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Length spectral rigidity is the question of under what circumstances the ge-

ometry of a surface can be determined, up to isotopy, by knowing only the lengths
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explained and adapted, such as topological conjugacy, geodesic currents, Liouville

measures, and the average angle between two geometric surfaces.
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Chapter 1

Introduction

Let S be a fixed closed, orientable surface of genus at least 2. Let Γ be the

fundamental group of S, and C the set of isotopy classes of closed curves on S.

Consider the following three moduli spaces of marked geometric surfaces home-

omorphic to S, each up to isometry isotopic to the identity:

• Neg(S) - Riemannian surfaces of variable, but strictly negative curvature,

• Neg*(S) - Riemannian cone surfaces of strictly negative curvature, with all

cone angles in excess of 2π,

• Flat*(S) - Flat cone surfaces, with all cone angles in excess of 2π.

Let NonPos(S) denote the disjoint union of these three moduli spaces. Any

X ∈ NonPos(S) defines a marked length spectrum, a functional on C which associates

to each α ∈ C the length of the unique geodesic in X which is in the isotopy class

α. Letting RC denote the space of all functionals on C, this determines a mapping

l : NonPos(S) −→ RC .

The question of spectral rigidity asks whether this mapping, possibly when

restricted to some proper subset, is injective. If l is injective on some subspace

Σ ⊂ NonPos(S), then Σ is said to be spectrally rigid over C. This means that
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knowing the lengths of all closed geodesics on a surface in Σ is enough to determine

the entire geometry of the surface up to isotopy.

This paper proves the following two results, with an immediate corollary:

Theorem 1 The image of Neg(S) in RC intersects neither the image of Neg*(S)

nor the image of Flat*(S). That is, no Riemannian surface has the same length

spectrum as a surface with cone points.

Theorem 2 The images of Neg*(S) and Flat*(S) in RC are disjoint. That is, no

negatively curved cone surface has the same length spectrum as a flat surface.

Corollary These three moduli spaces have pairwise disjoint images in RC .

J.P. Otal [16] proved in 1990 that Neg(S) is spectrally rigid, i.e. that l is injec-

tive when restricted to Neg(S). Sa’ar Hersonsky and Frédéric Paulin [10] adapted

Otal’s proof in 1997 to show that Neg*(S) is also spectrally rigid. If it were proved

that Flat(S) were spectrally rigid as well, then these results, combined with Theo-

rems 1 and 2, would show that l is injective on all of NonPos(S). To the author’s

knowledge, this has not been proved. An discussion is included as to why the author

believes this result should be true, as well as a framework for a possible argument,

but no complete proof is given.

A recent paper of Moon Duchin, Christopher Leininger, and Kasra Rafi [7]

showed that the subspace of Flat*(S) consisting of all flat surfaces whose cone angles

2



are multiples of π is spectrally rigid over all simple closed curves, thus proving a

much stronger rigidity result for a much smaller class of structures. Their proof

relies strongly on the fact that such a flat surface can be defined from a quadratic

differential on a Riemann surface, which is not true of a general flat surface.

The method of proof of Theorems 1 and 2 uses machinery developed by Bona-

hon ([3], [4]) and Otal to translate between length spectra and measure-theoretic

objects called Liouville measures, which are definable from a surface (see prop. 5.2,

and also see [14] for other types of objects which are equivalent to length spectra).

A large role is also played by the notion of topological conjugacy, by which the

geodesic structures of any two surfaces in NonPos(S) may be identified with each

other (prop. 4.4).

The paper is structured as follows. Chapter 2 outlines the theory of conjugacy

and Liouville currents for Neg(S). Chapters 3 and 4 do the same for Neg*(S) and

Flat*(S), focusing on the differences that arise from the addition of cone points

and flat curvature. Chapter 5 presents the proofs of Theorems 1 and 2, as well as

arguments concerning the rigidity of Flat*(S).
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Chapter 2

Negatively curved Riemannian surfaces

Let X be a negatively curved Riemannian surface with a marking homeomor-

phism X → S. Throughout, the Riemannian surface X and the marking may vary,

but S will be forever fixed.

A result of Melvyn Berger [1] from the early 70’s gives a complete classification

of all compact, negatively curved Riemannian surfaces in terms of three pieces of

data: the genus of the surface, the conformal class of the metric, and the pointwise

Gaussian curvature function.

Proposition 2.1 Let Σ be a compact Riemann surface. Then any smooth, negative

function K : Σ→ R is the Gaussian curvature of a unique metric in the conformal

class of Σ.

The proof involves choosing a base metric in the conformal class and solving

an elliptic partial differential equation to find a function which conformally deforms

the base metric to one with the given curvature. Similar results for cone structures

will be noted in further chapters.

With this result, the moduli space of negatively curved Riemannian structures

on S can be described as a product of the Teichmuller space of conformal structures

with a function space of smooth, negative functions on S.
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2.1 Boundary at infinity and conjugacy

The notion of topological conjugacy of surfaces is central to the arguments

herein. The idea is that given any two homeomorphic non-positively curved Rie-

mannian surfaces, there is a direct correspondence between the structures of their

geodesics. This correspondence will be described below for negatively curved Rie-

mannian surfaces, and extended to cone surfaces in the following chapters. First we

must define the boundary at infinity of a negatively curved Riemannian surface X.

Let X̃ denote the metric universal cover of X. Two oriented geodesics of X̃

are said to be asymptotic if they stay within a bounded distance of each other for all

positive time (note that this is independent of orientation-preserving reparametriza-

tion). This is clearly an equivalence relation.

The space of equivalence classes, with a cone topology defined from half-spaces

in X̃ (see [5]), is called the boundary at infinity of X̃ and is denoted ∂∞X̃, or by

slight abuse, ∂∞X. A single equivalence class in ∂∞X is a “point” at infinity.

Topologically ∂∞X is a circle, and the union X̃ ∪ ∂∞X can be topologized so that

it is a compactification of X̃, homeomorphic to a 2-disk. Since π1(X) acts on X̃ by

isometries, this action extends to ∂∞X.

An important feature of a negatively curved Riemannian surface X is that

∂∞X is homeomorphic to the “visual sphere” at any point in X̃, via the exponential

map. If T 1
p X̃ is the circle of unit vectors at a point p ∈ X̃, then the map T 1

p X̃ → ∂∞X

which sends a vector v to the asymptotic class of the geodesic through p in the

direction of v is a homeomorphism. This will contrast with the cone structures
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considered later.

p
T 1
p X̃

Figure 2.1: Exponential map is a homeomorphism to the boundary

Any oriented geodesic γ on X̃ determines two endpoints at infinity, one in the

positive direction and one in the negative. Conversely, any two distinct points a and

b at infinity determine a unique oriented geodesic with initial point a and terminal

point b (note that this latter property will fail for the flat structures considered

later).

The universal cover X̃ is an example of a Hadamard space: a complete, simply

connected, non-positively curved length space. It is also a hyperbolic space in the

sense of Gromov (see [9]). The group Γ = π1(S) acts on X̃ via the marking X → S.

This action is discrete and cocompact, as a group of isometries. For the following

result, see [9] and [8].

Proposition 2.2 If a finitely generated group G acts discretely, cocompactly, and

isometrically on two hyperbolic Hadamard spaces, then there is a G-equivariant

homeomorphism between their respective boundaries at infinity.

Corollary 2.3 Let X1 and X2 be negatively curved Riemannian surfaces with mark-
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ings fi : Xi → S. Lift f−1
2 ◦ f1 to the universal covers and extend to the boundary

to obtain a map φ : ∂∞X1 → ∂∞X2. Then φ is a homeomorphism equivariant with

respect to the actions of Γ.

The map φ in the proposition is called a conjugacy map. Note that, since S

is a closed surface, the endpoints of invariant axes of isometries in Γ are dense in

the boundary. This implies that φ must be unique, since the requirement that φ is

Γ-equivariant determines the map on this dense subset.

Also note that the conjugacy map depends on the markings chosen for X1

and X2, since these markings are needed to define the actions of Γ = π1(S) on the

boundaries. If one or both markings are changed, the conjugacy map will be altered

by an appropriate mapping class. In fact, the conjugacy map only depends on the

isotopy types of the markings, since two isotopic maps X1 → X2 will have the same

extension to the boundary. Thus the natural setting is the space Neg(S) of isotopy

classes of negatively curved manifolds marked to S.

The importance of the conjugacy map is that (as we will see) there are various

objects definable from a negatively curved surface using only the action of Γ on its

boundary. Then the existence of the conjugacy map will show that such objects

depend (up to topological considerations) only on the underlying smooth surface.

Conjugacy maps can be better understood by thinking about geodesics and

quasi-geodesics on a universal cover X̃ (a quasi-geodesic is the image of quasi-

isometry R → X̃). It is a well-known fact that any quasi-geodesic in a simply-

connected, negatively curved space is a bounded distance from a unique geodesic
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(this will contrast slightly with the flat case). The composition f = f−1
2 ◦ f1 of the

markings is a quasi-isometry of X1 and X2, simply because they are compact. Thus

it lifts to a quasi-isometry f̃ : X̃1 → X̃2.

Then the conjugacy map between ∂∞X1 and ∂∞X2 can be defined as follows.

Choose an oriented geodesic γ on X̃1 and let a be its terminal endpoint at infinity.

The “same” curve in X̃2 (in other words, f̃ ◦ γ) is probably not a geodesic in the

metric of X̃2, but it is a quasi-geodesic, and its terminal endpoint at infinity is

defined to be φ(a). It is clear that a mapping defined this way is Γ-equivariant.

It will also be useful to have a purely topological model for the boundary at

infinity, defined using only the smooth surface S. Let G be the Cayley graph of Γ,

based on the standard set of generators. Define ∂∞S to be the set of asymptotic

classes of graph geodesics in G (note that two graph geodesics are asymptotic if and

only if they are eventually equal). As before, the action of Γ on G extends to ∂∞S,

since this action is by graph isometries.

