LOCAL DYNAMICS OF ESSENTIAL PROJECTIVE VECTOR FIELDS FOR LEVI-CIVITA CONNECTIONS

dc.contributor.advisorMelnick, Karinen_US
dc.contributor.authorMa, Tianyuen_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2018-09-12T06:01:24Z
dc.date.available2018-09-12T06:01:24Z
dc.date.issued2018en_US
dc.description.abstractWe study metrizable projective structures near non-linearizable singularities of projective vector fields. We prove connected 3-dimensional Riemannian manifolds and closed connected pseudo-Riemannian manifolds admitting a projective vector field with a non-linearizable singularity are projectively flat. We also show that a 3-dimensional Lorentzian metric is projectively flat on a cone with its vertex at non-linearizable singularities of projective vector fields.en_US
dc.identifierhttps://doi.org/10.13016/M2MP4VR58
dc.identifier.urihttp://hdl.handle.net/1903/21303
dc.language.isoenen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledgeodesic rigidityen_US
dc.subject.pquncontrolledmetrizable projective structuresen_US
dc.subject.pquncontrolledprojective geometryen_US
dc.titleLOCAL DYNAMICS OF ESSENTIAL PROJECTIVE VECTOR FIELDS FOR LEVI-CIVITA CONNECTIONSen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ma_umd_0117E_19274.pdf
Size:
434.35 KB
Format:
Adobe Portable Document Format