Preparing the measurement of anapole moment in a chain of francium isotopes
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
This thesis presents the current status of the experimental efforts towards the measurement of the anapole moment in francium. The anapole moment is a parity violating, time-reversal conserving nuclear moment that arises from the weak interaction among nucleons. It is nuclear spin dependent and sensitive to the configuration of nuclear structure. Our experimental scheme is to perform a direct measurement of the anapole moment, by driving a parity forbidden E1 transition between ground hyperfine states in a series of francium isotopes inside a blue detuned dipole trap at the electric anti-node of a microwave cavity. We explore the tests using rubidium isotopes. The francium experiment will be moved to the ISAC radioactive beam facility of TRIUMF, Canada. During the preparation of the apparatus, we test the coherent control of the ground states via microwave and Raman beams, characterize the performance of a blue detuned dipole trap and study the atomic dynamics inside it using both classical and quantum methods. We also measure the lifetime of excited 5d states in Rb, with less than 1% uncertainty, to test and help to improve the current atomic structure theories.