Optimal Unified Architectures for the Real-Time Computation of Time-Recursive Discrete Sinusoidal Transforms

Loading...
Thumbnail Image

Files

TR_93-31.pdf (1.28 MB)
No. of downloads: 483

Publication or External Link

Date

1993

Advisor

Citation

DRUM DOI

Abstract

An optimal unified architecture that can efficiently compute the Discrete Cosine, Sine, Hartley, Fourier, Lapped Orthogonal, and Complex Lapped transforms for a continuous input data stream is proposed. This structure uses only half as many multipliers as the previous best known scheme [1]. The proposed architecture is regular, modular, and has only local interconnections in both data and control paths. There is no limitation on the transform size N and only 2N - 2 multipliers are needed for the DCT. The throughput of this scheme is one input sample per clock cycle. We provide a theoretical justification by showing that any discrete transform whose basis functions satisfy the Fundamental recurrence Formula has a second-order autoregressive structure in its filter realization. We also demonstrate that dual generation transform pairs share the same autoregressive structure. We extend these time-recursive concepts to multi- dimensional transforms. The resulting d-dimensional structures are fully- pipelined and consist of only d 1-D transform arrays and shift registers.

Notes

Rights