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Chapter 1

Introduction

This paper studies certain discrete faithful representations of hyperbolic tri-

angle groups into the symplectic group Sp±(4,R). The symplectic group is the

isometry group of the Siegel generalized upper half space Sn, which was introduced

by Siegel in [19]. The original intent of this research was to study the action of such

a representation making use of the geometry of Sn. It is however more convenient to

examine the action on its Shilov boundary which identifies with the Real Lagrangian

Grassmannian. This perhaps should not be very surprising: when studying actions

on hyperbolic space one typically studies the action on the boundary and utilizes

Poincare extension.

Our approach will be to begin with well known representations of triangle

groups into Isom(H2). The classical fact that any two similar triangles in H2 are

congruent implies that such representations are locally rigid. Composing these rep-

resentations with embeddings Isom(H2) ↪→ Isom(S2) yields symplectic representa-

tions, essentially choosing a component of the representation variety to examine. We

can now look for deformations of these representations, i.e. representations which

are “close” but not conjugate. In the main case of interest, we show that there are

no such deformations, so the specified component of the representation variety is a

single point. The main goal is to prove the following
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Theorem 1.1 (Rigidity of diagonally embedded triangle groups). All faithful rep-

resentations of hyperbolic triangle groups factoring through the diagonal embedding

of Isom(H2) are locally rigid.

With a mild amount more work we are able to prove that another component

is also a single point

Theorem 1.2 (Rigidity of anti-diagonally embedded triangle groups). All faithful

representations of hyperbolic triangle groups factoring the anti-diagonal embedding

of Isom(H2) are locally rigid.

The proof is accomplished by studying configurations of real Lagrangians. The

most fascinating part of the paper is perhaps the development of a cross ratio on

the Lagrangian Grassmannian. Analogous to the classical cross ratio for quadruples

of points in CP1, this cross ratio yields and invariant for quadruples of Lagrangians.

This allows us to translate the relations of a triangle group into equations describing

the eigenspaces of the generating involutions. Solving these equations in general has

proved quite difficult. We prove theorem 1.1 and 1.2 by showing that in those cases

the number of solutions is finite (discrete).

The same techniques seem well equipped to study other components of the

representation variety. In §8.5 we investigate triangle groups which factor through

the bidisk embedding but not through either the diagonal or the anti-diagonal. The

equations obtained are more formidable to work with. We will give these equations

describing the deformation space, and justify the following conjecture.

Conjecture 1.3. Faithful representations of triangle groups which factor through
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the bi-disk embedding Isom(H2) × Isom(H2) but not through the diagonal or the

anti-diagonal have non-trivial deformations.

The paper is structured as follows. §1.4 describes S2 and the action of Sp(4,R).

Chapter 2 realizes S2 as a submanifold of its compact dual, which gives a relatively

simple description of the boundary ∂S2. Chapter 3 describes S2 as a Riemannian

manifold and makes use of a few facts tediously obtained in appendix A. With

apologies to the readers, we don’t make explicit use of much of the material up to

this point and it serves mainly to motivate what comes next. A reader willing to

accept a few facts about Sp(4,R) and S2 could skip these first chapters and still

follow the remainder of the paper.

Chapter 4 describes several embeddings Isom(H2) ↪→ Isom(S2). These em-

beddings provide the starting points in our search for deformations. The generators

of triangle groups will be Lagrangian involutions and these are described at the end

of this chapter. Chapter 5 describes coordinate systems on the Lagrangian Grass-

mannian and provides tools for visualizing via an identification with the Einstein

universe (see [6]). Chapter 6 investigates configurations of Lagrangians up to the

action of the symplectic group. It develops the generalized cross ratio and gives a

visual interpretation of these configurations.

With all these tools, we are now able to investigate triangle groups. Any two

of the generators of a triangle group generate a dihedral group, so Chapter 7 uses the

cross ratio to describe dihedral groups in Isom(S2). Chapter 8 first describes triangle

groups in Isom(H2). Then we describe how a triangle group in Isom(S2) gives a
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configuration of Lagrangians. The triangle group relations determine equations in

the cross ratios of these Lagrangians. In a perfect world, we would simply solve this

system and completely characterize all such groups. The world is not perfect, so

we focus our attention on a neighborhood of known triangle group representations

factoring through Isom(H2)× Isom(H2). Theorem 1.1 is proven in §8.3.1 by showing

that there is a small enough neighborhood which isolates the known solution from

any other solution. Theorem 1.2 is proven in a slightly different manner in §8.4.1.

