∆2) ≈ 1 for our high cutoff frequency Λ � ∆. Then

we assume we are either close-to or far-from any level crossings. For ∆τjk � 1 we

use

D∆
jj ≡ π

2
γ∆ coth( h̄∆

2kBT
); D∆

j 6=k =0=γ∆
j 6=k; γ∆

jj ≡ π
2
γ∆,
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Figure 4.5: Two time-scales for decay; picoseconds vs. nanoseconds.
√

2 |ψ6〉 +
|ψ9〉 + |ψ10〉 cooling above the critical point. Transitions out of |ψ9〉 and |ψ10〉 are
suppressed by the cold bath, while those from |ψ6〉 are enhanced. (J0 = 103.4 meV,
F0 = J0).

neglecting the cross terms D∆
j 6=k ≈ 0 ≈ γ∆

j 6=k which vanished with sin(∆τjk)/∆τjk �

1. For ∆τjk � 1 we use, correct to first order in ∆τjk,

D∆
j 6=k = D∆

jj = π
2
γ∆ coth( h̄∆

2kBT
); γ∆

j 6=k = γ∆
jj = π

2
γ∆ ,

i.e. the collective coupling case with the j 6= k cross terms equal to the j = k ones.

Because the spectral density is only ohmic, i.e. growing linearly with ∆, we cannot

throw out the cross terms even for a critical point because coth(h̄∆/2kBT ) → ∞

as fast as ∆ → 0 . For the exchange-strained chain the collective coupling vanishes

(in effect the j 6= k cross terms cancel the j = k terms); we expect at least some

protection from decoherence at the critical point.

These approximations are only valid near-to and far-from a level crossing,

whereas the intermediate ∆ would require the sin(∆τjk)/∆τjk factors.

For the renormalization and anomalous diffusion, by contour integration in

the complex ω-plane, we obtain long-time principal values:

r∆
jj =

π

2
γ Λ

97



50 51 52 53 54
F0 �meV��660

�640

�620

�600

�meV� No Bath vs. Cold Bath

�8J0�4F0

�12F0

�8J�4F�24S

�12F�24SFc

Figure 4.6: Bath-free and renormalized energies of |ψ6〉 and |ψ8〉. (J0 = 103.4 meV).

and

A∆
jj =

π

2
γ

∆

π

[
2<[Ψ(

ih̄∆/π

2kBT
)]− 2Ψ(

h̄Λ/π

2kBT
)− 2kBT

h̄Λ/π

]
.

Here Ψ(z) is the digamma function and <[Ψ(z)] is the real part of it. Again we

discard the factor Λ2/(Λ2 + ∆2) ≈ 1. We also neglect the j 6= k cross terms on

the grounds that these integrals go to much higher frequencies than the damping

and diffusion do, and the cross term integrals are thus suppressed by their
sin(ωτjk)

ωτjk

kernel.

4.8 The Four Generators

We now show, for a weak coupling of our Heisenberg spin chain to the bath and

with J , F , and S set near-to or far-from any resonant pairs of allowed transitions,

that the renormalization and anomalous diffusion contribute effectively Hamiltonian

dynamics, which can be dropped from the master equation by “renormalizing” the

chain Hamiltonian, while the damping and diffusion work together to effectively

decohere and thermalize the system within each network of allowed transitions.
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4.8.1 The Renormalization

Recall the renormalization’s contribution to the rate of change of a density

matrix element ρ̃αδ ≡ 〈α| ρ̃ |δ〉 is

˙̃ρ
r

αδ = i
J ′2

h̄2

∑
j,k

(
∑
βᾱ

X̃jαβX̃kβᾱr
∆βᾱ

jk ρ̃ᾱδ +
∑
βγ

X̃jαβX̃kγδr
∆γδ

jk ρ̃βγ

−
∑
βγ

X̃kαβX̃jγδr
∆αβ

jk ρ̃βγ −
∑
δ̄β

X̃kδ̄βX̃jβδr
∆δ̄β

jk ρ̃αδ̄).