Given a marking of a Riemannian manifold X1 → S, G can be embedded into

X̃1 after choosing a basepoint on the surface, and such an embedding is a quasi-

isometry from the graph metric on G to the Riemannian metric on X̃1. Then, as

above, any geodesic inG becomes a quasi-geodesic in X̃1, so by similar considerations

there is a Γ-equivariant map φ1 : ∂∞X1 → ∂∞S. Given another structure X2, there

is a similar map φ2 : ∂∞X2 → ∂∞S, and φ = φ−1
2 ◦φ1 is the conjugacy map between

the two structures.
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2.2 Geodesic currents

The space of geodesic currents was introduced by Bonahon ([3], [4]) as a com-

pletion of the set of weighted closed curves on a surface. Bonahon showed that the

Fricke space of hyperbolic metrics on S can be embedded naturally into the space

of geodesic currents; this has been extended to more general types of moduli spaces

of geometric structures, via the Liouville measures defined below.

Given a negatively curved Riemannian surface X, we can identify the space

G(X̃) of complete unoriented geodesics of X̃ with (∂∞X × ∂∞X \ ∆)/Z2; that is,

unordered pairs of distinct points at infinity. Since ∂∞X is topologically a circle,

G(X̃) is homeomorphic to an open Moebius strip. A metric geodesic current on X

is defined to be a Borel measure on G(X̃) which is invariant under the (diagonal)

action of π1(X). The collection of all such measures is denoted C(X), and given a

weak* uniform measure topology.

This construction can be mimicked using only the topological surface S. Define

G(S̃) as (∂∞S× ∂∞S \∆)/Z2, and let C(S) denote the space of topological geodesic

currents on S, i.e. Γ-invariant Borel measures on G(S̃). Given a marking f : X →

S, the conjugacy map φ : ∂∞X → ∂∞S induces an equivariant homeomorphism

φ×φ : G(X̃)→ G(S̃). Thus C(X) is identified with C(S). Note once again that this

identification depends on the isotopy type of the marking.

A geodesic current on X can also be thought of as a transverse invariant

measure to the geodesic foliation on the unit tangent bundle of X. In fact, this is

how Bonahon first defined currents in [3]. The geodesic foliation has codimension
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2, so the invariant measures are defined on subsurfaces. Since this foliation can be

constructed using only the Γ-action on ∂∞X, the currents so defined again depend

only on S and the marking.

Recall that Neg(S) denotes the moduli space of isotopy classes of negatively

curved manifolds with markings to S. If X denotes a class in Neg(S), then we can

write C(X) without any ambiguity, since for any two marked surfaces in the class

X, the conjugacy between their boundaries is induced by an isometry. Furthermore,

C(X) is uniquely identified with C(S), since the identification depends only on the

isotopy type of the marking. This means we can pass freely and without comment

between the (metric) currents C(X) and the (topological) currents C(S). We will

take this point of view hereafter.

Let C be the (discrete) set of homotopy classes of closed curves on S. For any

class α ∈ C, we can define a geodesic current (also denoted α ∈ C(S)) as follows.

Choose any X ∈ Neg(S) , and let γ be the unique X-geodesic in the class of α. The

complete lift of γ to X̃ can be thought of as a discrete subset of G(X), so define

the current associated to α as the Dirac measure on this subset. This measure is

trivially Γ-invariant, since the complete lift was taken. It is clear that the current

thus defined does not depend on the choice of X.

Extend this to the space C ×R+ of weighted curves by multiplying the Dirac

measure by the weight. This gives an embedding of C ×R+ into C(S), and one of

the fundamental results about currents is that the image of this embedding is dense

in C(S) [2].

The space C(S) also carries a symmetric, continuous bilinear form called the
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intersection form, which is an extension of the geometric intersection number on C.

We will only need to intersect currents in the case that at least one current comes

from C, so we give the definition in this case. Let α ∈ C, and µ ∈ C(S). Recall that

α can be thought of as a conjugacy class of Γ, and let γ ∈ α be a representative.

Choose a reference metric X ∈ Neg(S), and let I be a fundamental domain for the

action of γ on its axis in X̃. Then i(µ, α) is the µ-measure of the set of all geodesics

in G(X̃) which intersect I. Since µ is Γ-invariant, it is easy to see that this does not

depend on the choice of conjugacy class representative or fundamental domain. It

is also easy to see that the intersection number does not depend on the negatively

curved reference metric chosen.

The following result of Otal [16] will be important for much of what follows.

Proposition 2.4 A geodesic current is determined by its intersection numbers with

all currents in C. That is, if µ, ν ∈ C(S) and i(µ, α) = i(ν, α) for all α ∈ C, then

µ = ν.

This result can be interpreted as follows. Let RC denote the space of real-

valued functionals on C. There is a mapping I : C(S) → RC given by µ 7→ (α 7→

i(µ, α)). The above proposition states that I is injective.

2.3 The Liouville current of a negatively curved metric

Given any negatively curved Riemannian surface with a marking to S, there

is an associated geodesic current in C(S), called the Liouville current of the marked

surface. The Liouville current of a marked surface depends on the marking up to
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isotopy, so this can be thought of as a mapping L : Neg(S) → C(S), denoted as

L(X) = LX . The Liouville current can be constructed in three ways, each of which

is illuminating in different contexts. An outline of an argument is then given as to

why each of these constructions yields the same result.

2.3.1 The Liouville current as a transverse measure

Recall that a geodesic current can be thought of as a transverse invariant

measure to the geodesic foliation on the unit tangent bundle, with respect to some

reference metric class. The topological structure of this foliation does not depend

on the negatively curved reference metric chosen, so any convenient choice may be

made.

Given a negatively curved Riemannian surface X, there is a standard volume

measure on T1X which is locally the product of the Riemannian volume form on X

with the Lebesgue measure on each circular fiber, and which is invariant under the

geodesic flow. Taking the interior product of this 3-form with the unit vector field

that generates the geodesic flow results in a 2-form which is zero along the leaves

of the geodesic foliation. Then the absolute value of this 2-form is a transverse

invariant measure, and this is the Liouville current LX .

2.3.2 The Liouville current from a cross-ratio on ∂∞S

The Liouville current can also be constructed as a measure on G(S̃) = (∂∞S×

∂∞S \ ∆)/Z2 by specifying the measure of each product rectangle. Let [a, b] and
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[c, d] be non-overlapping segments in ∂∞S. Then [a, b]× [c, d] is a rectangle in G(S̃),

consisting of all geodesics with one endpoint on [a, b] and the other on [c, d]. Then

we define LX([a, b] × [c, d]) = |CX(a, b, c, d)|, where CX is a real-valued function

called the cross-ratio of X that takes four distinct points on ∂∞S. It remains to

define this cross-ratio.

a

b

c

d

ai

di

bi

ci

+

+

−

−

Figure 2.2: The cross-ratio CX(a, b, c, d).

Let ai be a sequence of points in X̃ limiting to a at the boundary, and similarly

for the other points b, c, d. Then the cross-ratio of X is defined as

CX(a, b, c, d) =
1

2
lim(d(ai, ci) + d(bi, di)− d(ai, di)− d(bi, ci)),

where d is the Riemannian distance function in X̃, and the limit is taken as ai → a,

etc. It can be shown using horocycles that this limit always exists and is finite,

and does not depend on the choice of sequences limiting to a, b, c, d. This is done

explicitly in section 4.2.1 for the case of a flat structure. Note that CX is invariant

under the action of Γ on ∂∞S, since Γ acts by isometries.
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Now that the measure LX is defined on rectangles, it can be extended to a

Borel measure using the Carathéodory construction. This is carried out in detail in

([10] Thm 4.4). The basic steps are to use the rectangle measure to build an outer

measure on G(S̃), invoke the Carathéodory construction to produce a collection of

measurable sets, and then check that all Borel sets are measurable and that the

measure produced does what we expect on the rectangles.

The resulting Borel measure on G(S̃) is invariant under Γ since CX is, and this

is the Liouville current LX .

2.3.3 The Liouville current in geodesic-angle coordinates

Let γ be a complete geodesic in X̃, with endpoints a, b ∈ ∂∞S, and let G(γ) be

the open set of all geodesics in G(S̃) that intersect γ transversely in X̃. Let t 7→ γ(t)

be a unit-speed parametrization of γ.

Any geodesic in G(γ) intersects γ at a single point, and with some angle.

Then the mapping ξX,γ : G(γ) → R × (0, π), which takes a geodesic to (t, θ), the

parameter of its intersection point with γ together with the angle of intersection, is

a homeomorphism. This map is called a geodesic-angle coordinate on G(S̃), and is

uniquely defined by choosing the geodesic γ, along with an orientation and an origin

for γ.

As γ varies over all geodesics in X̃, the sets G(γ) form an open cover of

G(S̃). Each set in the open cover comes with a homeomorphism to R × (0, π).

Let dλ = 1
2

sin θdθdt be a measure on R × (0, π), and pull back dλ through each
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a b

c

d

γ
γ(t)

θ

a

b

d

a c b

X̃

G(S̃)

θ

t

R× (0, π)

ξX,γ

Figure 2.3: A geodesic-angle coordinate on G(S̃).

ξX,γ. This defines a measure on each G(γ); to see that these measures agree on

intersections, see ([19], Ch. 19). Note that since dλ is invariant in t, the choice of

orientation and origin of γ does not affect the pullback of the measure.

This defines a measure on G(S̃), and again the fact that Γ acts by isometries

implies that this measure is Γ-invariant, so it is a geodesic current.

2.3.4 All three constructions yield the same geodesic current LX

It is important to note where, in each of these constructions, the specific

geometry of the structure X comes into play.

15



In the invariant transverse measure construction, it is in the use of the volume

form on X, which is computed from the metric tensor. The derivative of the geodesic

flow also depends strongly on the geometry of X, even though the foliation structure

does not.

In the cross-ratio construction, it is in the cross-ratio function itself, which

uses the Riemannian distance function on X̃.

In the geodesic-angle construction, all the geometry of X is contained in the

coordinate functions ξX,γ. The measure dλ can be thought of as the “raw material”

that all Liouville currents are made of, and the geodesic-angle coordinates describe

how to arrange the raw materials to create the current that represents the specific

Riemannian surface.

