Polynomials with Equal Images over Number Fields

dc.contributor.advisorWashington, Lawrence Cen_US
dc.contributor.authorHirsh, Jordanen_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2024-09-23T05:42:18Z
dc.date.available2024-09-23T05:42:18Z
dc.date.issued2024en_US
dc.description.abstractChapman and Ponomarenko [1] characterized when two polynomials f, g ∈ Q[x] have thesame image f(Z) = f(Z). We extend this result to rings of integers in number fields. In particular, if K is a finite extension of Q and O is the ring of algebraic integers in K, we characterize when polynomials f, g ∈ K[x] satisfy f(O) = g(O). As part of our proof, we give a variant of Hilbert’s irreducibility theorem.en_US
dc.identifierhttps://doi.org/10.13016/kv9s-fltz
dc.identifier.urihttp://hdl.handle.net/1903/33299
dc.language.isoenen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledFieldsen_US
dc.subject.pquncontrolledImagesen_US
dc.subject.pquncontrolledIrreducibilityen_US
dc.subject.pquncontrolledPolynomialsen_US
dc.subject.pquncontrolledrootsen_US
dc.subject.pquncontrolledunityen_US
dc.titlePolynomials with Equal Images over Number Fieldsen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Hirsh_umd_0117E_24470.pdf
Size:
270.17 KB
Format:
Adobe Portable Document Format