Nonlinear Complexity of Boolean Permutations

dc.contributor.advisorWashington, Lawrence Cen_US
dc.contributor.authorDraper, Thomas Gordonen_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2009-10-06T05:32:24Z
dc.date.available2009-10-06T05:32:24Z
dc.date.issued2009en_US
dc.description.abstractWe introduce the concept of nonlinear complexity, where the complexity of a function is determined by the number of nonlinear building blocks required for construction. We group functions by linear equivalence, and induce a complexity hierarchy for the affine equivalent double cosets. We prove multiple invariants of double cosets over the affine general linear group, and develop a specialized double coset equivalence test. This is used to classify the 16! permutations over 4 bits into 302 equivalence classes, which have a maximal nonlinear depth of 6. In addition, we present a new complexity class defined in terms of nonlinearity.en_US
dc.format.extent491335 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/9449
dc.language.isoen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledBooleanen_US
dc.subject.pquncontrolledComplexityen_US
dc.subject.pquncontrolledNonlinearen_US
dc.subject.pquncontrolledPermutationen_US
dc.titleNonlinear Complexity of Boolean Permutationsen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Draper_umd_0117E_10256.pdf
Size:
479.82 KB
Format:
Adobe Portable Document Format