It remains to show that all three of these constructions result in the same

geodesic current. The basis for this is the following lemma, the proof of which is

outlined with references.

Lemma 2.5 For each of the three constructions, the current LX produced satisfies

the following property: given any geodesic segment I in X̃, the LX-measure of the

open set of all geodesics intersecting I is equal to the length of I.

Proof. This is easiest for the geodesic-angle construction, where it follows from a

simple integration on G(γ), where γ is the complete geodesic carrying I, and using

the fact that the parametrization of γ is by arc-length.

For the invariant transverse measure construction, the argument can be found

in [4] Prop 14, and involves integrating along a flow box of the geodesic flow con-
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taining I.

For the cross-ratio construction, see [10], Prop 4.7. The proof here involves a

clever partition of the set of geodesics intersecting I, as well as some identities of

the cross-ratio function.

Proposition 2.6 For any negatively curved Riemannian surface X, the three ver-

sions of the Liouville current LX given here are all equal.

Proof. Let α ∈ C be an isotopy class of curves on S. Recall that the intersection

i(LX , α) is defined to be the LX-measure of the set of all geodesics intersecting

a fundamental domain for the action of α on its axis. By the lemma, for any of

the three current constructions, this intersection is the length of the fundamental

domain, which is the same as the length of the unique geodesic on X in the class of

α. Thus for any α, i(LX , α) does not depend on which construction of LX is used.

Thus by proposition 2.4, these currents are equal.
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Chapter 3

Negatively curved cone surfaces

The addition of cone singularities to a negatively curved surface requires some

alterations to the theory described in the previous chapter, but similar results will

hold for such surfaces. This chapter does not re-develop the theory in full, but rather

outlines the changes from the previous chapter.

A negatively curved cone surface is a surface Y with a negatively curved Rie-

mannian metric which is defined everywhere except at a discrete collection of points

called the cone locus of Y . At any cone point, the cone angle (defined below) is more

than 2π (there are also manifolds with cone points that have cone angles < 2π, but

we do not want to consider such surfaces). Note that the cone locus is always finite,

since it is discrete and Y is compact. A cone point is also often called a singular

point.

For any point p ∈ Y , we define the cone angle at p as follows. For small ε > 0,

let sε be the equidistant circle of radius ε at p, and l(sε) its circumference. Then the

cone angle at p is limε→0 l(sε)/ε. If the Riemannian metric is defined on any open

neighborhood of p, then the cone angle at p is 2π, because Riemannian metrics are

infinitesimally Euclidean. At a point where the metric is not defined, the cone angle

may be larger. For a constructive way to introduce cone angles into a surface, see

[20].
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Cone points can be thought of as a way to concentrate some negative curvature

into discrete points rather than spreading it out over the surface. Let Y be a

negatively curved cone surface with cone locus P . Then for each pi ∈ P , with cone

angle θi, define ki = 2π−θi to be the concentrated curvature at pi. There is a version

of the Gauss-Bonnet theorem that holds for cone surfaces, which states that

∫
Y \P

KdA+
∑
i

ki = 2πχ(Y ),

where K is the Gaussian curvature function, and dA is the Riemannian area element.

The following result of Troyanov [21] classifies all negatively curved cone sur-

faces and is an analog of Berger’s result in proposition 2.1.

Proposition 3.1 Let Σ be a compact Riemann surface. Choose finitely many points

pi on Σ and numbers θi > 0 so that
∑

(2π−θi) > 2πχ(Σ). Then any smooth negative

function on Σ is the Gaussian curvature function of a unique cone metric in the

conformal class of Σ, having cone angles θi at pi.

3.1 Boundary at infinity and conjugacy

A geodesic on a negatively curved cone structure is defined to be a curve

which is a piecewise geodesic in the Riemannian metric away from the cone locus,

and forms an angle of at least π on both sides at every point along the curve.

Let Neg*(S) be the moduli space of isotopy classes of negatively curved cone

manifolds with markings to S, and let Y be such a class of structures. The definition

of the boundary at infinity from the page 5 applies without alteration to Y , and

there is still a one-to-one correspondence between oriented geodesics in Ỹ and pairs
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of distinct points in ∂∞Y . The biggest differences in dealing with cone surfaces as

opposed to Riemannian surfaces arise from the following observation. Recall that

for a Riemannian surface X and a point p ∈ X̃, the exponential map T 1
p X̃ → ∂∞X

is a homeomorphism. This is not true for cone surfaces; in fact, there are directions

where this map is not even defined.

Let p ∈ Ỹ be a non-singular point, and V = T 1
p Ỹ the circle of unit vectors at p.

A vector v ∈ V is called a non-singular direction if the ray from p in the direction of

v does not meet any cone points, and a singular direction otherwise. Let V0 ⊂ V be

the set of all non-singular directions. Note that since the finitely-many cone points

on Y lift to countably-many cone points on Ỹ , V0 has full measure in V .

The exponential map V → ∂∞Y is only well-defined for the non-singular

directions V0. Indeed, let v be a singular direction and c the first cone point reached

by traveling from p in the direction of v, with cone angle 2π+θ. Once a geodesic ray

reaches c, it has a range of θ possible exit directions, and thus becomes undetermined

by v. Changing this exit angle will alter the boundary point ultimately reached by

the ray. (Of course, if the ray leaves c in a singular direction, it becomes even more

undetermined, etc.)

In fact, there is an entire interval I = [a, b] of ∂∞Y which is “behind” c

from p, in the sense that no geodesic ray from p can limit to a point in I without

passing through c. This interval will be referred to as the sector behind c from

p. This argument shows that the complement of the image of V0 in ∂∞Y contains

intervals. Note that since the map V0 → ∂∞Y is increasing, it can be completed to a

measurable function on all of V which is either left continuous or right continuous.
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Figure 3.1: The sector behind a cone point.

It is interesting to note that there is still a one-to-one correspondence between

geodesic rays from p and points at infinity (see [5], Prop 8.2), but such rays are not

always determined by their starting directions from p.

The universal cover of a negatively curved cone surface is a Gromov-hyperbolic

Hadamard space, so proposition 2.2 still holds in this setting. In particular, we have:

Proposition 3.2 Given any two classes Y1, Y2 ∈ Neg*(S), there is a unique Γ-

equivariant conjugacy homeomorphism ∂∞Y1 → ∂∞Y2. Furthermore, if X ∈ Neg(S)

and Y ∈ Neg*(S), there is a also a unique Γ-invariant conjugacy homeomorphism

∂∞X → ∂∞Y .

It is important to note here that not only can surfaces be compared within

each class of structures, they can also be compared across the two classes.

3.2 The Liouville current of a negatively curved cone manifold

For any Y ∈ Neg*(S), the space C(Y ) of (metric) geodesic currents on Y

is defined, as in the previous chapter, as the weak* uniform space of all π1(Y )-
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invariant Borel measures on G(Ỹ ) = (∂∞Y × ∂∞Y \∆)/Z2. Since there is a unique

identification ∂∞Y → ∂∞S via conjugacy, C(Y ) can again be uniquely identified

with the space of (topological) currents C(S).

Each Y ∈ Neg*(S) determines a Liouville current LY ∈ C(S) as in the previous

chapter, but some care must be taken in the definition to account for the cone points.

The three constructions from the previous chapter are discussed below, with these

differences noted. In each case there will be differences between the non-singular

geodesics (i.e. those which do not meet any cone point) and the singular ones.

As before, all three of these constructions define the same geodesic current,

satisfying the property that the measure of the set of all geodesics meeting a given

geodesic segment in Ỹ is equal to the length of the segment (see section 2.3.4).

3.2.1 The Liouville current as a transverse measure

Let Y ∈ Neg*(S), with cone locus P . Since the Riemannian metric is not

defined on P , the unit tangent bundle is also not defined above these points. Further,

the geodesic flow of Y is only well-defined on the collection of non-singular directions

at each non-cone point, since geodesics become undetermined at cone points. Denote

the space of non-singular directions on Y as T 1
0 Y . Note that T 1

0 Y has full measure

in T 1Y with respect to the Riemannian volume form, since Y has finitely many cone

points.

The interior product of the Riemannian volume form with the unit vector field

that generates the geodesic flow is then a transverse invariant measure, and this is
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the Liouville current LY .

3.2.2 The Liouville current from a cross-ratio on ∂∞S

The definition of the cross-ratio function CY on quadruples of distinct points

in ∂∞S goes through unchanged from the previous chapter, as does the construction

of the Liouville measure LY from CY . However, CY has an important property when

Y is a cone surface, which will be important later.

Proposition 3.3 Let γ be a singular complete geodesic in Ỹ , with endpoints γ−, γ+ ∈

∂∞S. Then there are disjoint, non-trivial intervals [a, b] and [c, d] in ∂∞S so that

γ− ∈ [a, b], γ+ ∈ [c, d], and CY (a, b, c, d) = 0.

a

γ−

b

x1

p

x2

d

γ+

c

Figure 3.2: Proof of prop 3.3.

Proof. Let p be a cone point on γ, and let x1 and x2 be non-cone points on

γ, one on each side of p, so that x1 is closer to γ− and x2 is closer to γ+, and so

that the geodesic segments x1 p and p x2 have no cone points in their interiors. Let

[a, b] be the sector behind p from x2 and [c, d] the sector behind p from x1. Then
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any geodesic with one endpoint in [a, b] and the other in [c, d] must pass through

p. It is clear from the definition of the cross-ratio on page 13 that this implies

CY (a, b, c, d) = 0.

3.2.3 The Liouville current in geodesic-angle coordinates

Let γ be a non-singular, unit-speed parameterized geodesic on Ỹ , and let G(γ)

be the set of all geodesics transversely intersecting γ. As before, we want to create

a geodesic-angle coordinate ξY,γ : G(γ) → R × (0, π) by sending a geodesic to (the

parameter of) its point of intersection with γ and the angle of intersection. The

problem is that this mapping will not be one-to-one, since two different geodesics

can intersect γ at the same point and in the same angle if they are both singular.

