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Abstract

Quantile estimation has become increasingly important, particularly in the �nancial industry, where

Value-at-Risk has emerged as a standard measurement tool for controlling portfolio risk. In this paper

we apply the theory of large deviations to analyze various simulation-based quantile estimators. First,

we show that the coverage probability of the standard quantile estimator converges to one exponentially

fast with sample size. Then we introduce a new quantile estimator that has a provably faster convergence

rate. Furthermore, we show that the coverage probability for this new estimator can be guaranteed to be

100% with su�ciently large, but �nite, sample size. Numerical experiments on a VaR example illustrate

the potential for dramatic variance reduction.

1 Introduction

The use of quantiles as primary measures of performance has gained prominence recently, especially in the

�nancial industry, where Value-at-Risk (VaR) has emerged as a standard tool to measure and control the risk

of trading portfolios. In terms of statistics, VaR is nothing more than a quantile of a portfolio's potential

pro�t and loss over a given time period. Quantiles provide additional or alternative information about

the distribution of the performance measure of interest, say Y , where the r-th quantile of Y is de�ned by

P [Y � �r] = r for prespeci�ed r (0 < r < 1). The most well-known quantile is the median, where r = 0:50.

If, for instance, Y is the delay experienced by a customer in a queueing system, then 50% of the customers

experience delays less than the median �0:50, but 5% of the customers experience delays longer than �0:95.

Thus, quantiles are clearly useful in describing tail behavior.

Our setting is that of complex stochastic systems where simulation is required. Variance reduction

techniques are crucial for improving the e�ciency of simulation, and there is a huge body of literature

dedicated towards this goal, but it is almost exclusively directed towards the expected value of an output

random variable. However, output analysis for the estimation of quantiles di�ers signi�cantly from estimation

of means. The limited literature relevant to our work is summarized as follows. Perhaps the earliest work is

Hsu and Nelson (1990) and Hesterberg and Nelson (1998), who applied control variates to obtain variance

reduction in simulation-based quantile estimation. Most closely related to our work is Avramidis and Wilson

(1998), who employed correlation-induction techniques to improving quantile estimation. In all of these, the

traditional approach to evaluating the performance of the estimator is to invoke the central limit theorem

to estimate the variance of the estimator. In other words, the goal is to minimize the con�dence interval
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half-length, given the con�dence level. This approach, however, su�ers some drawbacks. First of all, the

variance of the limiting normal distribution is just an asymptotic variance of the estimator, and it is often

di�cult to verify the assumptions underlying the central limit theorem for a complex system. Secondly, it

may be cumbersome to determine the run length (or replication counts) of simulation in order to achieve

a prespeci�ed precision in terms of variance, whereas in practice, an institution with risk exposure of its

portfolios may be more concerned with the probability that the estimation error of a quantile is within its

tolerance.

Based on these observations, we propose a new approach to dealing with the performance of quantile

estimates. Applying the theory of large deviations, we show that the probability of the standard quantile

estimator falling in a neighborhood of the true quantile, which we call the coverage probability, converges

to one exponentially fast with increasing sample size. Then, modifying the correlation-induced Latin Hy-

percube Sampling (LHS) estimator of Avramidis and Wilson (1998), we propose a new quantile estimator,

for which the probability of belonging to a neighborhood of the true quantile (which we call the coverage

probability) is one for su�ciently large, but �nite, sample size. Furthermore, in special cases, an exact (here

meaning non-asymptotic) upper bound for the variance of the estimator can be obtained, and it is shown that

the convergence rate is O(1=n), as opposed to the usual Monte Carlo O(1=
p
n) rate. Finally, we apply the

estimator to VAR estimation in a typical �nancial model. Numerical experiments demonstrate substantial

variance reduction compared with independent sampling and with the estimator of Avramidis and Wilson

(1998).

To be more speci�c, let F (�) denote the (unknown) cumulative distribution function. In terms of the

inverse c.d.f., the quantile is given by �r = F�1(r), where

F�1(u) = minft : F (t) � ug for all u 2 (0; 1):

A natural estimator for �r is the direct-simulation estimator

b�(n) = minft : Fn(t) � ug; (1)

where Fn(t) is the empirical discrete c.d.f. based on sample fYi; i = 1; :::; ng. In terms of order statistics

Y(1) � Y(2) � ::: � Y(n) obtained by sorting the observations fYi; i = 1; :::; ng in ascending order, Fn(t) is

de�ned as follows:

Fn(t) =

8<:
0; if t < Y(1);
i

n
; if Y(i) � t < Y(i+1) and 1 � i � n� 1;

1; if Y(n) � t:

(2)

Avramidis and Wilson (1998) discuss two kinds of quantiles estimators, single-sample and multiple-sample

estimators. The single-sample estimator is just the direct-simulation estimator given by (1), whereas the

multiple-sample estimator is obtained by computing the sample mean using k independent single-sample

quantile estimates based on sample size m = n=k (n, the overall number of samples, is chosen to be an

integral multiple of k such that m is an integer). Let b�(i)(m) denote the ith direct-simulation estimate,

i = 1; :::; k: Then the direct-simulation multiple-sample estimator is simply the mean of the single-sample

estimators:

��(k; n) = k�1
kX

i=1

b�(i)(m): (3)
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Avramidis and Wilson (1998) improve upon the standard estimator by inducing negative correlation between

each pair of fb�(i)(m); i = 1; :::; kg. In other words, negative correlation is induced between corresponding

quantile estimators in di�erent samples while mutual independence is maintained within each sample. Estab-

lishing a central limit theorem for their estimator, they obtain the canonical Monte Carlo 1=
p
n convergence

rate.

By applying the theory of large deviations, we show that for all of the estimators discussed thus far,

P
h���b�(n)� �r

��� � "
i
� exp[�nIn(")];

where " is the tolerance and In(") is the decay rate, which we use as an indication of quality of the estimator,

in addition to the usual measure of estimator variance. We then replace the empirical c.d.f. given by (2)

with a di�erent form (see (9) in Section 4). We show that the property of negative dependence, which holds

for Latin Hypercube Sampling, guarantees a larger In(") than for i.i.d samples. We propose an estimator

such that for " > 0, there exists a �nite n such that the coverage probability is 100%, e.g.,

P
h���b�(n)� �r

��� < "
i
= 1!

