ANALYTIC $\text{SO}^\circ(p,q)$ ACTIONS ON CLOSED, CONNECTED $(p+q-1)$-DIMENSIONAL MANIFOLDS

dc.contributor.advisorMelnick, Karinen_US
dc.contributor.authorLentas, Spyridonen_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2025-08-08T12:12:28Z
dc.date.issued2025en_US
dc.description.abstractThis thesis provides a classification of analytic actions of the semiorthogonal group $\text{SO}^\circ(p,q)$, where $p \geq 3$, on closed, connected $(p+q-1)$-dimensional manifolds. Adapting Uchida's construction of $\text{SO}^\circ(p,q)$ actions on $\text{S}^{p+q-1}$, we explicitly construct analytic actions of $\text{SO}^\circ(p,q)$ on $\text{S}^{p} \times \text{S}^{q-1}$ and $\text{S}^{p-1} \times \text{S}^{q}$, as well as actions on $\text{SO}^\circ(p,q) \times_P \text{S}^1$, where $P$ is a maximal parabolic subgroup of $\text{SO}^\circ(p,q)$. The central result of this thesis demonstrates that any analytic $\text{SO}^\circ(p,q)$ action on a closed, connected $(p+q-1)$-dimensional manifold is covered by one of the constructed actions. For $q \neq 2$, the actions of $\text{SO}^\circ(p,q)$ correspond to a particular class of vector fields on the circle, while for $q = 2$, they correspond to actions of $\text{SO}^\circ(1,2)$ on either the sphere or the torus.en_US
dc.identifierhttps://doi.org/10.13016/eqf3-3df8
dc.identifier.urihttp://hdl.handle.net/1903/34254
dc.language.isoenen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledanalytic actionsen_US
dc.subject.pquncontrolledLie group actionsen_US
dc.subject.pquncontrolledsemiorthogonal groupen_US
dc.titleANALYTIC $\text{SO}^\circ(p,q)$ ACTIONS ON CLOSED, CONNECTED $(p+q-1)$-DIMENSIONAL MANIFOLDSen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lentas_umd_0117E_25118.pdf
Size:
726.72 KB
Format:
Adobe Portable Document Format