However, the coordinate becomes a homeomorphism onto its image if we re-

strict to the subset G0(γ) ⊂ G(γ) of non-singular geodesics intersecting γ. Note

that the image ξY,γ(G0(γ)) has full measure in R × (0, π) with respect to dλ =

1/2 sin θdθdt, since there are only countably many singular directions at each point

of γ.

Let G0(Ỹ ) ⊂ G(Ỹ ) denote the collection of all non-singular geodesics in Ỹ .

Letting γ vary, the sets G0(γ) form an open cover of G0(Ỹ ), and pulling back the

measure dλ through each ξY,γ defines a measure on G0(Ỹ ). Extending this to all

of G(Ỹ ), by defining the measure to be 0 outside of G0(Ỹ ), produces the Liouville

current LY .
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3.2.4 The Liouville current of a cone surface does not have full sup-

port

Recall that the support of a measure is the largest closed set in which every

open subset has positive measure. A measure does not have full support if the

complement of its support is non-empty, or equivalently if there is at least one open

set of measure zero.

Proposition 3.4 For a negatively curved cone surface Y marked to S, the Liouville

measure LY on G(S̃) does not have full support.

Proof. From the description of the Liouville measure in geodesic-angle coordinates,

it is clear that the support of LY is G0(S̃), the closure of the set of non-singular

geodesics. This closure consists of geodesics which are either non-singular them-

selves, or are a limit of non-singular geodesics.

Figure 3.3: A singular geodesic which is not a limit of non-singular geodesics.

There are, however, singular geodesics which are not a limit of non-singular

geodesics. Any curve which is a limit of non-singular geodesics must make an angle

25



of exactly π on one side at every point along the curve. Therefore any geodesic

which passes through a cone point and makes an angle greater than π on each side

of the singularity cannot be a limit of non-singular geodesics. Thus G(S̃) \ G0(S̃) is

non-empty, so LY does not have full support.

Another argument, based on the cross-ratio, is given by Proposition 2. This

says that there exist disjoint, nontrivial intervals [a, b] and [c, d] on ∂∞S so that

CY (a, b, c, d) = 0. Then the Liouville current satisfies

LY ([a, b]× [c, d]) = |CY (a, b, c, d)| = 0

, so any open set in this rectangle has measure 0.
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Chapter 4

Flat surfaces

A flat cone surface is a surface Z with a flat Riemannian metric defined away

from a discrete collection of cone points, so that each cone point has a cone angle

greater than 2π (again, there are flat cone surfaces with cone angles less than 2π, but

we don’t want to consider them). By the Gauss-Bonnet theorem for Riemannian

surfaces, any closed flat surface of genus greater than one must necessarily have

cone points. Because of this, we can simply say that Z is a flat surface instead of

specifying that Z has cone points.

If cone points are thought of as a way of concentrating negative curvature

into discrete points, then a flat surface is one where all of the negative curvature

has been moved into the cone points. The analog of the Gauss-Bonnet theorem for

closed flat surfaces says that if Z has cone locus P = {pi} with cone angles θi and

concentrated curvatures ki = 2π − θi, then

∑
i

ki = 2πχ(Z).

Note that since this formula contains no integration against the area element, there

is no relationship between the curvature of a flat surface and its area, unlike with

negative curvature. This reflects the fact that flat geometries have similarity trans-

formations, whereas curved geometries do not.

The following result of Troyanov [20] is an analog of proposition 3.1 for flat
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surfaces.

Proposition 4.1 Let Σ be a compact Riemann surface. Choose finitely many points

pi on Σ and numbers θi > 0 so that
∑

(2π−θi) = 2πχ(Σ). Then for any A > 0 there

is a unique flat surface of area A in the conformal class of Σ, having cone points pi

with cone angles θi.

A flat surface can be thought of as a limit of negatively curved cone surfaces

in the following sense. Let Z be a flat surface, with p a cone point on Z of cone

angle θ. For small ε > 0, let Yε be a negatively curved cone surface with the same

cone locus so that:

• Yε has the same cone angles as Z, except at p, where the angle is θ − ε,

• away from the cone locus, Yε has constant negative Gaussian curvature,

• Yε has the same area A as Z,

• Yε is in the same conformal class as Z.

By proposition 3.1, such a surface must exist, and these requirements determine

it uniquely. It is also easy to see that the Gaussian curvature kε of Yε must be

kε = −ε/A, so as ε → 0, the curvature goes to 0 and the metrics on Yε limit to Z.

Of course there are many other sequences of negatively curved cone surfaces which

limit to Z, but this is in some sense the simplest.
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4.1 Boundary at infinity and conjugacy

A geodesic on a flat surface is defined to be a curve which is piecewise geodesic

away from the cone locus, and which makes an angle of at least π on both sides

at every point along the curve. The biggest difference between negatively curved

cone surfaces and flat surfaces is that in a flat geometry, an equidistant curve to a

geodesic is also a geodesic. This is not true in negative (or for that matter, positive)

curvature.

Let Z̃ be the universal cover of a flat surface, and γ a non-singular geodesic

in Z̃. Then γ divides Z̃ into two half-spaces, H1 and H2. Let Pi denote the set of

cone points contained in Hi, and mi = infp∈Pi d(p, γ), for i = 1, 2. If m1 and m2 are

both 0, then there are sequences of singularities that limit to γ on both sides, and γ

is in some sense “trapped” by cone points. If m1 > 0, let γ′ be a curve in H1 which

is equidistant to γ, with d(γ, γ′) < m1. Let T be the region in Z̃ between γ and γ′.

Since there are no singularities in T , it is isometric to the strip R× [0, d(γ, γ′)] in the

flat plane, and γ′ is a geodesic of Z̃. This discussion is summarized as a proposition.

Proposition 4.2 Given a non-singular geodesic γ in Z̃ which is not limited to by

cone points on both sides, γ lies in an isometrically embedded strip which is foliated

by geodesics equidistant to γ. The maximal such strip is called the strip of γ, and γ

is called a strip geodesic.

Now let Z ∈ Flat*(S) be an isotopy class of flat surfaces. As with negatively

curved cone surfaces, the definition of the boundary at infinity ∂∞Z from page 5

applies to flat surfaces. However, there is no longer a one-to-one correspondence
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between complete geodesics in Z̃ and pairs of distinct points in ∂∞Z. Any geodesic

determines a pair of distinct points at infinity, but it is possible for more two different

geodesics to determine the same pair of points, for instance if they lie on the same

embedded strip. The following proposition says that this is in fact the only way this

can happen.

Proposition 4.3 If two complete geodesics γ1 and γ2 in Z̃ limit to the same pair

of points at infinity, then they bound an isometrically embedded strip. In particular,

there are no cone points between them.

Proof. Consider first two geodesic rays ρ1 and ρ2 in Z̃. There are only three ways

in which two rays can limit to the same endpoint at infinity:

1. Both rays eventually pass through the same cone point and are the same curve

afterwards,

2. the rays eventually lie on the same embedded strip, or

3. ρ1 approaches ρ2 by connecting cone points which limit to ρ2.

By the definition of a point at infinity, the complete geodesics γ1 and γ2 must exhibit

one of these behaviors in the positive direction and one in the negative direction.

Let i-j denote the case where these two behaviors are i and j.

Case 1-1 violates that Z̃ is uniquely geodesic ([5], prop II.1.4). Cases 1-2 and

1-3 are both impossible by ([5], prop II.8.2), which says that there is a one-to-one

correspondence between ∂∞Z and the geodesic rays from any point in Z̃.
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Assume that case 2-3 holds. On the side where the two geodesics lie on a

strip, draw a geodesic segment from a point a on γ1 to b on γ2, perpendicular to

both curves. On the side where γ1 limits to γ2, draw a segment from a cone point c

on γ1 to d on γ2, perpendicular to γ2. Then the geodesics and the segments together

bound a geodesic polygon in Z̃.

a

b

c

d

γ1

γ2

Figure 4.1: An impossible flat geodesic polygon.

Cut this polygon out and double it across its boundary to obtain a flat surface Σ

homeomorphic to a sphere S2. By the Gauss-Bonnet theorem for flat surfaces, there

must be at least a total of 4π concentrated positive curvature at the cone points of Σ.

The points a, b, and d each contribute π, and c contributes some amount strictly less

than π. Any cone points in the interior of the polygon can only contribute negative

curvature, and the same for any cone points on the boundary of the polygon, since

a geodesic makes an angle of at least π on both sides when it passes through a cone

point. Thus the surface Σ can’t exist, so this case is impossible.

Case 3-3 is proved similarly to the previous case, and this eliminates all pos-

sibilities except for case 2-2.

This shows that there is no canonical way to go from a pair of points on ∂∞Z
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to a geodesic in Z̃, which will have consequences later. The proposition also implies

that, given a curve class α ∈ C, there may not be a unique geodesic on Z in the class

of α, but any two such will have the same length, since they will be isotopic across

an isometrically-embedded flat cylinder. This means that the length spectrum of Z

is well-defined as a functional on C. Note that this would fail if Z were allowed to

have points with cone angle less than 2π.

The discussion on page 20 about singular and non-singular directions applies

also to flat surfaces. In particular, the exponential map T 1
p Z̃ → ∂∞Z at any non-

singular point p is only measurable, and there are sectors on the boundary which

are inaccessible from p without passing through cone points.

Since Z̃ is a Gromov-hyperbolic Hadamard space, proposition 2.2 holds for

flat surfaces. Combining this with proposition 3.2 shows:

Proposition 4.4 Given any two classes X1, X2 ∈ NonPos(S), there is a unique

Γ-equivariant conjugacy homeomorphism ∂∞X1 → ∂∞X2, which can be obtained by

lifting the markings to the universal covers and extending to the boundary.

4.2 The Liouville current of a flat surface

For any Z ∈ Flat*(S), the space C(Z) of metric geodesic currents on Z is

defined as the weak* uniform space of π1(Z)-invariant Borel measures on G(Z̃) =

(∂∞Z×∂∞Z \∆)/Z2. Note that, because there may be flat strips in Z̃, G(Z̃) can no

longer be precisely identified with the space of geodesics in Z̃. The metric currents

C(Z) can be uniquely identified via conjugacy with the topological currents C(S) on
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S.