Finally in §8.5 we give a construction of a more exotic representation. The

key difference it seems between this and the previous cases is whether

or not the relevant cross ratios have repeated eigenvalues. We will present

evidence that deformations exist for these representations.

There is some supporting Mathematica computations, animations, and interac-

tive notebooks available at http://www.math.umd.edu/∼rfhoban/ThesisStuff/ThesisStuff.html

([15]).

1.1 Notation

We will use the following notations:

• Y > 0 denotes that the square matrix Y is positive definite

• Y T denotes the transpose of Y

• Z denotes the complex conjugate of Z

• Z† denotes the conjugate transpose of Z
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• Re(Z) and Im(Z) denote the real and imaginary parts of Z

• H2 will denote the hyperbolic plane, usually the upper half plane model

• In will denote the n× n identity matrix

• 0n will denote the n× n zero matrix

• For 4 × 2 matrices U1 and U2, we will use the notation [U1|U2] to denote the

4× 4 matrix whose columns are the columns of U1 and U2

1.2 The Symplectic Group

Definition 1.4. A Symplectic Form ω on C2n is a skew symmetric non-degenerate

2-form. Explicitly ω satisfies the following properties:

1. ω(u, v) = −ω(v, u) for all u, v ∈ C2n

2. For all u there is v such that ω(u, v) 6= 0

By choosing a basis for C2n, a symplectic form ω can be given by a non-

degenerate skew symmetric matrix Ω, such that for any vectors u, v ∈ C2n

ω(u, v) = uTΩv.

Definition 1.5. The Symplectic Group, denoted Sp(2n,C) is the subgroup of GL(2n,C)

which preserves a symplectic form ω. Explicitly, if ω is defined by the skew sym-

metric matrix Ω, then the symplectic group is

Sp(2n,C) = {M ∈ GL(2n,C) : MTΩM = Ω}
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All symplectic forms are equivalent up to a choice of basis for C2n, so the

group Sp(2n,C) is a well defined subgroup of GL(2n,C) up to conjugation. The

real symplectic group Sp(2n,R) is the subgroup of Sp(2n,C) with real entries. We

will fix a basis so that the symplectic form is given by the skew symmetric matrix

Ω2n =

 0 −In

In 0


Our primary focus will be the rank 2 symplectic groups Sp(4,C) and Sp(4,R) where

the symplectic form is

Ω =



0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0


Note that the restriction of ω to either of the planes P1 = Span{e1, e2} or P2 =

Span{e3, e4} is identically zero.

Definition 1.6. A subspace W is called isotropic if ω|W ≡ 0, and called coisotropic

if W⊥ ⊂ W . A subspace which is both isotropic and coisotropic is called Lagrangian.

If W is Lagrangian, then dim(W ) = dim(W⊥) = n.

The form defined by Ω thus defines a Lagrangian splitting of C4 = P1

⊕
P2 as

the direct sum of Lagrangian planes. As a result we will refer to this basis for C4 as

a Lagrangian Basis. More generally Ω2n defines a splitting of C2n as the direct sum

of n-dimensional Lagrangian subspaces.
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It is worth noting that in dimension 2, a non-degenerate skew symmetric 2-

form is an area form, so there is an accidental isomorphism Sp(2,R) ≈ SL(2,R).

Finally, the following elementary lemma gives some simple relationships be-

tween the eigenvalues for a symplectic matrix

Lemma 1.7. Let M ∈ Sp(2n,C). If λ is an eigenvalue for M then λ−1 is also an

eigenvalue for M .

