A Large Deviations Analysis of Quantile Estimation with Application to Value at Risk
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
Quantile estimation has become increasingly important, particularly in the financial industry, where Value-at-Risk has emerged as a standard measurement tool for controlling portfolio risk. In this paper we apply the theory of large deviations to analyze various simulation-based quantile estimators. First, we show that the coverage probability of the standard quantile estimator converges to one exponentially fast with sample size. Then we introduce a new quantile estimator that has a provably faster convergence rate. Furthermore, we show that the coverage probability for this new estimator can be guaranteed to be 100% with sufficiently large, but finite, sample size. Numerical experiments on a VaR example illustrate the potential for dramatic variance reduction.