As before, each Z ∈ Flat*(S) determines a Liouville current LZ ∈ C(S).

Slightly more care must be taken in defining the Liouville current in the flat case,

due to the new phenomenon of flat strips. The construction of LZ as a transverse

measure to the geodesic flow is unchanged from section 3.2.1. The constructions of

LZ from the cross-ratio and from geodesic-angle coordinates are discussed below.

As in the previous chapters, all three constructions define the same geodesic

current, with the property that the measure of the set of all geodesics meeting a

given segment in Z̃ is equal to the length of the segment (see section 2.3.4). Also,

the same argument as in proposition 3.4 shows:

Proposition 4.5 For a flat surface Z marked to S, the Liouville measure LZ on

G(S̃) does not have full support.

4.2.1 The Liouville current from a cross-ratio on ∂∞S

Recall the definition of the cross-ratio of a surface from section 2.3.2, stated

here for a flat surface Z. Given four distinct points a, b, c, d ∈ ∂∞Z,

CZ(a, b, c, d) =
1

2
lim(d(ai, ci) + d(bi, di)− d(ai, di)− d(bi, ci)),

where the limit is taken as ai → a, etc. Here we show that this limit exists, is finite,

and does not depend on the choices of sequences tending to the points at infinity.

Given a point a ∈ ∂∞Z, the Busemann function ba : Z̃ → R is defined as

ba(x) = lim
t→∞

(d(x, γ(t))− t),
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where γ is a geodesic ray limiting to a. This limit exists, is finite, and does not

depend on choice of γ (see [5], lemma II.8.18). Given two points x, y ∈ Z̃, the

horocyclic distance based at a between x and y is da(x, y) = ba(x)− ba(y). Note that

this can be negative, and satisfies the cocycle relation

da(x, y) + da(y, z) = da(x, z).

Given any x ∈ Z̃, the horocycle based at a through x is the set of all y so that

da(x, y) = 0. Such a horocycle is a rectifiable curve which limits to a in both

directions, and hence bounds a region of Z̃ called horoball. Given a horoball B at

a, any geodesic limiting to a must eventually lie inside B.

Further, given two distinct horocycles h1 and h2 at a, and two geodesics γ1

and γ2 limiting to a, the cocycle condition above implies that the segments of γ1 and

γ2 which lie between h1 and h2 have the same length, equal to the absolute value of

the horocyclic distance between any point on h1 and any point on h2.

Now let a, b, c, d ∈ ∂∞Z. Choose disjoint horoballs Ha, Hb, Hc, Hd based at

these points. Choose a geodesic connecting a to c (this choice may not be automatic

in the flat case by prop 4.2), and let l(ac) be the length of the geodesic segment

which lies outside of the horoballs. Similarly define l(bd), l(ad), l(bc). Then following

([17], lemma 2.1), define

B(a, b, c, d) =
1

2
(l(ac) + l(bd)− l(ad)− l(bc)).

Lemma 4.6 B(a, b, c, d) does not depend on the disjoint horoballs chosen at each

point, or on the choice of geodesics connecting a to c, etc. Further, CZ(a, b, c, d) =

B(a, b, c, d).
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a

b

c

d
−l(ad)

−l(bc)

+l(ac)

+l(bd)

Figure 4.2: The construction of B(a, b, c, d).

Proof. Given two distinct geodesics γ1, γ2 connecting a to c, they must lie across

a flat strip by proposition 4.3. Then the horocycles which bound Ha and Hc cross

this flat strip in straight lines perpendicular to the strip. Thus the distance l(ac)

does not depend on the choice of geodesic on this strip.

The fact that B does not depend on the choice of horoballs follows from the

cocycle condition and noticing that each point at infinity has one “plus” curve and

one “minus” curve limiting to it.

Choose sequences ai → a, etc. As i → ∞, the geodesic segments from ai to

ci converge to a geodesic from a to c. Thus it only remains to show that at a (for

instance), the difference of the lengths of the two geodesic segments inside Ha goes

to 0 in the limit. This follows because the horocyclic distance based at a between

any two points on the same horocycle is 0.

Since B(a, b, c, d) is clearly finite and is well-defined by the lemma, so is CZ .
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As before, the Carathéodory construction produces a Γ-invariant measure on G(S̃)

which uses the cross-ratio to measure rectangles, and this is the Liouville current

LZ .

4.2.2 The Liouville current in geodesic-angle coordinates

Let γ be a non-singular, unit-speed parameterized geodesic on Z̃, and let

G(γ) ⊂ G(Z̃) be the collection of all pairs of endpoints of geodesics which intersect

γ transversely. Note that by prop. 4.2, G(γ) is not precisely identified with the

space of geodesics intersecting γ.

a

b

θ

γ(t)

γ(t′)

Figure 4.3: Geodesic-angle coordinates are not well-defined across a strip.

As in section 3.2.3, the function ξZ,γ : G(γ) → R × (0, π), mapping to the

intersection point with γ and the angle of intersection, is not one-to-one on the

set of singular geodesics. Now there is the additional issue that ξZ,γ is also not
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well-defined if γ crosses a strip. Let a, b ∈ ∂∞Z be the endpoints of a strip in Z̃

which γ crosses transversely. Then γ crosses this strip at some well-defined angle θ.

Choose t, t′ so that γ(t), γ(t′) lie on the strip, then ξZ,γ(a, b) could be (t, θ) or (t′, θ),

depending on the geodesic chosen in the strip connecting a and b.

The solution to this problem is to think of strip geodesics as being singular

for purposes of defining the geodesic-angle coordinates. Let G0(γ) ⊂ G(γ) be the

subset of all endpoints of non-singular, non-strip geodesics intersecting γ. Then

the restriction of ξZ,γ to G0(γ) is a homeomorphism onto its image, which has full

measure in R× (0, π) with respect to dλ = 1/2 sin θdθdt.

Similarly, let G0(Z̃) ⊂ G(Z̃) be the collection of all endpoints of non-singular,

non-strip geodesics. Then the sets G0(γ) form an open cover of G0(Z̃), and pulling

back dλ through each ξY,γ defines a measure on G0(Z̃). Extend this to G(Z̃) by

defining the measure to be 0 outside of G0(Z̃) to obtain the Liouville current LZ .
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Chapter 5

Spectral rigidity

Recall that S is a topological surface of genus ≥ 2, and C is the set of isotopy

classes of closed curves on S.

Given any non-positively curved surface X with a marking to S, the length

spectrum of X is a function lX : C → R which takes a curve class α on S to the

length of the geodesic on X in the class of α. If X is strictly negatively curved this

geodesic is unique; if X is flat then there may be more than one geodesic in the

class of α, but any two will have the same length since they will be isotopic across

an embedded cylinder. Thus the length spectrum is always well defined in RC .

It is clear that if two isometric surfaces are marked to S via isotopic markings,

they define the same length spectrum. Thus if we define NonPos(S) to be the

union of Neg(S), Neg*(S), and Flat*(S), the length spectrum defines a function

l : NonPos(S) → RC . There is also a function L : NonPos(S) → C(S) that

takes any surface to its Liouville measure, and on page 11, we defined a function

I : C(S)→ RC that maps µ 7→ i(µ,−).

NonPos(S) RC

C(S)

l

L I
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Proposition 5.1 The above diagram is commutative. That is, l = I◦L as functions

NonPos(S)→ RC.

Proof. Let X ∈ NonPos(S), and α ∈ C. Then I(LX)(α) = i(LX , α), so it is

equivalent to prove that i(LX , α) = lX(α) for all α. That is, that the intersection of

LX with any curve class is equal to the length of the X-geodesic in that class.

Think of α as a conjugacy class of Γ, and let γ ∈ α be a specific representative.

Let J be a fundamental domain for the action of γ on its axis in X̃. Then lX(α) is

equal to the length of J . Let G(J) be the set of all geodesics intersecting J .

Since J is a geodesic segment in X̃, its length is equal to LX(G(J)), by lemma

2.5, which also holds for cone surfaces. But this is i(LX , α), by the definition of the

intersection pairing. Thus lX(α) = LX(G(J)) = i(LX , α), and the result is shown.

5.1 Length spectrum separates cone surfaces from Riemannian sur-

faces

In this section it is shown that no negatively curved Riemannian surface has

the same length spectrum as either a negatively curved cone surface or a flat surface.

That is, if we let NonPos*(S) denote the union of Neg*(S) and Flat*(S), then the

images l(Neg(S)) and l(NonPos*(S)) do not overlap in RC . This only requires the

equivalence of the first two items in the following proposition, but the others are

recorded here for future use.
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Proposition 5.2 Let X1, X2 ∈ NonPos(S), and let φ : ∂∞X1 → ∂∞X2 be the

conjugacy map between them. Then the following are equivalent:

(1) X1 and X2 have the same length spectrum in RC,

(2) X1 and X2 have the same Liouville current in C(S),

(3) φ takes the cross-ratio of X1 to the cross-ratio of X2, so CX1(a, b, c, d) =

CX2(φ(a), φ(b), φ(c), φ(d)),

(4) Let γ be a geodesic on X̃1 with endpoints a, b at infinity, and γ′ the associated

geodesic in X̃2 with endpoints φ(a), φ(b). Then the map φ × φ is a measure-

isomorphism of dλ in the geodesic-angle coordinates on G(γ) and G(γ′).

Proof. (2) ⇐⇒ (3) is obvious, by the construction of the Liouville currents from the

cross-ratios. Similarly, (2) ⇐⇒ (4) follows from the construction of the Liouville

currents from geodesic-angle coordinates. It remains to show (1) ⇐⇒ (2).

Assume lX1 = lX2 . Then I(LX1) = I(LX2) by Prop 5.1, and I is injective by

proposition 1.2. Thus LX1 = LX2 .

Conversely, assume LX1 = LX2 . Then I(LX1) = I(LX2), and I ◦L = l by Prop

5.1, so lX1 = lX2 . This completes the proof.

