Local Rigidity of Triangle Groups in Sp(4,R)
dc.contributor.advisor | Goldman, William | en_US |
dc.contributor.author | Hoban, Ryan F. | en_US |
dc.contributor.department | Mathematics | en_US |
dc.contributor.publisher | Digital Repository at the University of Maryland | en_US |
dc.contributor.publisher | University of Maryland (College Park, Md.) | en_US |
dc.date.accessioned | 2009-07-02T06:10:46Z | |
dc.date.available | 2009-07-02T06:10:46Z | |
dc.date.issued | 2009 | en_US |
dc.description.abstract | This paper studies configurations of Lagrangians in a four dimensional real symplectic vector space. We develop a generalized cross ratio as an invariant for quadruples of Lagrangians. This invariant is then used to study representations of triangle groups into the symplectic group. The main theorem is a local rigidity result for a certain representations factoring through the isometry group of the hyperbolic plane. | en_US |
dc.format.extent | 5512026 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | http://hdl.handle.net/1903/9280 | |
dc.language.iso | en_US | |
dc.subject.pqcontrolled | Mathematics | en_US |
dc.subject.pquncontrolled | Cross Ratio | en_US |
dc.subject.pquncontrolled | Geometry | en_US |
dc.subject.pquncontrolled | Lagrangians | en_US |
dc.subject.pquncontrolled | Triangle Group | en_US |
dc.title | Local Rigidity of Triangle Groups in Sp(4,R) | en_US |
dc.type | Dissertation | en_US |
Files
Original bundle
1 - 1 of 1