By the selection-ruled resonance conditions of Chapter 3, the third term cancels the

second term as long as the coefficient r∆
jk is a slowly-enough varying function of ∆. In

our case of exchange-strained interaction operators, the coefficients r∆
jj = π

2
γΛ and

r∆
j 6=k ≈ 0 are independent of ∆. But the other coefficients, A∆

jk, D
∆
jk, and γ∆

jk, do vary

with ∆ and thus for those generators, to make use of these resonance conditions, we

must check that the parameters J , F , and S of the chain Hamiltonian are set either

near-to or far-from any resonant pairs of transitions.

Then the first and fourth terms give the additional Hamiltonian dynamics in

the interaction picture with an effectively Hermitian

R̃′′
S ≡ −(J ′2/h̄)

∑
j,k

X̃jŨ r
jk = −

∑
j,k

X̃j

∑
∆

J ′2

h̄
r∆
jkX̃∆

k .

With r∆
j 6=k ≈ 0 and r∆

jj = π
2
γΛ independent of ∆ we have

R′′
S = −J

′2

h̄

π

2
γΛ

∑
j

(~σj−1 · ~σj − ~σj · ~σj+1︸ ︷︷ ︸
Xj

)2.

We then use (~σj · ~σj+1)
2 = −2~σj · ~σj+1 and {~σj−1 · ~σj, ~σj · ~σj+1} = −2~σj−1 · ~σj+1 to

obtain

R′′
S =

∑
j

(Jr~σj · ~σj+1 + Fr~σj−1 · ~σj+1)
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in which there is a bath-induced exchange coupling, Jr ≡ J ′2

h̄
π
2
γ4Λ, and frustration,

Fr ≡ J ′2

h̄
π
2
γ2Λ.

4.8.2 The Anomalous Diffusion

The anomalous diffusion’s contribution is again just an additional Hamiltonian

dynamics in the interaction picture with an effectively Hermitian

Ã′′
S ≡

J ′2

ih̄

∑
j,k

X̃jṼA
jk =

∑
j,k

X̃j

∑
∆

J ′2

h̄
A∆

jkiP̃∆
k .

For the purposes of calculation we define ~σj
A·~σj+1 to be the operator that results

from multiplying the eigenbasis matrix elements of ~σj · ~σj+1 by the A∆
jj coefficients.

Then, by throwing out the cross terms (A∆
j 6=k ≈ 0) and re-summing various terms,

we can write

A′′
S = −J

′2

h̄

∑
j

~σj · ~σj+1(~σj−1
A·~σj − 2~σj

A·~σj+1 + ~σj+1
A·~σj+2).

A representative summand is, for example,

A23 = −~σ2 · ~σ3(~σ1
A·~σ2 − 2~σ2

A·~σ3 + ~σ3
A·~σ4).

Like ~σj ·~σj+1, the operator in parentheses only drives transitions of one or two rungs

on the ladder of exchange energies, e.g. h̄∆1 = 4J0− 8F0 and h̄∆2 = 8J0− 16F0 for

a four spin chain, and its non-vanishing matrix elements are proportional to either

π
2
γa1 ≡ A∆1

jj or π
2
γa2 ≡ A∆2

jj . The Hermitian part of our representative summand,

(A23 +A†
23)/2, apart from a factor π

2
γ, can be expanded as

(a1+a2)(~σ1 ·~σ2+~σ3 ·~σ4)−(a1+a2)(~σ1 ·~σ3+~σ2 ·~σ4)+(a1−a2)[~σ1 ·~σ2 ~σ3 ·~σ4−~σ1 ·~σ3 ~σ2 ·~σ4]
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Figure 4.7: Changing the chain’s spectrum by warming the bath. Energy shifts for
|ψ6〉 and |ψ8〉. (J0 = 103.4 meV, kBT = 41.36 meV (cold) and kBT = 4136 meV
(warm)).

From this we conclude that

A′′
S =

∑
j

(JA ~σj ·~σj+1+FA ~σj−1 ·~σj+1+SA ~σj−1 ·~σj ~σj+1 ·~σj+2−SA ~σj−1 ·~σj+1 ~σj ·~σj+2)

(which we have checked explicitly for four spins) and obtain, again, a bath-induced

exchange, JA ≡ J ′2

h̄
π
2
γ2(a1 + a2), and frustration, FA ≡ −JA, and additional term

SA = J ′2

h̄
π
2
γ(a1 − a2).