Proof. If Ω is any non-degenerate, skew-symmetric matrix and if M is symplectic

with respect to the bilinear form defined by Ω, then ΩM = (MT )−1Ω. Suppose λ is

an eigenvalue for M with eigenvector v. Then

ΩMv = (MT )−1Ωv

λ(Ωv) = (MT )−1(Ωv)

thus λ is an eigenvalue for (MT )−1 with eigenvector Ωv. This implies that λ is an

eigenvalue for M−1, thus λ−1 is an eigenvalue for M .

1.3 Some classical Lie algebras

We will need explicit bases for several of the classical Lie algebras which we

briefly develop here. A reader familiar with these Lie algebras should feel free to

skip this section and simply refer back to it as needed. For a good treatment of

these see [10] or [14].
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1.3.1 sl(2,R) and so(2)

The special linear Lie algebra is the set of traceless 2× 2 matrices

sl(2,R) =


 a b

c −a

 : a, b, c ∈ R


In this basis, the Cartan subalgebra is 1 dimensional and consists of diagonal

matrices  a 0

0 −a


The special orthogonal Lie algebra is one dimensional and consists of skew

symmetric 2× 2 matrices

so(2) =


 0 −θ

θ 0




It is clear that so(2) ⊂ sl(2,R).

1.3.2 sp(4,R) and u(2)

The symplectic Lie algebra is defined as

sp(4,R) := {X ∈ Mat(4,R) : XTΩ + ΩX = 04}

A standard form for X in the chosen Lagrangian basis can be found by writing X

as 2× 2 block matrices

X =

 A B

C D


8



If X ∈ sp(4,R) then

04 = XTΩ + ΩX =

 CT − C −AT −D

DT + A −BT +B


This implies B = BT , C = CT , and D = −AT . So B and C are symmetric matrices

and X =

 A B

C −AT

, so a good general form would be:

X =



a a12 b11 b12

a21 b b12 b22

c11 c12 −a −a21

c12 c22 −a12 −b


It is clear that sp(4,R) has dimension 10. The Cartan subalgebra consists of

diagonal matrices and has dimension 2.

The unitary Lie algebra is

u(2) := {X ∈ Mat(2,C) : X† +X = 02}

Letting X = (xij + iyij) ∈ u(2), then

X† +X =

 2x11 x12 + x21 + i (y12 − y21)

x12 + x21 − i (y12 − y21) 2x22

 = 02

yields 4 linear equations. These imply that X has the form

X =

 iy11 x12 + iy12

−x12 + iy12 iy22

 =

 0 x12

−x12 0

+ i

 y11 y12

y12 y22


9



So Re(X) is skew-symmetric, Im(X) is symmetric and u(2) has dimension 4.

Somewhat surprisingly, this is a subalgebra of sp(4,R) in a very natural way. The

embedding is given by:

u(2) ↪→ sp(4,R)

X ↪→

 Re(X) Im(X)

−Im(X) Re(X)


In chapter 4 and appendix A we will use the following explicit basis for u(2) ⊂

sp(4,R)

B1 =



0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


, B2 =



0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0



B3 =



0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


, B4 =



0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0


This embedding of Lie algebras induces an embedding of the corresponding Lie

groups

U(2) ↪→ Sp(4,R)

given by the same formula. A matrix N is unitary if N †N = I2. Equivalently if

N = A+ iB then N is unitary if and only if
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I2 = N †N = (AT − iBT )(A+ iB) = ATA+BTB + i(−BTA+ ATB)

The embedding is given by

A+ iB ↪→

 A B

−B A


and we can check that the image is actually symplectic A B

−B A


T  02 −I2

I2 02


 A B

−B A

 =

 ATB −BTA −ATA−BTB

BTB + ATA −BTA+ ATB


if and only if A+ iB ∈ U(2).

1.4 The Siegel Upper Half Space

Definition 1.8. Siegel’s Generalized Upper Half Space (or simply the Siegel upper

half space), denoted Sn is the space of n × n symmetric complex matrices with

positive definite imaginary part, that is

Sn = {Z ∈ Mat(n,C) : Z = ZT and Im(Z) > 0}

The rank 1 Siegel upper half space, S1 is simply the usual upper half plane

model for the hyperbolic plane H2. This paper we will focus on the rank 2 Siegel

space, that is S2.

