Nitrogen saturation in streams and forests of the Maryland Piedmont

Loading...
Thumbnail Image

Files

Publication or External Link

Date

2009

Citation

DRUM DOI

Abstract

Human activities have dramatically increased nitrogen (N) inputs to the landscape. Consequently, delivery of N to coastal waters, largely as nitrate (NO3-N), has increased, resulting in widespread eutrophication and harmful hypoxic conditions. The ability to mitigate the downstream effects of elevated N inputs requires a clear understanding of the transport and transformation of N in stream ecosystems. Here, I examine N processing in urban and forested watersheds of the Maryland Piedmont.

I provide extensive evidence that three high-N streams draining urban and forested watersheds of the Maryland Piedmont are unable to remove NO3-N as a result of both N saturation and phosphorus limitation. My findings illustrate that when elevated NO3-N concentrations occur in the absence of other stressors that stimulate autotrophic activity (e.g. reduced canopy cover, increased nutrients) uptake cannot compensate for increased N loads. A review of the literature indicates that systems that are similarly unable to remove NO3-N vary widely in terms of land use and background N concentrations, highlighting the limitations of our understanding of N saturation in stream ecosystems.

I also provide the first documentation of N saturation in both the aquatic and terrestrial components of an un-manipulated forested watershed. Detailed examination of N dynamics within the forested watershed reveals that the forest is severely N-saturated despite receiving atmospheric N inputs that are small relative to other parts of the Northeast and Mid-Atlantic. Because groundwater delivers a disproportionate fraction of the N load to the channel, in-stream N concentrations are elevated when deep groundwater flowpaths dominate, and the watershed is a source of N during dry periods, I hypothesize that hydrogeologic factors that control groundwater susceptibility to NO3-N contamination and promote delivery of NO3-N via subsurface flowpaths may exacerbate N-saturation response.

My results suggest that we cannot rely on in-stream processing to reduce N loads even in minimally impacted watersheds. As a result, it is critical that management efforts reduce N loading to streams and take advantage of opportunities for increasing N removal in impaired systems only after other options have been exhausted.

Notes

Rights