They are temperature dependent because (recall A∆
jj)

ai =
∆i

π

[
2<[Ψ(

ih̄∆i/π

2kBT
)]− 2Ψ(

h̄Λ/π

2kBT
)− 2kBT

h̄Λ/π

]
.

4.8.3 The Damping and Diffusion

We would like now to concentrate on the damping and diffusion. From now

on, and in all our numerical simulations, we use the renormalized Hamiltonian H
(1)
S

with, to summarize,

J = J0 + 4γ′Λ︸ ︷︷ ︸
Jr

+ 2γ′(a1 + a2)︸ ︷︷ ︸
JA

;

101



F = F0 + 2γ′Λ︸ ︷︷ ︸
Fr

− 2γ′(a1 + a2)︸ ︷︷ ︸
−FA

;

S = γ′(a1 − a2)︸ ︷︷ ︸
SA

,

where, with ∆2 = 2∆1 = 8J0/h̄− 16F0/h̄,

ai =
∆i

π

[
2<[Ψ(

ih̄∆i/π

2kBT
)]− 2Ψ(

h̄Λ/π

2kBT
)− 2kBT

h̄Λ/π

]
,

and γ′ ≡ J ′2

h̄
π
2
γ.

Again the decoherence is caused by transitions from |α〉 and |δ〉,

∂ ˙̃ραδ

∂ρ̃αδ

= −
∑
j,k

(
∑
β

X̃jαβX̃kβαΓβα
jk −

0︷ ︸︸ ︷
X̃jααX̃kδδΓ

δδ
jk

−X̃kααX̃jδδΓ
αα
jk︸ ︷︷ ︸

0

+
∑
β

X̃kδβX̃jβδΓ
βδ
jk)≡−Γ̄αδ

only in this case of exchange-strained spins the second and third terms vanish be-

cause, for the exchange-strained interaction operators, the zero-frequency diffusion

vanishes as does the damping coefficient γ0
jk = 0.

4.9 Numerical Simulations

We simulate the effects of the matrix element equation in a variety of scenarios

for four-spin chains. In all cases we choose J0 and F0 to be close-to or far-from any

resonant pairs of allowed transitions (we can run at the critical point because of its

exactly-resonant pairs). That way we can and do discard the oscillating coefficients

from the equation, since their effect would average to zero anyway. The matrix

element equation becomes a coupled first order differential equation with constant

coefficients which we numerically integrate [81].
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We consider an initial exchange frequency of 100 THz, with J0 = 103.4 meV,

and run scenarios without any bath-free frustration, F0 = 0, and with frustration

at the critical point F0 = J0/2 as well as twice that. We use a cold bath kBT =

4J0/10 = 41.36 meV. We assume our spins are a few angstroms apart and experience

an exchange strain of J ′ = 7.166 meV/nm which results in an overall coupling

γ′ ≡ J ′2

h̄
π
2
γ = 5.238 × 10−7 meV ps, in which we used a lattice mass density of

ρ = 5× 103 kg/m and sound speed of c = 5× 103 m/s. This gives a quality factor

for the 100 THz exchange splitting of 105. The renormalization and anomalous

diffusion depend slightly on temperature and greatly on the cutoff frequency for

which we use Λ = 106 ps−1. We use J0 and F0 to obtain the renormalized values J ,

F , and S with which we then study the damping and diffusion.

At the critical point, where ∆ = 0, the cross term rates Γ∆=0
jk = 0 do not

vanish; our spectral densities are only ohmic. Instead they become identical for all

j, k. Whenever ∆ < 0.1/τc, with τc the phonon transit time between most distant

sites (the length of the chain) we set the j 6= k cross terms equal to the j = k ones.

And whenever ∆τjk > 10/τc we set the cross terms to zero. We have avoided the

more complicated intermediate cases.

The matrix elements of the interaction operators are used to calculate all the

constant coefficients in the matrix element equation and we then proceed with the

numerical simulations for any initial state ρ(0).
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4.10 Discussion

The extra term S introduced by the temperature dependent anomalous diffu-

sion is very small (but we include it anyway in our simulations), whereas the changes

from J0 to J and from F0 to F of about 2 and 1 meV, respectively, are more dra-

matic because they are proportional to the large cutoff Λ. The renormalizing will

not take F to, or past, the critical point J/2 − 3S unless F0 was already there, at

F0 = J0/2.