Furthermore, instead of the usual 1=
p
n convergence rate (1=n decrease in variance), our analysis allows us

to establish a 1=n rate of convergence (1=n2 decrease in variance) for one dimensional case.

In sum, our work makes the following new contributions to simulation-based quantile estimation:

� In addition to being the �rst application of the theory of large deviations to this important setting,

the theory allows us to obtain stronger results under weaker assumptions than have been obtained by

using the usual asymptotic central limit theorem analysis.

� We analyze the coverage probability in addition to the estimator variance as a measure of performance,

and establish an exponential convergence rate, for which the property of negative dependence ensures

a faster convergence rate over independent sampling.

� We introduce a new estimator that has provably better theoretical properties and shows signi�cantly

better empirical performance.

The rest of this paper is organized as follows. In the next section, we present some preliminary results.

First, we introduce the notion of negative dependence, and establish some properties of random vectors

satisfying this property. Then we derive some large deviations results for negatively dependent sequences.

As an important example, we review Latin Hypercube Sampling. In Section 3, the main results using the

large deviations theory for quantile estimation are established. The new quantile estimator is presented in

Section 4, along with the analysis of its theoretical convergence properties. Section 5 contains the numerical

experiments for theVaR �nance example. The more technical details of some of the proofs are included in

the appendix.
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2 Preliminary Results

2.1 Negative Dependence

In this section we present the notation of negative dependence, a generalization of the notation of negatively

quadrant dependence de�ned by Lehmann (1966); see also Nelsen (1999). The pair (X;Y ) or its (joint)

distribution F is negatively quadrant dependent if

P [X � x; Y � y] � P [X � x]P [Y � y] for all x; y: (4)

Mutual independence is the case where equality holds in (4).

De�nition 2.1: The random variables Xi; i = 1; :::; n are called negatively dependent if the following two

inequalities hold for all x1; :::; xn

P [X1 � x1; :::; Xn � xn] � P [X1 � x1] � ::: � P [Xn � xn]; (5)

P [X1 � x1; :::; Xn � xn] � P [X1 � x1] � ::: � P [Xn � xn]: (6)

Obviously, letting X1 = X; X2 = Y; xi = 1 for i = 3; :::; n in (5) gives (4). Thus any pair from a set of

negatively dependent random variables are negatively quadrant dependent.

The real-valued functions f1(�); :::; fn(�) of d arguments are concordant for the ith coordinate if, considered
as functions of the ith coordinate (with all other coordinates held �xed), they are monotone in the same

direction, i.e., either all non-decreasing or all non-increasing.

Lemma 2.1: If Xi; i = 1; :::; n are negatively dependent with EjXij <1; i = 1; :::; n; then

E(XiXj) � E(Xi)E(Xj); for i 6= j; i; j = 1; :::; n; (7)

with equality holding if Xi; i = 1; :::; n are independent. In particular, (7) implies

Cov[Xi; Xj ] = E(XiXj)�E(Xi)E(Xj) � 0:

Furthermore, if Xi; i = 1; :::; n are non-negative and E(X1 � ::: �Xn) are �nite, then

E(X1 � ::: �Xn) � E(X1) � ::: �E(Xn): (8)

Proof: The proof of (7) can be found in Lehmann (1966). We now prove (8). By noticing that Xi; i = 1; :::; n

are non-negative,

E(X1 � ::: �Xn) = E

Z
1

0

:::

Z
1

0

I(x1; X1) � ::: � I(xn; Xn)dx1:::dxn;

where I(x;X) = 1 if x � X and = 0 otherwise. Since E(X1 � ::: � Xn) is assumed �nite, we can exchange

expectation and integral, which gives

E(X1 � ::: �Xn) =

Z
1

0

:::

Z
1

0

E[I(x1; X1) � ::: � I(xn; Xn)]dx1:::dxn

=

Z
1

0

:::

Z
1

0

P [X1 � x1; :::; Xn � xn]dx1:::dxn

�
Z
1

0

:::

Z
1

0

P [X1 � x1] � ::: � P [Xn � xn]dx1:::dxn

= E(X1) � ::: � E(Xn);
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the inequality following from (6), completing the proof of (8). 2

Lemma 2.2: Let the random vectors X(j) = (X
(j)
1 ; :::; X

(j)
n ); j = 1; :::; d; be mutually independent and

random variables X
(j)
1 ; :::; X

(j)
n be negatively dependent for each j = 1; :::; d. Suppose real-valued functions

f1(�); :::; fn(�) of d arguments are concordant for each coordinate, then fi(X
(1)
i
; :::; X

(d)
i

); i = 1; :::; n are

negatively dependent.

Proof: See Appendix.

From Lemma 2.2, if the quantile estimators fb�(i)(m); i = 1; :::; kg are negatively dependent, then quantile
estimators in di�erent samples are negatively correlated and hence, the overall variance of quantile estimator

��(k; n) is reduced.

2.2 Latin Hypercube Sampling

Monte Carlo integration is often used to estimate integrals over multidimensional domains. This integration

has the advantage of very general applicability and error estimation based on the central limit theorem.

It is commonly done via independent sampling. Strati�cation can be used to increase the precision of the

estimate. McKay et al. (1979) introduce Latin Hypercube Sampling (LHS) as a method of stratifying on all

the input dimensions simultaneously.

Suppose the joint distribution of the random vector of parameters X = (X1; :::; Xd) is given by F: For

now, we will assume that the components of X are independent. Denote by Gk the cumulative distribution

function Xk, and let Xjk be the kth component of X(j); the jth simulated value of X: Let n be the size of

sample. Then, Xjk is generated by

Xjk = G�1
k

�
�k(j)� U�

jk

n

�
; for j = 1; :::; n and k = 1; :::; d;

where

(a) �1(�); :::; �d(�) are permutations of the integers f1; :::; ng that are randomly sampled with replacement

from the set of n! such permutations, with �k(j) denoting the jth element in the kth randomly sampled

permutation; and

(b) fU�
jk
; j = 1; :::; n , k = 1; :::; dg are i.i.d. U(0; 1); i.e., uniformly distributed random numbers on [0; 1];

sampled independently of �1(�); :::; �d(�):

Since �k(�) is a random permutation of the integers f1; :::; ng and U�
jk

is a uniform distributed random

number on [0; 1] sampled independently of �k(�), it is not di�cult to see the random variable

U
(j)

k
=

�k(j)� U�
jk

n
(9)

is still uniformly distributed on [0; 1]: And, moreover, since �k(�) is a random permutation of the integers

f1; :::; ng, every subinterval (stratum) of the form (l � 1=n; l=n] for l = 1; :::; n contains exactly one of the

random numbers U
(j)

k
, j = 1; :::; n; realizing a strati�cation.