Theorem 1 Let X be a negatively curved Riemannian surface and Y either a neg-

atively curved cone surface or a flat surface, each with a marking to S. Then X and

Y have different length spectra.

Proof. Let U ⊂ G(S̃) be a small open set, contained in the domain of some geodesic-

angle coordinate ξX,γ : G(γ) → R × (0, π). Then LX(U) =
∫
ξX,γ(U) 1/2 sin θdθdt is
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positive, since ξX,γ is a homeomorphism. This shows that LX has full support on

G(S̃).

On the other hand, propositions 3.4 and 4.5 state that LY does not have full

support, so LX 6= LY as currents in C(S). By prop 5.2, this implies that X and Y

have different length spectra.

5.2 Rigidity for negatively curved Riemannian surfaces

In this section we present an outline of Otal’s argument in [16] that Neg(S)

is spectrally rigid, i.e. no two distinct classes in Neg(S) determine the same length

spectrum.

Let X1, X2 be negatively curved Riemannian surfaces, with markings fi : Xi →

S. It will be shown that if X1 and X2 have the same length spectrum in RC , then

there is an isometry h : X1 → X2 which is isotopic to f−1
2 ◦ f1. This implies that

X1 and X2 belong to the same class of surfaces in Neg(S).

Let φ : ∂∞X1 → ∂∞X2 be the conjugacy map between the two surfaces, and

Φ = φ× φ : G(X̃1)→ G(X̃2) the associated correspondence between their spaces of

geodesics. Given two intersecting geodesics α, β in X1, the corresponding geodesics

Φ(α),Φ(β) must intersect in X̃2, since two geodesics intersect if and only if their

endpoints are interlaced on the boundary.

However, given three geodesics α, β, γ which all pass through a common point

in X̃1, it is not necessary that Φ(α),Φ(β),Φ(γ) all share a common point in X̃2. In

general they will form a geodesic triangle, denoted T (α, β, γ). Otal’s method was to
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show that if the two marked surfaces have the same length spectrum, then the sum

of the interior angles of T (α, β, γ) is π, which implies by the Gauss-Bonnet formula

(see [15], p. 164) that the triangle degenerates to a single point, since the curvature

is strictly negative. This implies that the collection of all geodesics passing through

any point p in X̃1 maps under Φ to the collection of all geodesics passing through

some point p′ in X̃2. Then the isometry h is defined by sending p to p′.

To begin to show this, define a continuous function θ′ : T 1X1×[0, π]→ [0, π] as

follows. Given a unit vector v based at p ∈ X1 and θ ∈ [0, π], let γv be the geodesic

through a lift p̃ ∈ X̃1 of p in the direction of v, and γθ·v the geodesic through p̃ in

the direction of θ · v. Then θ′(v, θ) is the angle in X̃2 between Φ(γv) and Φ(γθ·v).

Define Θ′ : [0, π] → [0, π] so that Θ′(θ) is the average of θ′(v, θ) over v ∈ T 1X1. In

other words, Θ′(θ) is the average angle between pairs of geodesics in X2 which meet

at angle θ in X1.

Lemma 5.3 Θ′ is an increasing homeomorphism of [0, π] satisfying:

• Θ′ is symmetric in π−θ, so Θ′(π−θ) = π−Θ′(θ). Note that this is equivalent

to the graph being rotationally symmetric about the midpoint (π/2, π/2).

• Θ′ is super-additive, so Θ′(θ1 + θ2) ≥ Θ′(θ1) + Θ′(θ2) when θ1 + θ2 ≤ π.

Proof. Only the super-additivity will be outlined here, since it will be needed later.

Choose three geodesics γv, γθ1·v, γ(θ1+θ2)·v which pass through a common point in

X̃1. Then the interior angles of the geodesic triangle T (γv, γθ1·v, γ(θ1+θ2)·v) in X̃2 are

θ′(v, θ1), θ′(θ1 · v, θ2), and π − θ′(v, θ1 + θ2). Since X̃2 is negatively curved, the sum
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of these angles must not exceed π, so:

θ′(v, θ1) + θ′(θ1 · v, θ2) ≤ θ′(v, θ1 + θ2).

Integrating this expression first over the fiber of T 1X1 over p (using the fact that the

Lebesgue measure on this fiber is invariant under rotation), and then integrating

again over the surface, gives the result.

Proposition 5.4 If X1 and X2 have the same length spectrum, Θ′ is the identity

map.

Proof. Let F : [0, π] → R be continuous and convex. Then by Jensen’s inequality

[18], we have

F (Θ′(θ)) ≤ 1

V (T 1X1)

∫
T 1X1

F (θ′(v, θ))dv,

where dv is the volume form on T 1X1, invariant under the geodesic flow. Integrate

both sides with respect to the measure sin θdθ on [0, π] and switch the order of

integration on the right:

∫ π

0
F (Θ′(θ)) sin θdθ ≤ 1

V (T 1X1)

∫
T 1X1

∫ π

0
F (θ′(v, θ)) sin θdθdv.

Define F ′(v) =
∫ π

0 F (θ′(v, θ)) sin θdθ. Then the right side of the above inequality is

the average of F ′ over T 1X1. A lemma is now needed.

Lemma 5.5 The average of F ′ on T 1X1 is equal to
∫ π
0 F (θ) sin θdθ.

Proof. Since dv is a measure on T1X
1 invariant under the geodesic flow, it is a limit

of measures supported on closed geodesics (see page 10 and [2]). Let γ be a closed
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orbit of the geodesic flow, then the average of F ′ on γ is

1

l(γ)

∫
γ
F ′(γ(t))dt =

1

l(γ)

∫
γ×(0,π)

F (θ′(γ(t), θ)) sin θdθdt

=
2

l(γ)

∫
G(γ)

F (θ′(γ(t), θ))dλ,

where G(γ) is the set of all geodesics intersecting γ and dλ = 1/2 sin θdθdt, as in

previous chapters. Let γ′ be the associated geodesic in X2 to γ. Since X1 and X2

have the same length spectrum, proposition 5.2 says that Φ : G(γ) → G(γ′) takes

dλ to dλ′ = 1/2 sin θ′dθ′dt′. Then change variables via Φ to get

2

l(γ)

∫
G(γ)

F (θ′(γ(t), θ))dλ =
2

l(γ)

∫
G(γ′)

F (θ′)dλ′

=
l(γ′)

l(γ)

∫ π

0
F (θ′) sin θ′dθ′

=
∫ π

0
F (θ) sin θdθ,

since l(γ) = l(γ′) by assumption. This shows that the average of F ′ along any closed

geodesic is
∫ π
0 F (θ) sin θdθ, so this must also be the average over T 1X1, since dv is a

limit of measures supported on closed geodesics.

Back to prop 5.4. Apply the above lemma to the last inequality to obtain

∫ π

0
F (Θ′(θ)) sin θdθ ≤

∫ π

0
F (θ) sin θdθ.

Otal then proves a lemma that given an increasing, super-additive homeomorphism

Ψ of [0, π] to itself which is symmetric in π − θ and satisfies

∫ π

0
F (Ψ(θ)) sin θdθ ≤

∫ π

0
F (θ) sin θdθ
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for any convex F , Ψ must be the identity (see lemma 5.6 below for a more general

proof of this fact where Ψ need only be measurable). Thus Θ′ is the identity.

Since Θ′ is the identity map, it is in particular not just super-additive, but

strictly additive, so Θ′(θ1 + θ2) = Θ′(θ1) + Θ′(θ2). Looking back at the argument

on page 42 that Θ′ is super-additive, this implies that given three geodesics α, β, γ

through a common point p ∈ X̃1, the triangle T = T (α, β, γ) has interior angles

summing to π, so T must degenerate to a single point p′. As suggested above, define

a map h : X̃1 → X̃2 so that p 7→ p′.

Let p, q ∈ X̃1, and I the geodesic segment connecting them. Let I ′ be the

geodesic segment connecting h(p), h(q) in X̃2. Then by lemma 2.5 and prop 5.2,

d(p, q) = LX1(G(I)) = LX2(G(I ′)) = d(h(p), h(q)),

so h is an isometry. Since for any γ ∈ Γ, h takes the axis of γ in X̃1 to the axis of

γ in X̃2, we get that h is in the same mapping class as f−1
2 ◦ f1, so X1 and X2 with

their markings to S are in the same class in Neg(S). This completes the proof.

5.3 Rigidity for cone surfaces

Hersonsky and Paulin in [10] adapted Otal’s proof from the previous section

to show that Neg*(S) is spectrally rigid. The important observation is that the

methods used do not require that the functions defined in the proof (θ′, Θ′, F ′, etc)

are continuous, only that they are measurable.

Let fi : Yi → S, i = 1, 2, be marked negatively curved cone surfaces having

the same length spectrum in RC . Two geodesics α, β ∈ G(Ỹ1) may intersect in a
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geodesic segment, but if they are chosen to be non-singular, this will not happen.

Let T0 ⊂ T 1X1× [0, π] be all (v, θ) such that both v and θ · v are non-singular

directions. Note that this is a subset of full measure for the product of the volume

on T 1X1 and the Lebesgue measure on [0, π]. As before, for any (v, θ) ∈ T0, let γv

and γθ·v be geodesics in Ỹ1 determined by lifts of v and θ · v. The goal is to define

θ′(v, θ) to be the angle at which Φ(γv) and Φ(γθ·v) intersect, but first we must know

that these two geodesics are also non-singular. But this is clear because Φ takes the

support of LY1 to the support of LY2 (see propositions 5.2 and 3.4).

Then Θ′(θ), defined as before as the average of θ′(v, θ), is not continuous,

but it is measurable and increasing. The rest of the proof goes through without

alteration, and shows that the collection of all non-singular geodesics through any

non-cone point p ∈ Ỹ1 is mapped via Φ to the collection of all non-singular geodesics

through some non-cone point p′ ∈ Ỹ2. This defines the isometry h away from the

cone points, so there is a unique extension to an isometry h : Ỹ1 → Ỹ2.

The author has adapted this argument to show the following result.

Theorem 2 The images of the length spectrum mappings l : Neg*(S) → R and

l : Flat*(S)→ R do not overlap. That is, no negatively curved cone surface has the

same length spectrum as a flat surface.