The interaction operators do not drive transitions between subspaces of dis-

tinct Jz, so there is no point in including a magnetic field in these examples. We

work primarily in the Jz = 0 subspace as there are more states and networks there.

There are no pairs of nearly-resonant allowed transitions so we do not see decaying

oscillations emerging in lower energy subspaces.

The relaxation and decoherence will thermalize the spins only within each

isolated network, and in proportion to the total initial probability to be in that

subspace. Upward transitions are suppressed by the cold bath; low-lying states

spanning isolated networks are protected by the cold bath. Downward transitions

are enhanced. The larger the energy given off to the bath, the faster the rate.

Starting in a degenerate but higher-energy subspace does not necessarily protect

the state.

We are working with distant spins, relative to the few-spin chain’s frequencies,

so ordinarily we could not take advantage of the vanishing collective exchange strain.

But the spectrum of the frustrated Heisenberg spin chain does present a critical point
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level crossing where in fact all the allowed transitions have ∆ → 0 and the collective

coupling is relevant. Strikingly, this protects eigenstates and superpositions from

decay. The decoherence free subspace is non-degenerate, even though it obtains at

a level crossing, and therefore the protected superpositions evolve and continue to

evolve.

4.11 Conclusion

A chain of a few Heisenberg coupled spins whose exchange is strained by a

phonon bath can be studied with master equation techniques, in the Born-Markov

approximation, from the model for quantum Brownian motion. The renormaliza-

tion and temperature-dependent anomalous diffusion can be used to renormalize

the chain Hamiltonian. This shifts the energies but not the eigenstates. It can

introduce frustration, but not enough to get to the critical point, for which the crit-

ical frustration must already be present. The damping and diffusion give a matrix

element equation showing decoherence, relaxation, and the possibility for decaying

oscillations to emerge in a lower energy subspace. However, this possibility is not

allowed by the chain’s spectrum, and the disjoint network of allowed transitions

prevent the total thermalization. Instead there is a relative thermalization within

each network. The relaxation adjusts the populations of the eigenstates and un-

dermines their support for any superposition (coherence) between them, leading to

decoherence.

An important feature of the frustrated Heisenberg spin chain is the critical
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point level crossing where some allowed transitions vanish along with their frequency

thanks to the vanishing property of a collective strain. The networks of selection-

rules in effect acquire the feature of the collective behavior as ∆τjk → 0 � 1; even

a chain with well-spaced spins will have extended coherence and relaxation times

when tuned to the critical point.
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Chapter 5

Summary

In this dissertation we looked at three solid state qubit encoding schemes from

two perspectives. We first proposed that a hydrogenic spin qubit could remove some

of the obstacles to quantum computing with P donor spins in Si. We then developed

a chain-boson model for the decoherence of a chain of qubits embedded in a bosonic

bath and applied it to a few coupled SQUIDs’ exchanging their angular momenta

with a phonon bath as well as a few coupled spins-1/2 whose exchange strength is

strained by a phonon bath.

5.1 P donor spins in Si

Consideration of a simple encoding scheme for the Kane quantum computer

has led to a modified architecture which overcomes many obstacles to the original

proposal. Resonant hyperfine stepping provides digital control with an extremely

well defined and stable parameter; there is no tuning of the hyperfine strength and

there is no qubit specific tuning; we can optimize the fidelity of the entire computer

by tuning the clock frequency (and thus the bit pulse width) of the bit trains.

Effectively, we have replaced the AC magnetic field with a digital electric field.

Digital shuttling of electrons removes the need for the complicated and difficult

exchange mediated coupling and overcomes the nearest neighbor restrictions. It also
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makes the computer easier to fabricate since the donors can be irregularly spaced

and further apart, allowing for larger gate electrodes, and malfunctioning donor sites

can be diagnosed and ignored, provided there is enough S gate capability to shuttle

other qubits’ electrons around the misbehaving donor.