We conclude this section by validating the negative dependence of LHS random numbers produced

according to (9). Since f�k(j);j = 1; :::; n , k = 1; :::; dg are integers, it su�ces to show (5) and (6) hold with
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x1; :::; xn taking integer values. Without loss of generality, suppose x1 � ::: � xn. Note that if

P [�k(1) � x1; :::; �k(n) � xn] = 0;

P [�k(1) � x1; :::; �k(n) � xn] � P [�k(1) � x1g � ::: � Pf�k(n) � xn];

if

P [�k(1) � x1; :::; �k(n) � xn] > 0;

P [�k(1) � x1; :::; �k(n) � xn] =
x1(x2 � 1) � ::: � (xk � k + 1)

k!

� x1x2 � ::: � xk
kk

= P [�k(1) � x1g � ::: � Pf�k(n) � xn];

where the last inequality follows from the following inequalities:

xi � i+ 1

n� i+ 1
� xi

n
; for i = 1; :::; n:

Consequently, (5) can be derived by taking conditional probability on U�
jk
, j = 1; :::; n since fU�

jk
;

j = 1; :::; ng are i.i.d. U(0; 1) sampled independently of �k(�): (6) can be proved in an analogous manner.

2.3 Auxiliary Results from Large Deviations Theory

To establish our main results, we apply the large deviations principle, which yields an exponential convergence

rate under appropriate conditions. In order to motivate our discussion, we briey outline some background

from the theory of large deviations (Bucklew 1990, Dembo and Zeitouni 1998, Deuschel and Stroock 1989).

Consider a random variable Y with mean � = E[Y ]: Its moment generating functionM(�) = E[exp(�Y )]

is viewed as an extended valued function, i.e., it can take value +1. It holds that M(�) > 0 for all

� 2 R;M(0) = 1; and the domain f� : M(�) < +1g of the moment generating function is an interval

containing zero. The conjugate function

I(z) = sup
�2R

f�z � �(�)g

of the logarithmic moment generating function �(�) = logM(�), is called the rate function of Y .

Consider an i.i.d. sequence Y1; :::; Yn of replications of random variable Y and let Sn=n = n�1
P

n

i=1 Yi

be the corresponding sample average: If M(�) exists in a neighborhood (�"; ") of � = 0 for some " > 0; then

� inf
z2int(�)

I(z) � lim inf
n!1

log(P [Sn=n 2 �])

n

� lim sup
n!1

log(P [Sn=n 2 �])

n
� � inf

z2cl(�)
I(z);

where int(�) and cl(�) denote the interior and the topological closure, respectively, of the set �; and I(z) is

the corresponding rate function given by

I(z) = sup
�2(�";")

�
�z � lim

n!1

log(E[exp[�Sn])

n

�
= sup

�2(�";")

f�z � �(�)g;
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the second equality following from E[exp[�Sn] = (E[exp[�Y ])n; because the sequence Y1; :::; Yn is i.i.d.

In particular, when � = fx : x 2 [�� "; �+ "]g; then

� inf
z2int(�)

I(z) = � inf
z2cl(�)

I(z)

and

lim
n!1

log(P [Sn=n 2 �])

n
= � inf

z2cl(�)
I(z):

Thus, the rate function I(z) characterizes the asymptotic behavior of Sn=n as an estimator of � = EY:

This is the key motivation for us to use the rate function as performance measure, and it will be shown that

variance reduction techniques can enhance the convergence rate, as shown in the following generalization of

a result in Fu and Jin (2001) needed for this purpose.

Lemma 2.3: Consider a sequence of negatively dependent and identically distributed random variables

fYn; n � 1g with moment generating function M(�) = E[exp(�Y1)]. Let Sn =
P

n

i=1 Yi. If M(�) exists in a

neighborhood (�"; ") of � = 0 for some " > 0; then

P [Sn=n � x] � e�n�+(x;n); 8x > E(Y1); (10)

P [Sn=n � x] � e�n��(x;n); 8x < E(Y1); (11)

where

�+(x; n) = sup
0���"

�
�x� logEfexp[�Sn]g

n

�
� sup

0���"

(�x� logEfexp[�Y1]g) > 0; (12)

and

��(x; n) = sup
�"���0

�
�x� logEfexp[�Sn]g

n

�
� sup

�"���0

(�x� logEfexp[�Y1]g) > 0: (13)

Conversely, if E[jY1j] <1 and for any x > E(Y1), there exists �(x) > 0 such that

P [Sn=n � x] � e�n�(x); (14)

and for any x < E(Y1), there exists �(x) > 0 such that

P [Sn=n � x] � e�n�(x); (15)

then the moment generating function M(�) exists in a neighborhood (�"; ") of � = 0 for some " > 0:

Proof: Proof of Su�ciency : Consider x > E(Y1): Noticing that for any � � 0;

P [Sn=n � x] � Efexp[�(Sn � nx)]g

= exp

�
�n
�
�x� logEfexp[�Sn]g

n

��
;
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hence

P [Sn=n � x] � exp

�
min
0���"

�
�n
�
�x � logEfexp[�Sn]g

n

���
= exp

�
�n sup

0���"

�
�x � logEfexp[�Sn]g

n

��
:

From Lemmas 2.1 and 2.2, fexp[�Yn]; n � 1g are negatively dependent and

Efexp[�Sn]g = Ef
nY
i=1

exp[�Yi]g �
nY
i=1

Efexp[�Yi]g = (Efexp[�Y1]g)n;

implying

P [Sn=n � x] � exp

�
�n sup

0���"

(�x� logEfexp[�Y1]g)
�

= exp

�
�n sup

0���"

(�x� �(�))

�
;

where �(�) = logEfexp[�Y1]g:
Furthermore, by a Taylor's series expansion,

sup
0���"

(�x� �(�)) = sup
0���"

(�x � (�(0) + �0(0)�+ o(�)))

= sup
0���"

(�(x �EY1) + o(�)) > 0;

completing the proof of (10).

