Polynomials with Equal Images over Number Fields
dc.contributor.advisor | Washington, Lawrence C | en_US |
dc.contributor.author | Hirsh, Jordan | en_US |
dc.contributor.department | Mathematics | en_US |
dc.contributor.publisher | Digital Repository at the University of Maryland | en_US |
dc.contributor.publisher | University of Maryland (College Park, Md.) | en_US |
dc.date.accessioned | 2024-09-23T05:42:18Z | |
dc.date.available | 2024-09-23T05:42:18Z | |
dc.date.issued | 2024 | en_US |
dc.description.abstract | Chapman and Ponomarenko [1] characterized when two polynomials f, g ∈ Q[x] have thesame image f(Z) = f(Z). We extend this result to rings of integers in number fields. In particular, if K is a finite extension of Q and O is the ring of algebraic integers in K, we characterize when polynomials f, g ∈ K[x] satisfy f(O) = g(O). As part of our proof, we give a variant of Hilbert’s irreducibility theorem. | en_US |
dc.identifier | https://doi.org/10.13016/kv9s-fltz | |
dc.identifier.uri | http://hdl.handle.net/1903/33299 | |
dc.language.iso | en | en_US |
dc.subject.pqcontrolled | Mathematics | en_US |
dc.subject.pquncontrolled | Fields | en_US |
dc.subject.pquncontrolled | Images | en_US |
dc.subject.pquncontrolled | Irreducibility | en_US |
dc.subject.pquncontrolled | Polynomials | en_US |
dc.subject.pquncontrolled | roots | en_US |
dc.subject.pquncontrolled | unity | en_US |
dc.title | Polynomials with Equal Images over Number Fields | en_US |
dc.type | Dissertation | en_US |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Hirsh_umd_0117E_24470.pdf
- Size:
- 270.17 KB
- Format:
- Adobe Portable Document Format