Local Rigidity of Triangle Groups in Sp(4,R)

dc.contributor.advisorGoldman, Williamen_US
dc.contributor.authorHoban, Ryan F.en_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2009-07-02T06:10:46Z
dc.date.available2009-07-02T06:10:46Z
dc.date.issued2009en_US
dc.description.abstractThis paper studies configurations of Lagrangians in a four dimensional real symplectic vector space. We develop a generalized cross ratio as an invariant for quadruples of Lagrangians. This invariant is then used to study representations of triangle groups into the symplectic group. The main theorem is a local rigidity result for a certain representations factoring through the isometry group of the hyperbolic plane.en_US
dc.format.extent5512026 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/1903/9280
dc.language.isoen_US
dc.subject.pqcontrolledMathematicsen_US
dc.subject.pquncontrolledCross Ratioen_US
dc.subject.pquncontrolledGeometryen_US
dc.subject.pquncontrolledLagrangiansen_US
dc.subject.pquncontrolledTriangle Groupen_US
dc.titleLocal Rigidity of Triangle Groups in Sp(4,R)en_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hoban_umd_0117E_10160.pdf
Size:
5.26 MB
Format:
Adobe Portable Document Format