By noticing that for any � � 0;

P [Sn=n � x] � Efexp[�(Sn � nx)]g;

(11) can be proved in exactly the same manner. We now turn to proving the necessity portion.

Proof of Necessity : Suppose (14) and (15) are true. Without loss of generality, assume that EY1 = 0:

Thus, for any integer m > 0, on the one hand, by (14),

P

�
Y1 �

3m

2
;

P
m

i=2 Yi

m� 1
� �1

2

�
� P

�Pm

i=1 Yi

m
� 1

�
� e�m�(1): (16)

On the other hand, by (15),

P

�
Y1 �

3m

2
;

P
m

i=2 Yi

m� 1
� �1

2

�
= P

�
Y1 �

3m

2

�
� P

�
Y1 �

3m

2
;

P
m

i=2 Yi

m� 1
� �1

2

�
� P

�
Y1 �

3m

2

�
� P

�Pm

i=2 Yi

m� 1
� �1

2

�
� P

�
Y1 �

3m

2

�
� e�(m�1)�(�

1
2
): (17)

Combining (16) and (17) gives

P

�
Y1 �

3m

2

�
� e�m�(1) + e�(m�1)�(�

1
2
):
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Consequently, for any � 2 [0; 2minf�(1); �(� 1
2
)g=3);

1X
m=1

exp

�
3m�

2

�
P

�
Y1 �

3m

2

�

�
1X

m=1

�
exp

�
�
�
�(1)� 3�

2

�
m

�
+ exp

�
�(1)�

�
�(1)� 3�

2

�
m

��
<1;

implying

Efexp[�Y1]g <1

for any � 2 [0; 2minf�(1); �(� 1
2
)g=3): Likewise, it can be shown that

Efexp[�Y1]g <1

for any � 2 [0;�2minf�(1); �(� 1
2
)g=3); completing the necessity portion of the proof. 2

3 Large Deviation Results for Quantiles

As before, F (�) will denote the (unknown) c.d.f. of the output random variable Y . In this section, we will

focus on the single-sample direct-simulation estimator b�(n): We will establish large deviation results of b�(n)
for the cases in which the c.d.f. is continuous everywhere and where discontinuities are allowed.

3.1 Continuous Distributions

In this section, we are in a position to show that b�(n) converges to �r exponentially fast in probability as n

goes to in�nity. The following is our main result.

Theorem 3.1: If the distribution function F (�) is strictly increasing and fYn; n � 1g are negatively depen-
dent, then

P
h���b�(n)� �r

��� � "
i
� e�n�+(";n) + e�n��(";n);8" > 0; (18)

where

�+("; n) = exp

�
�n sup

�1<��0

�
�r � logEfexp[�Pn

i=1 I(Yi � �r + ")]g
n

��
;

��("; n) = exp

�
�n sup

0��<1

�
�r � logEfexp[�Pn

i=1 I(Yi � �r � ")]g
n

��
:

And, moreover, the rate is enhanced by negatively dependence in the sense that

�+("; n) � sup
�1<��0

(�r � logEfexp[�I(Y � �r + ")]g) > 0; (19)

�+("; n) � sup
0��<1

(�r � logEfexp[�I(Y � �r � ")]g) > 0; (20)

where the right-hand \sup" quantiles are the rates for i.i.d. samples.

Proof: From the de�nition of b�;
P
hb�(n)� �r � �"

i
= P

�
F�1
n

(r) � �r � "
�
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= P [Fn(�r � ") � r]

= P

�Pn

i=1 I(Yi � �r � ")

n
� r

�
� exp

�
�n sup

0��<1

�
�r � logEfexp[�Pn

i=1 I(Yi � �r � ")]g
n

��
; (21)

the last inequality following from Lemma 2.3.

In exactly the same manner, we can show

P
hb�(n)� �r � "

i
� exp

�
�n sup

�1<��0

�
�r � logEfexp[�Pn

i=1 I(Yi � �r + ")]g
n

��
: (22)

Consequently, by combining (21) and (22),

P
h���b�(n)� �r

��� � "
i

= P
hb�(n)� �r � "

i
+ P

hb�(n)� �r � "
i

� exp

�
�n sup

�1<��0

�
�r � logEfexp[�Pn

i=1 I(Yi � �r + ")]g
n

��
+exp

�
�n sup

0��<1

�
�r � logEfexp[�Pn

i=1 I(Yi � �r � ")]g
n

��
;

completing the proof of (18).

Next, noticing that the indicator functions I(Yi � �r � ") and I(Yi � �r � ") are decreasing functions

with respect to Xi for each i; we have as in Lemma 2.1, by Lemma 2.2,

sup
�1<��0

�
�r � logEfexp[�Pn

i=1 I(Yi � �r + ")]g
n

�
� sup

�1<��0

(�r � logEfexp[�I(Y � �r + ")]g) > 0;

sup
0��<1

�
�r � logEfexp[�Pn

i=1 I(Yi � �r � ")]g
n

�
� sup

0��<1

(�r � logEfexp[�I(Y � �r � ")]g) > 0;

the positiveness following from that the distribution function F (�) is strictly increasing, so E[I(Y � �r�")] =
F (�r � ") < F (�r) = r and E[I(Y � �r + ")] = F (�r + ") > F (�r) = r: 2

Remark: In order to estimate the convergence rate, the multiple-sample estimator ��(k; n) de�ned by (3)

can be taken to be the true quantile. Given " > 0; let #fi : b�(i)(m) =2 [�r � "; �r + "]; i = 1; :::; kg denote the
number of b�(i)(m)'s which are not in the interval [�r � "; �r + "]. Then, the convergence rate corresponding

to the interval [��(k; n)� "; ��(k; n) + "] can be estimated by

� log
h
#fi : b�(i)(m) =2 [��(k; n)� "; ��(k; n) + "]; i = 1; :::; kg=k

i
m

:

3.2 Distributions With Discontinuities

In the last subsection, we investigated the asymptotic behavior of quantiles estimation for the random

variable with continuous distribution functions. In �nancial industrial there is a growing necessity to deal

with random variables with discontinuous distribution. Examples are portfolios of non-traded loans (purely

discrete distributions) or portfolios containing derivatives (mixtures of continuous and discrete distributions).

