ANALYTIC $\text{SO}^\circ(p,q)$ ACTIONS ON CLOSED, CONNECTED $(p+q-1)$-DIMENSIONAL MANIFOLDS
dc.contributor.advisor | Melnick, Karin | en_US |
dc.contributor.author | Lentas, Spyridon | en_US |
dc.contributor.department | Mathematics | en_US |
dc.contributor.publisher | Digital Repository at the University of Maryland | en_US |
dc.contributor.publisher | University of Maryland (College Park, Md.) | en_US |
dc.date.accessioned | 2025-08-08T12:12:28Z | |
dc.date.issued | 2025 | en_US |
dc.description.abstract | This thesis provides a classification of analytic actions of the semiorthogonal group $\text{SO}^\circ(p,q)$, where $p \geq 3$, on closed, connected $(p+q-1)$-dimensional manifolds. Adapting Uchida's construction of $\text{SO}^\circ(p,q)$ actions on $\text{S}^{p+q-1}$, we explicitly construct analytic actions of $\text{SO}^\circ(p,q)$ on $\text{S}^{p} \times \text{S}^{q-1}$ and $\text{S}^{p-1} \times \text{S}^{q}$, as well as actions on $\text{SO}^\circ(p,q) \times_P \text{S}^1$, where $P$ is a maximal parabolic subgroup of $\text{SO}^\circ(p,q)$. The central result of this thesis demonstrates that any analytic $\text{SO}^\circ(p,q)$ action on a closed, connected $(p+q-1)$-dimensional manifold is covered by one of the constructed actions. For $q \neq 2$, the actions of $\text{SO}^\circ(p,q)$ correspond to a particular class of vector fields on the circle, while for $q = 2$, they correspond to actions of $\text{SO}^\circ(1,2)$ on either the sphere or the torus. | en_US |
dc.identifier | https://doi.org/10.13016/eqf3-3df8 | |
dc.identifier.uri | http://hdl.handle.net/1903/34254 | |
dc.language.iso | en | en_US |
dc.subject.pqcontrolled | Mathematics | en_US |
dc.subject.pquncontrolled | analytic actions | en_US |
dc.subject.pquncontrolled | Lie group actions | en_US |
dc.subject.pquncontrolled | semiorthogonal group | en_US |
dc.title | ANALYTIC $\text{SO}^\circ(p,q)$ ACTIONS ON CLOSED, CONNECTED $(p+q-1)$-DIMENSIONAL MANIFOLDS | en_US |
dc.type | Dissertation | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Lentas_umd_0117E_25118.pdf
- Size:
- 726.72 KB
- Format:
- Adobe Portable Document Format