Length Spectral Rigidity of Non-Positively Curved Surfaces

Loading...
Thumbnail Image

Files

Publication or External Link

Date

2011

Citation

DRUM DOI

Abstract

Length spectral rigidity is the question of under what circumstances the geometry of a surface can be determined, up to isotopy, by knowing only the lengths of its closed geodesics. It is known that this can be done for negatively curved Riemannian surfaces, as well as for negatively curved cone surfaces. Steps are taken toward showing that this holds also for flat cone surfaces, and it is shown that the lengths of closed geodesics are also enough to determine which of these three categories a geometric surface falls into. Techniques of Gromov, Bonahon, and Otal are explained and adapted, such as topological conjugacy, geodesic currents, Liouville measures, and the average angle between two geometric surfaces.

Notes

Rights