There is a natural data-bus to a nuclear spin-pair quantum memory or electron

spin-pairs for projective measurement beneath a Single Electron Transistor. The

availability of a projective measurement means we can initialize 50% of the qubits

at higher temperatures, and electron shuttling can then pool initialized qubits into

the working part of the computer. These many benefits were obtained at the cost of

coupling to an auxiliary subspace outside the logical subspace. The fidelity depends

crucially on tuning the clock frequency and the global magnetic field. We have

investigated the sensitivity of the computer and found that less than one error per

105 gate operations is attainable even for relative variations in field and frequency

as large as 10−5.

5.2 The Chain-Boson Model

The chain-boson model is a natural extension of the spin-boson model. It

places a chain of two-level systems in a bath in such a way that there are position-

dependent system-bath couplings. This makes it possible to clarify the role of bath

“correlation lengths” in the decoherence of encoded qubits. We followed master

equation techniques from the model for quantum Brownian motion to obtain the

generators of the open system dynamics. We concentrated mainly on the generators
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associated with the coefficients of damping and diffusion, which we calculated for

small (∆ � 1/τjk) and large (∆ � 1/τjk) transition frequencies in the Born-Markov

approximation.

We then obtained a matrix element equation in the chain’s energy eigenbasis

similar to what one would obtain with a Bloch-Redfield approach [87], but in the

interaction picture. This allowed us to discard rapidly oscillating terms, assuming

our system Hamiltonian is set close-to or far-from pairs of resonant transitions,

leaving an easily-integrated system of coupled first order differential equations, with

constant coefficients, for the evolution of ρ̃(t). This matrix equation shows the

relaxation, decoherence, and thermalization, subject to selection-ruled networks of

allowed transitions.

The matrix equation also reveals the possibility for coherent oscillations to

move from one subspace, where they are decaying, to another, where they can

decay more slowly. This is dependent on pairs of resonant allowed transitions in

the chain’ spectrum, so that a superposition of two eigenstates can relax coherently

into a superposition of two lower-energy eigenstates with the same energy difference

as the upper two. We observed this in the chain of Heisenberg-coupled SQUIDs

exchanging their angular momentum with the phonon bath.

Despite individual qubit transition frequencies that imply the independent dis-

sipation of well-spaced qubits, the inter-qubit coupling can provide a critical point

level crossing where one or more transition frequencies vanish and the low-frequency

portion of the collective coupling operator becomes relevant to some system tran-

sitions. In fact, in the SQUID chain, we found that transitions between the lowest
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two states were blocked at their degeneracy point, helping to protect some superpo-

sitions. In the exchange-strained spin-chain the situation was even more dramatic.

A non-degenerate subspace became decoherence-free so that coherent oscillations

could persist indefinitely.

5.3 Relevance

The promising theoretical results for hydrogenic spin quantum computing

should motivate further research on the coherent shuttling and measurement of

electron spins, extremely pure Si fabrication, optimal control sequences, and the

spin-orbit and dipole-dipole interactions during realistic electrode driven switching

and shuttling.

Decoherence is a major obstacle to quantum computation. The possibility of

augmenting qubit encoding schemes with an inter-qubit coupling to obtain some or

all of the benefits of a collective coupling, as found in this work with two model

studies, is worth consideration in a variety of implementations and quantum error

correction and prevention protocols. Also, the movement of coherent oscillations

from one subspace to another suggests that carefully timed changes to the system

Hamiltonian could help maintain the quantum information, even though our meth-

ods are not appropriate to a time-dependent Hamiltonian.

110



BIBLIOGRAPHY

[1] M. Friesen, R. Joynt, and M. A. Eriksson, Appl. Phys. Lett. 81, 4619 (2002).

[2] B. E. Kane, Nature 393, 133 (1998).

[3] Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Nature 398, 786 (1990).

[4] J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens, Nature

406, 43 (2000).

[5] C. H. van der Wal, A. C. J. ter Haar, F. K. Wilhelm, R. N. Schouten, C. J.

P. M. Harmans, T. P. Orlando, S. Lloyd, and J. E. Mooij, Science 290, 773

(2000).

[6] D. A. Lidar and L.-A. Wu, Phys. Rev. Lett. 88, 17905 (2002).

[7] D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K. B. Whaley, Nature

408, 339 (2000).

[8] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Infor-

mation (Cambridge University Press, Cambridge, UK, 2000).