A random variable with a discrete distribution has a non-unique quantile. It is well known that in case of
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a non-unique quantile (i.e., ar = inffxjF (x) = rg 6= br = supfxjF (x) = rg), the quantity Ybnrc;n does not

converge to �r: This follows immediately from the following result given by Feldman and Tucker (1966).

Lemma 3.1: Suppose ar = inffxjF (x) = rg 6= br = supfxjF (x) = rg). Then Ybnrc;n obeys the oscillatory

e�ect with respect to the interval [ar; br], i.e., P [Ybnrc;n � ar i.o.]=P [Ybnrc;n � br i.o.] = 1; where i.o. means

\in�nitely often".

Feldman and Tucker (1966) also designed consistent estimates of a quantile of a distribution function

when the quantile is not unique. Their results are summarized by next two propositions.

Lemma 3.2: If for some selectedK > 0; � > 0; the sequence of integers fL(n)g satis�es (i) 0 < bnrc�L(n) �
Kn

1
2
+" for some "; 0 < " < 1

2
; and (ii) bnrc � L(n) � (1 + �)(2n log logn=2)

1
2 ; then YL(n);n ! �r a.s.

Lemma 3.3: A necessary and su�cient consition that YL(n);n ! �r in probability is that (i) L(n)=n ! r

as n!1 and (ii) n
1
2 (r � L(n)=n)!1 as n!1.

Motivated by the above lemmas, we introduce the estimator

e�(n) = F�1
n

�
L(n)

n

�
= YL(n);n;

where

L(n) = bnr � (1 + �)(2n log logn=2)
1
2 c:

Theorem 3.2: If fYn; n � 1g are negatively dependent, then

P
h���e�(n)� �r

��� � "
i
� e�n�+(";n) + e�n��(";n);8" > 0; (23)

where

�+("; n) = exp

�
�n sup

�1<��"

�
�
L(n)

n
� logEfexp[�Pn

i=1 I(Yi � �r + ")]g
n

��
;

��("; n) = exp

�
�n sup

0��<1

�
�
L(n)

n
� logEfexp[�Pn

i=1 I(Yi � �r � ")]g
n

��
:

And, moreover, the rate is enhanced by negatively dependence in the sense that

�+("; n) � �0
+("; n) = sup

�1<��0

�
�
L(n)

n
� logEfexp[�I(Y � �r + ")]g

�
; (24)

�+("; n) � �0
�
("; n) = sup

0��<1

�
�
L(n)

n
� logEfexp[�I(Y � �r � ")]g

�
; (25)

and

�0
+("; n) > 0; (26)

�0
�
("; n) > 0; (27)

for n satisfying

r � F (�r � ")� (1 + �)(2n log logn=2)
1
2 + 1

n
> 0: (28)

Proof. As in Theorem 3.1, (23), (24) and (25) can be proved in an analogous manner. It remains to show

(26) and (27). Like (19) and (20), it su�ces to show

L(n)

n
� F (�r + ") < 0

11



and
L(n)

n
� F (�r � ") > 0:

From the de�nition of L(n);

L(n)

n
� F (�r + ") � nr � (1 + �)(2n log logn=2)

1
2

n
� F (�r + ")

= r � F (�r + ")� (1 + �)(2n log logn=2)
1
2 < 0;

where the last inequality follows from that r � F (�r + "); proving (26).

We now turn to showing (27). Noticing that r � F (�r � ") > 0;

L(n)

n
� F (�r � ") >

nr � (1 + �)(2n log logn=2)
1
2 � 1

n
� F (�r � ")

= r � F (�r � ")� (1 + �)(2n log logn=2)
1
2 + 1

n
> 0

for n satisfying (28). 2

4 New Quantiles Estimate

Now we consider the output random variable as a function of input random variables. Speci�cally, Y =

h(X1; :::; Xd), where X1; :::; Xd are d independent random variables with respective c.d.f.'s G1; :::; Gd. In

the last section, it was shown that the convergence rate of single-sample direct-simulation estimator b�(n) is
exponential, and this convergence can be accelerated by Latin Hypercube Sampling. But it is still not clear

how much improvement can be achieved over independent sampling. In this section, we will investigate this

important issue by de�ning a new quantile estimator, which is de�ned by modifying the empirical c.d.f. of

(2) to the following:

Fn(x) =
1

nd

nX
id=1

� � �
nX

i1=1

I(h(G�11 (U
(i1)
1 ); :::; G�1

d
(U

(id)

d
)) � x) (29)

where G�1
k
(�) is the inverse function of Gk(�):

Note that the output sample size in the empirical distribution function (29) is nd although only nd input

samples are generated. The simulation for estimating the quantile �r by using the emprical distribution

function (29) proceeds as follows:

Step 1: Generate d independent sequences fU (i1)
1 ; i1 = 1; :::; ng; :::; fU (id)

d
; id = 1; :::; ng by Latin Hyper-

cube Sampling;

Step 2: Generate d-dimensional random vectors f(G�11 (U
(i1)
1 ); :::; G�1

d
(U

(id)

d
)); i1 = 1; :::; n; :::; id =

1; :::; ng and then get nd random variables fh(G�11 (U
(i1)
1 ); :::; G�1

d
(U

(id)

d
); i1 = 1; :::; n; :::; id = 1; :::; ng;

Step 3: Sort out the bndrcth order statistics of sequence fh(G�11 (U
(i1)
1 ); :::; G�1

d
(U

(id)

d
); i1 = 1; :::; n; :::; id =

1; :::; ng, giving the estimator of �r:
Rather than (29), the estimator of Avramidis and Wilson (1998) uses the empirical distribution function

given by (2), which can also be written as

Fn(x) =
1

n

nX
i=1

I(h(G�11 (U
(i)
1 ); :::; G�1

d
(U

(i)

d
)) � x); (30)

12



where fU (i)
1 ; i = 1; :::; ng; :::; fU (i)

d
; i = 1; :::; ng are d independent sequences generated by Latin Hypercube

Sampling. Note that to generate an output sample size of nd requires the generation of dn random numbers

using (29), versus dnd random numbers required for (30). This di�erence can be enormous for high dimensions

and/or large sample sizes.