Proof. Let Y be a marked negatively curved cone surface, and Z a marked flat

surface. Assume by absurd that their length spectra are the same.

As above, define T0 ⊂ T 1Z × [0, π] to be all (v, θ) so that v and θ · v are both

non-singular directions, and θ′(v, θ) to be the angle in Ỹ between Φ(γv) and Φ(γθ·v).
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Let Θ′(θ) be the average of θ′(v, θ) over all v ∈ T 1Z so that (v, θ) ∈ T0.

Then Θ′ : [0, π] → [0, π] is measurable and increasing, and Otal’s argument

that Θ′ is symmetric in π− θ and super-additive applies without alteration, as does

the proof that for any convex F ,

∫ π

0
F (Θ′(θ)) sin θdθ ≤

∫ π

0
F (θ) sin θdθ

(see page 44). Then the following lemma is a measurable extension of lemma 8 in

[16]:

Lemma 5.6 Let Ψ be an increasing measurable function from [0, π] to itself so that

• Ψ is super-additive and symmetric in π − θ,

• For any convex function F on [0, π],
∫ π

0
F (Ψ(θ)) sin θdθ ≤

∫ π

0
F (θ) sin θdθ

Then Ψ is the identity.

Proof. There is no interval (0, a) on which Ψ(x) < x. If there were, the convex

function Fa(x) = max(a−x, 0) would contradict the second condition above. There

is then a sequence {xi} limiting to 0 so that Ψ(xi) ≥ xi.

Suppose Ψ is not the identity. Choose b so that Ψ(b) 6= b, and since Ψ is

symmetric in π− θ (i.e. turn the graph over symmetry), assume that Ψ(b) < b. Let

a = sup{x < b : Ψ(x) > x}. This sup is not taken over an empty set by the choice

of {xi}.

Let c ∈ (Ψ(b), b). Then Ψ(c) < Ψ(b) since Ψ is increasing, and Ψ(b) < c. Thus

Ψ(c) < c for every c ∈ (Ψ(b), b). This implies that a ≤ Ψ(b) < b by definition of a.
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Assume that Ψ(a) > a. Then a < Ψ(a) < Ψ(b) < b, since a < b and Ψ is

increasing. Thus Ψ(a) is between a and b, so Ψ(Ψ(a)) < Ψ(a) by definition of a.

But this contradicts that Ψ is increasing, since by assumption Ψ(a) > a.

Now assume Ψ(a) < a, and let c ∈ (Ψ(a), a). Then Ψ(c) < Ψ(a) by increasing,

and Ψ(a) < c, so Ψ(c) < c for all c ∈ (Ψ(a), a). This contradicts the definition of a.

So Ψ(a) = a. Now choose i large enough so that a+ xi ∈ [a, b]. Then

a+ Ψ(xi) = Ψ(a) + Ψ(xi) ≤ Ψ(a+ xi) < a+ xi,

where the middle inequality is the super-additivity of Ψ, and the last follows from the

definition of a. Then Ψ(xi) < xi, which contradicts the definition of xi. Therefore

Ψ is the identity.

Back to Theorem 2. By the lemma, Θ′ is the identity on [0, π]. The lemma is

remarkable because it takes a function which is initially assumed only to be measur-

able and proves that it is the identity. Then the same argument as in the previous

section shows that given three co-incident non-singular geodesics in Z̃, the geodesic

triangle obtained in Ỹ by conjugating them has interior angles that add up to π.

Since the curvature of Ỹ is strictly negative, this triangle must degenerate to a single

point.

As before, this allows us to create an isometry from Z̃ to Ỹ , by conjugating

the sheaves of geodesics which pass through each non-singular point. But this is

clearly a contradiction, since Z is flat and Y is negatively curved and hence they

are not isometric. Thus the marked surfaces do not have the same length spectrum.
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Note that this proof would have broken down only at the very end if the roles

of the two surfaces were interchanged. If three geodesics through a point in Ỹ

are conjugated to Z̃ and the interior angles of the resulting triangle add up to π,

this only implies that the triangle does not bound any singularities, since Z̃ is flat.

Keeping the negatively curved surface as the surface which is conjugated to allows

us to use the favorable Gauss-Bonnet formula and complete the proof.

5.4 Rigidity for flat surfaces

Let Z1 and Z2 be flat surfaces with markings to S, and let φ be the conjugacy

map between their boundaries. One would like to prove that if these surfaces define

the same length spectrum in RC , then there is an isometry h : Z1 → Z2 isotopic to

the composition of the markings. As noted at the end of the previous section, Otal’s

proof does not adapt directly to this case, because there are non-trivial flat triangles

whose angles sum to π. We outline here an sketch of an incomplete possible proof.

Assume that the two flat surfaces have the same length spectrum. Let Yt, for

t ∈ (0, 1], be a deformation of negatively curved cone surfaces which limits to Z2 as

t → 0. This deformation can be chosen (as described on page 28) so that the cone

locus does not change, only one cone angle is altered, Yt has constant curvature −t

away from the cone points, and the area and conformal class do not change. Let φt

denote the conjugacy map ∂∞Z1 → ∂∞Yt.

Proposition 5.7 As t→ 0, the length spectra lYt converge in RC to lZ2, and there-

fore the Liouville currents converge also in C(S).
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Proof. Note that topological convergence in RC is equivalent to pointwise conver-

gence of functionals, so it is equivalent to show that for each α ∈ C, lYt(α)→ lZ2(α).

Let γ be a Z2-geodesic in the class of α, and let γt be Yt-geodesics in the class

of α. Clearly lZ2(γ) < lZ2(γt), and similarly lYt(γt) < lYt(γ). By the choice of the

deformation, lZ2(γt) < lYt(γt), so altogether,

lZ2(γ) < lZ2(γt) < lYt(γt) < lYt(γ).

As t → 0, lYt(γ) → lZ2(γ), and lYt(γt) is squeezed between these two, so the length

spectrum converges. The Liouville currents then also converge, by the injectivity of

the map I : C(S)→ RC and the completeness of C(S).

Ỹt

Z̃2

t

Figure 5.1: A portion of the universal covers of the surfaces in the deformation.

The gist of the potential proof is as follows. Since Z1 is not isometric to any

Yt, there are three geodesics in Z̃1 which pass through a common point, but which

create a non-trivial triangle when conjugated to Yt. Using Otal’s average angle

function, show that the sum of the angles of such a triangle goes to π as t → 0, so

the triangles shrink to a single point in Z̃2. Then it must be shown that the limit

of Ỹt-geodesics, with points at infinity fixed, is a Z2-geodesic. This would show that
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the three co-incident Z̃1-geodesics conjugate to three co-incident Z̃2 geodesics, and

thus an isometry can be constructed as in Otal’s proof.

Let Tt ⊂ T 1(Z1) × [0, π] be the set of all (v, θ) so that γv, γθ·v, φt(γv), φt(γθ·v)

are all non-singular. Note that this is a subset of full measure. Define θ′t : Tt → [0, π]

so that θ′t(t, θ) is the angle between φt(γv) and φt(γθ·v) in Ỹt. Then set

Θ′t(θ) =
1

V (T 1Z1)

∫
T 1Z1

θ′t(v, θ)dv.

As in the previous sections, Θ′t : [0, π] → [0, π] is increasing, super-additive, and

symmetric in π − θ.

The following proposition is a generalization of prop 5.4, which says that when

two surfaces have the same spectra, the average angle function between them is the

identity. This new proposition shows that as t→ 0, the average angle functions Θt

on [0, π] go to the identity.

Proposition 5.8 For any small t, there is ε(t) > 0 so that supθ∈[0,π] |Θ′t(θ)−θ| < ε,

and this can be chosen so that ε→ 0 as t→ 0.

For any a ∈ [0, π], define the convex function Fa(θ) = max(a− θ, 0). Jensen’s

inequality implies that for any a,

Fa(Θ
′
t(θ)) ≤

1

V (T 1Z1)

∫
T 1Z1

Fa(θ
′
t(v, θ))dv.

Then integrate this inequality over [0, π] with respect to sin θdθ and exchange inte-

grals on the right:

∫ π

0
Fa(Θ

′
t(θ)) sin θdθ ≤ 1

V (T 1Z1)

∫
T 1Z1

(∫ π

0
Fa(θ

′
t(v, θ)) sin θdθ

)
dv.
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Now define F ′a =
∫ π
0 Fa(θ

′
t(v, θ)) sin θdθ. Then the right side of the above

inequality is the average of F ′a over T 1Z1, with respect to the invariant measure dv.

As in section 5.2, dv is the limit of measures supported along single orbits of the

geodesic flow, so choose a geodesic γ on Z1 and average F ′a over γ:

1

lZ1(γ)

∫
γ

∫ π

0
Fa(θ

′
t(v, θ)) sin θdθdt =

2

lZ1(γ)

∫
G(γ)

Fa(θ
′
t(v, θ))dλ

=
2

lZ1(γ)

∫
G(γ′)

Fa(θ
′)(Φ∗tdλ)

where dλ is the Liouville measure of Z1, Φt = φt × φt is the conjugacy of geodesic

spaces, γ′ is the geodesic on Yt conjugate to γ on Z1, and θ′ is the angle coordinate

on G(γ′). Since Z1 and Z2 have the same length spectrum, Φ∗tdλ is the Liouville

measure of Z2, and by prop 5.7, the Liouville measures of Yt converge to this measure

as t → 0. Since the integral is compactly supported, the weak* uniform topology

on C(S) implies that there is some η(t, a) so that

1

lZ1(γ)

∫
γ

∫ π

0
Fa(θ

′
t(v, θ)) sin θdθdt <

lYt(γ
′)

lZ1(γ)

∫ π

0
Fa(θ

′) sin θ′dθ′ + η(t, a),

where η(t, a)→ 0 as t→ 0 or as a→ 0.