[9] D. Kribs, R. Laflamme, and D. Poulin, Phys. Rev. Lett. 94, 180501 (2005).

[10] L.-M. Duan and G.-C. Guo, Phys. Rev. A 57, 737 (1998).

[11] D. A. Lidar, I. L. Chuang, and K. B. Whaley, Phys. Rev. Lett. 81, 2594 (1998a).

[12] P. Zanardi and M. Rasetti, Mod. Phys. Lett. B 11, 1085 (1997a).

111



[13] A. J. Skinner, M. E. Davenport, and B. E. Kane, Phys. Rev. Lett. 90, 087901

(2003).

[14] G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B 59, 2070 (1999).

[15] X. Hu and S. Das Sarma, Phys. Rev. A 61, 062301 (2000).

[16] K. Andres, R. N. Bhatt, P. Goalwin, T. M. Rice, and R. E. Walstedt, Phys.

Rev. B 24, 244 (1981).

[17] B. Koiller, X. Hu, and S. Das Sarma, Phys. Rev. Lett. 88, 027903 (2002).

[18] B. E. Kane, N. S. McAlpine, A. S. Dzurak, R. G. Clark, G. J. Milburn, H. B.

Sun, and H. Wiseman, Phys. Rev. B 61, 2961 (2000).

[19] P. Recher, E. Sukhorukov, and D. Loss, Phys. Rev. Lett. 85, 1962 (2000).

[20] J. Levy, Phys. Rev. Lett. 89, 147902 (2002).

[21] S. Benjamin, quant-ph/0104034.

[22] J. M. Kikkawa and D. D. Awschalom, Nature 397, 139 (1999).

[23] A. Fujiwara and Y. Takahashi, Nature 410, 560 (2001).

[24] J. I. Cirac and P. Zoller, Nature 404, 579 (2000).

[25] D. Kielpinski, C. Monroe, and D. J. Wineland, Nature 417, 709 (2002).

[26] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and

W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).

112



[27] G. W. Ford, M. Kac, and P. Mazur, J. Math. Phys. 6, 504 (1965).

[28] B.-L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev. D 45, 2843 (1992).

[29] L.-M. Duan and G.-C. Guo, Phys. Rev. Lett. 79, 1953 (1997).

[30] R. H. Dicke, Phys. Rev. 93, 99 (1954).

[31] E. M. Chudnovsky and D. A. Garanin, Phys. Rev. Lett. 93, 257205 (2004).

[32] M. Thorwart and P. Hänggi, Phys. Rev. A 65, 012309 (2001).

[33] D. Ahn, J. H. Oh, K. Kimm, and S. W. Hwang, Phys. Rev. A 61, 052310

(2000).

[34] X. X. Yi, H. T. Cui, and X. G. Wang, Phys. Lett. A 306, 285 (2003).

[35] T. Yu and J. H. Eberly, Phys. Rev. B 68, 165322 (2003).

[36] M. Governale, M. Grifoni, and G. Schön, Chem. Phys. 268, 273 (2001).

[37] M. J. Storcz and F. K. Wilhelm, Phys. Rev. A 67, 042319 (2003).

[38] A. Abliz, S.-S. Li, L.-L. Sun, S.-L. Feng, and H.-Z. Zheng, Phys. Rev. A 69,

052309 (2004).

[39] M. J. Storcz, U. Hartmann, S. Kohler, and F. K. Wilhelm, Phys. Rev. B 72,

235321 (2005a).

[40] M. J. Storcz, F. Hellmann, C. Hrelescu, and F. K. Wilhelm, Phys. Rev. A 72,

052314 (2005b).

113



[41] I. A. Grigorenko and D. V. Khveshchenko, Phys. Rev. Lett. 94, 040506 (2005).

[42] J. Q. You, X. Hu, and F. Nori, Phys. Rev. B 72, 144529 (2005).

[43] G. M. Palma, K.-A. Suominen, and A. K. Ekert, Proc. R. Soc. London, Ser. A

452, 567 (1996).

[44] J. H. Reina, L. Quiroga, and N. F. Johnson, Phys. Rev. A 65, 032326 (2002).

[45] B. Ischi, M. Hilke, and M. Dubé, Phys. Rev. B 71, 195325 (2005).
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