A real-valued function f(x1; :::; xd) of d arguments will be called monotonic if, considered as a function

of each of the individual coordinates (with all other coordinates held �xed), the function is monotone in the

ordinary sense, i.e., as a function of a single variable.

Theorem 4.1: Suppose the function h(x1; x2; :::; xd) is monotone and

min(F (�r + ")� r; r � F (�r � ")) = c > 0:

Then, for " > 0;

P [F�1
n

(r) 2 (�r � "; �r + ")] = 1

for n > n0 =
2d
c
:

We give a queueing example to illustrate the monotonic condition.

Example: G=G=1 Queue

Consider the standard �rst-come, �rst-served, single-server queue. We verify that the waiting time Wn of

the nth customer and average waiting time Wn over the �rst n customers are monotone functions of the

service and interarrival times.

Let a1 be the interval time of the �rst customer, an (n � 2) be the interarrival time between the (n�1)th

customer and the nth customer, and sn (n � 1) be the service time of nth customer. And, moreover, let Dn

denote the delay time of nth customer in queue. Assume fan; n � 1g and fsn; n � 1g are two independent
sequences of independent and identically distrbuted random variables with exponenetial distribution. Then

we have the following relations:

Wn = Dn + sn; n = 1; 2; :::;

Dn = (Dn�1 + sn�1 � an)
+; n = 2; 3; :::;

where (x)+ = maxf0; xg: Particularly, W1 = s1 and D1 = 0:

By induction, it is not hard to show that Dn is non-decreasing function of si; i = 1; 2; :::; n � 1 and

non-increasing function of ai; i = 1; 2; :::; n and so are Wn and Wn; arriving at our conclusions. 2

Before proving Theorem 4.1, we give a lemma. To this end, de�ne

eh1(y : x1; x2; :::; xd) = I(h(x1; x2; :::; xd) � y);

ehj(y : xj ; xj+1; :::; xd) = P [h(X1; :::; Xj�1; xj ; xj+1; :::; xd) � y]; for j = 2; :::; d;

i.e., for j = 2; :::; d; ehj(y : xj ; xj+1; :::; xd) is the conditional distribution function of h(X1; :::; Xj�1; xj ; xj+1; :::; xd)

given Xl = xl; l = j; :::; d and

ehj+1(y : xj+1; :::; xd) = Z ehj(y : xj ; xj+1; :::; xd)dP [Xj � xj ]

13



since X1; :::; Xd are mutually independent.

Lemma 4.1: Suppose the assumption of Theorem 4.1 holds. Then, when n > n0 =
2d
c
;

P

24 nX
ij=1

ehj ��r � " : G�1
j
(U

(ij)

j
); xj+1; :::; xd

�
� ehj+1(�r � "; xj+1; :::; xd) +

c

2d

35 = 0;

P

24 nX
ij=1

ehj ��r + " : G�1
j
(U

(ij )

j
); xj+1; :::; xd

�
� ehj+1(�r + " : xj+1; :::; xd)�

c

2d

35 = 0

for j = 1; :::; d;and xj+1; :::; xd:

Proof: See Appendix.

Proof of Theorem 4.1: From Lemma 4.1, given U
(ik)

k
= u

(ik)

k
; ik = 1; :::; n; k = 2; :::; d; when n > n0;

1

n

nX
i1=1

I(h(G�11 (U
(i1)
1 ); G�12 (u

(i2)
2 ); :::; G�1

d
(u

(id)

d
)) � �r � ")

� eh2 ��r � ";G�12 (u
(i2)
2 ); :::; G�1

d
(u

(id)

d
)
�
+

c

2d

with probability one and therefore, when n > n0;

P [F�1
n

(r) � �r � "] = P

"
1

nd

nX
id=1

� � �
nX

i1=1

I(h(G�11 (U
(i1)
1 ); :::; G�1

d
(U

(id)

d
)) � �r � ") � r

#

=

Z
:::

Z
P

"
1

nd

nX
id=1

� � �
nX

i1=1

I(h(G�11 (U
(i1)
1 ); G�12 (u

(i2)
2 ); :::; G�1

d
(u

(id)

d
)) � �r � ") � r

���U (ik)

k
= u

(ik)

k
; ik = 1; :::; n; k = 2; :::; d

i
d

dY
k=2

P
h
U
(ik)

k
� u

(ik)

k
; ik = 1; :::; n

i
=

Z
:::

Z
P

"
1

nd

nX
id=1

� � �
nX

i1=1

I(h(G�11 (U
(i1)
1 ); G�12 (u

(i2)
2 ); :::; G�1

d
(u

(id)

d
)) � �r � ") � r

#

d

dY
k=2

P
h
G�1
k
(U

(ik)

k
) � u

(ik)

k
; ik = 1; :::; n

i
� P

"
1

nd�1

nX
id=1

� � �
nX

i2=1

eh2 ��r � ";G�12 (u
(i2)
2 ); :::; G�1

d
(u

(id)

d
)
�
+

c

2d
� r

#

d

dY
k=2

P
h
G�1
k
(U

(ik)

k
) � u

(ik)

k
; ik = 1; :::; n

i
� P

"
1

nd�1

nX
id=1

� � �
nX

i2=1

eh2 ��r � ";G�12 (U
(i2)
2 ); :::; G�1

d
(U

(id)

d
)
�
+

c

2d
� r

#
:

By exactly the same technique, we have the following result:

P

"
1

nd�1

nX
id=1

� � �
nX

i2=1

eh2 ��r � ";G�12 (U
(i2)
2 ); :::; G�1

d
(U

(id)

d
)
�
+

c

2d
� r

#
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� P

"
1

nd�2

nX
id=1

� � �
nX

i3=1

eh3 ��r � ";G�13 (U
(i3)
3 ); :::; G�1

d
(U

(id)

d
)
�
+

2c

2d
� r

#
:::

= P

"
1

n

nX
id=1

ehd ��r � " : G�1
d
(U

(id)

d
)
�
+
(d� 1)c

2d
� r

#

= P
h
F (�r � ") � r � c

2

i
= 0:

Likewise, we can show that when n > 2d
c
;

P [F�1
n

(r) � �r + "] = 0;

completing the proof of Theorem 4.1. 2

In particular, when d = 1; Theorem 4.1 shows that by using Latin Hypercube Sampling, the convergence

rate of b�(n) is in�nite when the sample size is large enough, i.e.,

sup
0��<1

�
�r � logEfexp[�Pn

i=1 I(Yi � �r � ")]g
n

�
=1;

and

sup
�1<��0

�
�r � logEfexp[�Pn

i=1 I(Yi � �r + ")]g
n

�
=1;

for n > (min(r�F (�r � "); F (�r+ ")� r))�1. In other words, the probability that the estimate of a quantile

is in a neighborhood of the true quantile (the coverage probability) is one for su�ciently large sample size.

On the other hand, the next example demonstrates that the in�nite convergence rate cannot be obtained

for the case of independent sampling, i.e., an in�nite sample size is required for 100% coverage.

Example: Assume fYn; n � 1g are i.i.d. with distribution F (x) = 1� e�x if x � 0; and F (x) = 0 if x � 0:

We will show that convergence rates

sup
0��<1

(�r � logEfexp[�I(Y � �r � ")]g) <1

and

sup
�1<��0

(�r � logEfexp[�I(Y � �r + ")]g) <1:

Simple algebra gives

sup
0��<1

(�r � logEfexp[�I(Y � �r � ")]g) = r ln

�
r exp[�(�r � ")]

(1� r)(1� exp[�(�r � ")])

�
� ln

�
exp[�(�r � ")]

1� r

�
;

which is a positive and �nite number.

Likewise,

sup
�1<��0

(�r � logEfexp[�I(Y � �r + ")]g) = r ln

�
r exp[�(�r + ")]

(1� r)(1� exp[�(�r + ")])

�
� ln

�
exp[�(�r � ")]

1� r

�
;

which is a positive and �nite number, arriving at our conclusion. 2

So far, we have not analyzed estimator variance. It is well known that the variance of an estimate of

an average provided by Monte Carlo sampling decreases in proportion to the inverse of the square root of
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the number of trials. That is, to improve the accuracy of the estimate by a factor of 10, the number of

trials must be increased by a factor 100. Avramidis and Wilson (1998) established the same result for Latin

Hypercube Sampling. When d = 1, the following result represents a huge improvement, as a 1=n (vs.

1=
p
n) convergence rate is established. Furthermore, the bound is not asymptotic but holds for all n:

Corollary 4.1: If F (�) is di�erentiable in a neighborhood [�r � �; �r + �] of �r with infx2[�r��;�r+�]F
0(x) =

c0 > 0; then ���E hb�(n)i� �r

��� � 3

nc0

and

V ar
hb�(n)i � � 3

nc0

�2

:

Proof. Note that, by taking " = 3
nc0

� �;

2

c
=

2

min(F (�r + ")� r; r � F (�r � "))
� 2

c0"
=

2n

3
< n:

Thus, n and " satisfy Theorem 4.1 and therefore, with probability one,���b�(n)� �r

��� � " =
3

nc0

implying the two conclusions of this theorem. 2

5 Application: Value-at-Risk Estimation

In this section, we illustrate the application of our quantile estimate techniques to the simulation of Value-

at-Risk (VaR) in a classic �nancial model. Risk exposures are typically quanti�ed in terms of VaR. Formally,

VaR measures the worst expected loss over a given time interval under normal market conditions at a given

con�dence level. VaR provides users with a summary measure of market risk. For instance, a bank might

say that the daily VaR of its trading portfolio is $35 million at the 99 percent con�dence level. In other

words, there is only 1 chance in a 100, under normal market conditions, for a loss greater than $35 million

to occur. This single number summarizes the bank's exposure to market risk as well as the probability of an

adverse move. In the terminology of statistics, VaR is nothing more than a quantile of a portfolio's potential

pro�t and loss process over a given time period.

Suppose that an institution has an exposure to an asset, St, whose process is governed by the following

stochastic di�erential equation:
dSt

St
= �dt+ �dzt;

where � and � are the drift and the di�usion, respectively, of the asset value, and zt is a standard Brownian

motion. One can regard this asset either as a single asset, or as a portfolio of assets like, for example, the

S&P index, or a portfolio of the institution's currency exposures. As such, the analysis is better suited to

an institution concerned with their exposure to commodity prices, equities, or exchange rates.

The institution is concerned about its exposure to the asset over the next � periods, that is, the institution

is concerned about the loss at the r% level of the distribution of the institution's exposure St+� , which is
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called as VaRt+� : Given the lognormality of St, we

P

�
St � St exp[(��

1

2
�2)� + �

p
�Z] � V aRt+�

�
= r

that is

V aRt+� = St � St exp[(��
1

2
�2)� + c(r)�

p
� ];

where Z � N(0; 1) is a standard normal random variable and c(r) is the cut-o� point of the cumulative

distribution of a standard normal at the r% level. That is, the VaR at the r% level is the quantile at the

(1� r)% level of process:

Y = St � St exp

�
(�� 1

2
�2)� + �

p
�Z

�
: (31)

In our implementation, we use the Box-Muller method (see Law and Kelton 2000) to generate standard

normal random variables. This method uses two independent random numbers U1 and U2. Consequently,

(31) can be expressed as

Y = St � St exp[(��
1

2
�2)� + �

p
�
p
�2 lnU1 cos(2�U2)]

= St � St exp[(��
1

2
�2)� + �

p
�X1X2]

= h(X1; X2);

where

X1 =
p
�2 lnU1; X2 = cos(2�U2):

Obviously, the function h(X1; X2) satis�es the assumptions of Theorem 4.1, where the dimension d in this

problem is 2:

In our numerical experiments, we take t = 0; � = 1 day= 1
250

year (since there are 250 business days

within each year), � = 0:2; � = 0:2, " = 1%�r, and S0 = 1000. Because our estimator \reuses" sample, it is

not straightforward to compare with other estimators in literature. When we generate nd input samples, we

obtain nd output samples. Since d = 2 here, we will generate n2 output samples for the other estimators,

whether using Latin Hypercube Sampling or independent sampling. In the tables, LHS*, LHS and IND

denote the quantile estimate generated by (29), the quantile estimate generated by (30), and the quantile

estimate generated by using independent sampling, respectively. From the tables and graphs, it can be seen

that LHS* signi�cantly outperforms IND in all cases. For rare events, e.g., r = 0:01 and r = 0:99, LHS*

also beats LHS by a signi�cant margin, but the reverse is true for the median r = 0:5. The variance of LHS

and IND are very close for the two extreme cases, although LHS clearly dominates IND in terms of coverage

probability. However, the latter is a function of the choice of ", so a smaller value of " would reduce the

di�erence.
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n 50 100 200

LHS* 0.5649 0.1997 0.0693

LHS 0.8841 0.3955 0.2020

IND 0.8969 0.4066 0.2169

Table 1: Standard error estimates for r=0.01.

n 50 100 200

LHS* 0.2796 0.0320 0.0116

LHS 0.0149 0.0029 0.00082

IND 0.2871 0.1601 0.0869

Table 2: Standard error estimates for r=0.5.

n 50 100 200

LHS* 0.4800 0.1869 0.0698

LHS 0.8781 0.4876 0.2136

IND 0.9296 0.4950 0.2683

Table 3: Standard error estimates for r=0.99.

n 50 100 200

LHS* 0.49 0.94 1

LHS 0.25 0.55 0.82

IND 0.08 0.16 0.16

Table 4: Coverage probability for r=0.01.

n 50 100 200

LHS* 0.05 0.15 0.49

LHS 0.51 0.99 1

IND 0.01 0.02 0.01

Table 5: Coverage probability for r=0.5.

n 50 100 200

LHS* 0.33 0.93 1

LHS 0.21 0.54 0.83

IND 0.07 0.09 0.22

Table 6: Coverage probability for r=0.99.
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6 Conclusions

Traditionally, simulation e�ciency is improved by reducing estimator variance, which is taken to be the

variance of limiting normal distribution. This approach, however, su�ers some drawbacks: �rst the variance

is asymptotic, and second, it may be cumbersome to validate some of the assumptions underlying the central

limit theorem. In this paper we analyze simulation e�ciency from another point of view|the coverage

probability obtained by applying the large deviations principle. We established large deviations results for

quantile estimation, and the convergence rate is considered as a measure of estimator e�ciency. It is shown

that variance reduction techniques can be used to enhance the convergence rate.

Particularly and perhaps more importantly, we proposed a new sampling plan for estimating quantiles

using the Latin Hypercube Sampling. Both theoretical and experimental results provide substantial evidence

that our new sampling plan is orders of magnitude better than independent sampling in all cases and improves

upon a previous estimator in simulating rare events.

Immediate work in progress includes investigating whether or not Corollary 4.1 holds for d > 1, and

obtaining satisfying explanations for the empirical results involving the median estimator. Avenues for

further research include applying some commonly used variance reduction techniques, e.g., control variates

and antithetic sampling, to increase convergence rate, and to combine important sampling with our new

sampling plan to improve the estimator accuracy. We would also like to investigate the use of quasi-Monte

Carlo methods (e.g., Niederreiter (1992)) in place of, or in combination with, LHS.

7 Appendix

Proof of Lemma 2.2: We prove this result by using Lemma 2.1. To this end, let gi(�) : R! R be a non-

negative monotone function, i = 1; :::; n and they are concordant. It is easy to verify from the de�nition of

negative dependence that gi(Yi); i = 1; :::; n, are negative dependent if Yi; i = 1; :::; n, are negative dependent.

Note that X(j) = (X
(j)
1 ; :::; X

(j)
n ); j = 1; :::; d; are mutually independent. Then by Lemma 2.1,

E

"
nY
i=1

gi(fi(X
(1)
i
; :::; X

(d)
i

))

#

= E

"
E

"
nY
i=1

gi(fi(X
(1)
i
; :::; X

(d)
i

))

�����X(2)
i
; :::; X

(d)
i

; i = 1; :::; n

##

� E

"
nY
i=1

E
h
gi(fi(X

(1)
i
; :::; X

(d)
i

))
���X(2)

i
; :::; X

(d)
i

; i = 1; :::; n
i#

= E

"
E

"
nY
i=1

E
h
gi(fi(X

(1)

i
; :::; X

(d)

i
))
���X(2)

i
; :::; X

(d)

i
; i = 1; :::; n

i�����X(3)

i
; :::; X

(d)

i
; i = 1; :::; n

##

� E

"
nY
i=1

E
h
gi(fi(X

(1)
i
; :::; X

(d)
i

))
���X(3)

i
; :::; X

(d)
i

; i = 1; :::; n
i#

� :::

�
nY

i=1

E
h
gi(fi(X

(1)
i
; :::; X

(d)
i

))
i
:

By taking gi(x) = I(x � xi); i = 1; :::; n and gi(x) = I(x � xi); i = 1; :::; n respectively, we arrive at the
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conclusion. 2

Proof of Lemma 4.1: Without loss of the generality, suppose the function h(x1; x2; :::; xd) is increasing

with respect to each coordinate since, for example, the function h(�x01; x2; :::; xd) (where x01 = �x1) will be
decreasing function of x01(with all other coordinates held �xed) if h(x1; x2; :::; xd) is increasing with respect

to x1: And, moreover, let h
�1
j
(x1; :::; xj�1; xj+1; :::; xd) denote the inverse function of h(x1; x2; :::; xd) which

is considered as the function of xj (with all other coordinates held �xed).

Note that by de�nition, ehj(�r � " : xj ; xj+1; :::; xd); considered as a function of xj (with all other coordi-

nates held �xed), is a non-increasing function.

Hence,
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Note that
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