Now note that by the choice of the deformation, and since Z1 and Z2 have

the same spectrum, there is some Mt so that
lYt (γ

′)

lZ1
(γ)
≤Mt for any closed geodesic γ,

and Mt → 1 from above as t→ 0. That is, since the metrics on Yt are obtained by

scaling the metric on Z2 by an appropriate function, there is a limit to how much

longer a geodesic on Yt can be than the isotopic geodesic on Z2. Together with the

approximation of dv above by measures supported on closed geodesics, this shows
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that for any a,

∫ π

0
Fa(Θ

′
t(θ)) sin θdθ ≤Mt

∫ π

0
Fa(θ) sin θdθ + η(t, a),

where Mt → 1 and η(t, a)→ 0 as t→ 0. Compare this to the similar hypothesis in

lemma 5.6. It remains to prove an adapted version of this lemma to show that Θ′t

is controllably close to the identity. For ease of notation, let ψ = Θ′t.

a

x

a

a

a

x

ψ(θ) Fa(θ) Fa(ψ(θ))

Let x be in [0, π], with ψ(x) = a. Assume that ψ(θ) ≤ a
x
θ for all θ ∈ [0, x].

Then Fa(ψ(θ)) > −a
x
θ + a, so:

a− asinx

x
=
∫ x

0

(
−a
x
θ + a

)
sin θdθ <

∫ π

0
Fa(ψ(θ)) sin θdθ

≤ Mt

∫ π

0
Fa(θ) sin θdθ + η = Mt(a− sin a) + η.

Rearranging the outer two expressions of this inequality gives:

Mt
sin a

a
−
(
Mt − 1 +

η

a

)
<

sinx

x
.

If t→ 0, then Mt → 1 and η → 0, so this inequality goes to sin a
a
< sinx

x
, which

is equivalent to a > x, since sinx
x

is decreasing on [0, π]. This corresponds to the

statement in the proof of 5.6 that, when Θ′ is comparing two structures with the

same spectrum, there can be no initial interval on which Θ′ is less than the identity.

53



For small t, this means that a can be less than x, but there is a control on

how much less. In other words, for each x, there is a slope mx so that ψ(θ) is not

less than mxθ on the entire interval [0, x], and further each mx → 1 as t→ 0.

Now fix a small t. As x → 0, the η term in the above inequality also goes

to 0, which implies that mx is increasing, and also bounded above by 1. Let mt =

limx→0mx.

Then there is no interval (0, x) so that ψ(θ) < mtθ on all of (0, x). Indeed,

if there were such an interval, then ψ(θ) would be less than one of the slopes that

converge to mt, which is impossible by the previous discussion. Thus there is a

sequence of points {xi} converging to 0 so that ψ(xi) ≥ mtxi for all i.

mtπ

ε = π −mtπ π

π

0

Figure 5.2: Choosing ε so that ψ is within ε of the identity.

Now let ε = π −mtπ. Assume by absurd that there is some b so that |ψ(b)−

b| > ε. By the symmetry of ψ in π − θ, we can assume that ψ(b) < b − ε. Let

a = sup{θ < b : ψ(θ) > mtθ}. By the existence of the sequence {xi}, this sup is not

over an empty set. As in the proof of lemma 5.6, a < b and ψ(a) = mta. Choose
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some xi so that a+ xi < b. Then by the super-additivity of ψ,

mta+ ψ(xi) = ψ(a) + ψ(xi) ≤ ψ(a+ xi) < mt(a+ xi) = mta+mtxi

This implies that ψ(xi) < mtxi, which is a contradiction. Thus there is no such b,

and ψ is within ε of the identity on all of [0, π]. Since mt → 1 as t → 0, we have

also that ε→ 0 as t→ 0.

Let α, β, γ be three distinct non-singular geodesics in Z̃1 which share a common

point, and let Tt(α, β, γ) be the triangle in Ỹt formed by Φt(α),Φt(β),Φt(γ). The

previous proposition, along with the super-additivity argument on page 42, imply

that the sum of the interior angles of Tt(α, β, γ) goes to π as t → 0. However, this

is not enough to show that the area of the triangles goes to 0, since the curvature

of the surface away from the cone points is also going to 0. By the Gauss-Bonnet

formula for triangles, one would need to show that the sum Σt of the interior angles

goes to π faster than t goes to 0, so that π−Σt
t
→ 0 as t→ 0.
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Appendix A

Further questions

The space C(S) of topological geodesic currents on S is seen to be a useful

ambient environment for studying moduli spaces of geometric structures on S. Otal’s

result on the spectral rigidity of Neg(S) can be seen as saying that the mapping

L : Neg(S) → C(S) is injective, so there is an embedding of Neg(S) into C(S).

In fact, of course, there are many such embeddings possible, so it is important to

realize what makes the Liouville map somehow the “right” one. This is because of

the property that i(LX , α) = lX(α), for any α ∈ C.

In other words, the Liouville map is chosen so that the length spectrum of any

Riemannian surface is recoverable from its current via the intersection form. Since

Otal proved that currents are separated by their intersections with C (see prop.

2.4), the embedding can be seen as being uniquely determined by this property. We

say that the Liouville map is then length preserving.

It is shown by Bonahon in [4] that there is also a length-preserving embedding

of the cone of measured foliations MF(S) into C(S) as the light cone of the inter-

section form, where the length of a foliation with respect to a metric is in the sense

of Thurston.

It is conjectured herein that there is a length-preserving embedding of all of

NonPos(S) into C(S), with the only possibility yet to be ruled out being that two
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different flat structures may define the same Liouville current. With this viewpoint

in mind, we ask the following questions.

A.1 Which functionals are currents?

As in prop 2.4, there is an embedding I : C(S) → RC given by µ 7→ (α 7→

i(µ, α)). What is the image of this embedding? In other words, are there some

algebraic or combinatorial properties of a functional f : C → R that imply that

f = I(µ) for some current µ?

A partial answer is that such a functional f = I(µ) must be determined

by its values on the primitive classes in C. That is, if αn ∈ C is the class that

represents a curve obtained by following a curve in α for n periods, then necessarily

f(αn) = i(µ, αn) = ni(µ, α) = nf(α). Additionally, of course f must take only

non-negative values.

So if C ′ ⊂ C is the subset of primitive curve classes, which functionals C ′ →

R≥0 extend to functionals in the image of I? It is clear that any one value can be

chosen arbitrarily, and it may be possible to prove an inductive step that will allow

any finite number of choices to be made. However, it seems unlikely that infinitely

many values can be arbitrarily chosen for such a functional.

One reason this question is interesting is because there are types of structures

on S which define functionals in RC in some interesting way (see below on Hitchin

components and cross-ratios), and it could be useful to know whether those func-

tionals can be “pulled back” to geodesic currents. There are few techniques for
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studying an arbitrary real-valued functional, but the theory of measures is rich. For

instance, in Theorem 1 of this paper, two length spectra are shown to be distinct not

by studying properties of the functionals themselves, but rather measure properties

of their associated geodesic currents.

A.2 Do length spectra converge between moduli spaces?

On page 28 it is shown that a flat surface can be thought of as a limit of

negatively curved cone surfaces. One very particular method of constructing such

a limit is given, but there are many others. For instance, allowing the conformal

structure or the area to vary would produce different types of deformations which

limit to the same flat surface. In section 5.4 it is shown that for this particular well-

chosen construction, the length spectrum along the deformation converges to the

spectrum of the flat limit surface. Does this happen regardless of the deformation

chosen?

Furthermore, a negatively-curved cone surface can be thought of as a limit of

negatively curved Riemannian surfaces. To introduce a cone point into a Riemannian

structure X, take a metric ball Bε centered at the point, and let k be the total

curvature inside Bε (note that k < 0). Letting ε → 0, while keeping the total

curvature in the ball constant and leaving the metrics on each X \ Bε isometric,

produces in the limit a point with cone angle 2π−k (i.e. with concentrated curvature

k).

Similarly, a flat surface can be a limit of negatively curved Riemannian sur-
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faces, if all the curvature of the surface is gradually moved into small neighborhoods

of the cone points as the size of these neighborhoods goes to 0.

Do all of these types of limits also cause the length spectra to converge? If this

were true, then by the injectivity of the map I : C(S)→ RC and the completeness

of C(S), the Liouville currents would also converge. This would mean that Neg*(S)

sits in C(S) as a sort of partial boundary to Neg(S), and the image of Flat*(S)

would similarly be a partial boundary for both Neg(S) and Neg*(S). It would be

interesting to know how these moduli spaces all fit together as currents.

A.3 Are Hitchin components representable as geodesic currents?

For any n ≥ 2, a representation Γ → PSL(n,R) is called n-Fuchsian if it

can be written as a composition of a Fuchsian representation Γ→ PSL(2,R) with

the irreducible representation PSL(2,R)→ PSL(n,R). A representation is called

n-Hitchin if it can be deformed into an n-Fuchsian representation. Hitchin proved

in [11] that for odd n there is a single component of such representations, and for

even n two isomorphic ones, each homeomorphic to a ball.

In [12], Labourie shows that any Hitchin representation ρ is into matrices of

split real type, and uses this to define a period functional ωρ : Γ→ R, where ωρ(γ)

is the log of the ratio of the largest and smallest eigenvalues of ρ(γ). Since this is a

conjugacy invariant, the period can be thought of as a mapping from each Hitchin

component Hn → RC . For any n, is this mapping into the image of C(S)? In other

words, are Hitchin components naturally representable as geodesic currents, in such
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a way that the intersection form produces the periods of the representations?

For n = 2, this is trivially true, since the two 2-Hitchin components are simply

the Fricke space of holonomies of hyperbolic structures. For n = 3, Choi and Gold-

man showed in [6] that the 3-Hitchin component consists of convex real projective

structures on S, with the periods corresponding to the Hilbert length spectrum. For

the Fuchsian representations, these are equivalent to hyperbolic structures with the

hyperbolic length spectrum, so these representations are clearly representable as cur-

rents (and overlap the 2-Hitchin component). Will this extend to the quasi-Fuchsian

3-Hitchin representations?

Labourie conjectures in [13] that the union of all the images of the Hitchin

components in RC contains the image of Neg(S). It would be interesting to know

how all of these spaces overlap and interact.
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