Nonlinear Complexity of Boolean Permutations
Nonlinear Complexity of Boolean Permutations
Files
Publication or External Link
Date
2009
Authors
Advisor
Citation
DRUM DOI
Abstract
We introduce the concept of nonlinear complexity, where the complexity of a function is determined by the number of nonlinear building blocks required for construction. We group functions by linear equivalence, and induce a complexity hierarchy for the affine equivalent double cosets. We prove multiple invariants of double cosets over the affine general linear group, and develop a specialized double coset equivalence test. This is used to classify the 16! permutations over 4 bits into 302 equivalence classes, which have a maximal nonlinear depth of 6. In addition, we present a new complexity class defined in terms of nonlinearity.