CHARACTERIZING BACTERIAL COMMUNITIES ACROSS DIVERSE TOBACCO PRODUCTS AND DYSBIOSIS IN THE ORAL MICROBIOME RESULTING FROM TOBACCO USE

Loading...
Thumbnail Image

Publication or External Link

Date

2022

Citation

Abstract

To evaluate the adverse health effects associated with tobacco smoking, the majority of studies have largely focused on the impact of chemical constituents in tobacco products and less on the impact of microbial contaminants within these products. Similarly, the United States (U.S.) Food and Drug Administration’s (FDA) Family Smoking Prevention and Tobacco Control Act (FSPTCA) requires tobacco manufacturers and importers to test and report on chemical constituents included on their list of harmful and potentially harmful constituents (HPHCs) in tobacco products and tobacco smoke; however, this HPHC list excludes microorganisms. Nevertheless, over the past decade, an increasing number of studies have explored the bacterial microbiome of tobacco products (e.g., cigarettes, little cigars, cigarillos, hookah and smokeless tobacco) and mainstream smoke. These studies have yielded robust data on bacterial diversity and bacterial community composition within individual tobacco product types. However, to date, there are no comparative characterizations of the bacterial microbiome across diverse tobacco products. In particular, there have been no studies that have characterized the metabolically-active (live) bacterial communities across these products; bacterial communities that might be transferred to the user’s oral cavity and cause subsequent adverse health effects. Furthermore, from an oral health perspective, while smoking/using tobacco products causes significant oral dysbiosis (bacterial community disturbances), there is a lack of data on the potential transfer of bacteria from tobacco products to user’s oral cavities or transient temporal changes in the oral microbiome that might result from smoking these tobacco products. Moreover, there are limited data comparing oral microbiome differences between cigarette smokers and smokeless tobacco users.

To address these knowledge gaps, my dissertation research involved a comparative analysis of the bacterial microbiome of commercially-available tobacco products and anevaluation of the impacts of tobacco use on the oral microbiome of users. My specific aims were: 1) To evaluate the compositional differences in the bacterial microbiome between conventional tobacco products; 2) To evaluate transient changes in the oral microbiome of cigarette smokers after a single use of a little cigar; and 3) To conduct a comparative characterization of the oral microbiome between cigarette users, smokeless tobacco users, and non-users over time.

Overall, I found that each type of conventional tobacco product harbored a significantly different bacterial community, with mentholation and/or flavoring being a significant driver of bacterial community changes. However, across all products the majority of the metabolically-active bacterial community was identified as Pseudomonas, along with members of the phylum Firmicutes, as well as a few pathogenic species previously associated with animal/human respiratory diseases. In analyzing the oral microbiome of cigarette smokers, I found that a singleuse of a little cigar product did not cause transient changes in the oral microbiome. In analyzing longer temporal effects of smoking on the oral microbiome, I found that, even though total bacterial diversity and composition did not change over time, multiple bacterial taxa were significantly different, with regard to their relative abundance, after four months. In addition, I found that dysbiosis of the oral microbiome was dependent on the type of tobacco product used (cigarettes or smokeless tobacco), and that tobacco smokers/users’ oral microbiomes harbored a more diverse set of bacterial species when compared to that of non-users.

In summary, this work provides a comparative analysis of the total and metabolically-active bacterial microbiome of tobacco products, as well as rich findings regarding the relationship between tobacco use and oral microbiome dysbiosis. These data address major research priorities of the FDA relating to furthering our understanding of the adverse health risksassociated with tobacco smoking. Specifically, my data will add to the current body of knowledge regarding the potential role of tobacco bacterial communities in the development of smoking-related diseases. My data also can be leveraged by tobacco regulatory bodies to make future evidence-based policy changes that help reduce risks associated with microorganisms in tobacco products and protect public health.

Notes

Rights