The rank 1 symplectic group, Sp(2,R), is the isomorphic to SL(2,R) and acts

on the upper half plane, S1, by linear fractional transformations. Analogously,

Sp(4,R) acts on S2 by generalized linear fractional transformations as follows. Let

M ∈ Sp(4,R) and Z = X + iY ∈ S2. Write M as blocks of 2× 2 real matrices:

11



M =

 A B

C D

.

The action Sp(4,R)×S2 → S2 is given by

M(Z) = (AZ +B)(CZ +D)−1.

Does this even make sense? In order for this to be well defined, we must check

that (CZ + D)−1 exists and that S2 is invariant. The following series of lemmas

establishes these and other important facts about this action.

Lemma 1.9. CZ +D is nonsingular

Proof. (Following the proof in [11]):

First note the following useful fact:

Z − Z† = X + iY − (XT − iY T ) = X −XT + i(Y + Y T )

Since Z is symmetric we see that X −XT = 02 and Y + Y T = 2Y , so Im(Z) is:

Im(Z) = Y = 1
2i

(Z − Z†)

Further note that
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Z − Z† =
[
Z† I2

]  0 −I2

I2 0


 Z

I2



=

 Z

I2


†

Ω

 Z

I2



=

 Z

I2


†

M †ΩM

 Z

I2



=

 AZ +B

CZ +D


†

Ω

 AZ +B

CZ +D


= (CZ† +D)(AZ +B)− (AZ† +B)(CZ +D)

Y is a real positive definite matrix by assumption and the above computations

show that

Y = 1
2i

[
(CZ† +D)(AZ +B)− (AZ† +B)(CZ +D)

]
Now for any nonzero v ∈ C2 we must have that

0 < v†Y v

<

[
1

2i
v†(CZ† +D)(AZ +B)v − 1

2i
v†(AZ† +B)(CZ +D)v

]
and so (CZ +D)v is nonzero.

Lemma 1.10. The Siegel Space is invariant under this action.

Proof. (Again expanding on the proof in [11]):
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We must show that M(Z) = M(Z)T and M(Z) > 0. Using the fact the Z is

symmetric, we first show that the image M(Z) is also symmetric.

02 = Z − ZT

=

 Z

I2


T

Ω

 Z

I2



=

 Z

I2


T

MTΩM

 Z

I2



=

 AZ +B

CZ +D


T

Ω

 AZ +B

CZ +D


= −(AZ +B)T (CZ +D) + (CZ +D)T (AZ +B)

= (CZ +D)T
[
−((CZ +D)−1)T (AZ +B)T + (AZ +B)(CZ +D)−1

]
(CZ +D)

= (CZ +D)T
[
−((AZ +B)(CZ +D)−1)T + (AZ +B)(CZ +D)−1

]
(CZ +D)

= (CZ +D)T
[
−M(Z)T +M(Z)

]
(CZ +D)

Since CZ + D is nonsingular, −M(Z)T + M(Z) = 02 so M(Z) is symmetric.

We must now show that Im(M(Z)) > 0. To that end note that

Im(M(Z)) = 1
2i

(M(Z)−M(Z))†.

Further a bit of computation yields

M(Z)−M(Z)† = (AZ +B)(CZ +D)−1 − [AZ +B)(CZ +D)−1]†

= (AZ +B)(CZ +D)−1 − [(CZ +D)−1]†(AZ +B)†

= [(CZ +D)−1]†
[
(CZ +D)†(AZ +B)− (AZ +B)†(CZ +D)

]
(CZ +D)−1

To simplify notation, let W = (CZ + D)−1 and note that the expression in square

brackets was computed in the proof of lemma 1.9 to be Z − Z†. So we have
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M(Z)−M(Z)† = W †[Z − Z†]W

1

2i
[M(Z)−M(Z)†] = W †

[
1

2i
[Z − Z†]

]
W

Im(M(Z)) = W †YW

Let v ∈ C2 be any nonzero vector. Then

v†Im(M(Z))v = v†W †YWv

= (Wv)†Y (Wv) > 0

which is positive since Y is positive definite. Hence the imaginary part of M(Z) is

positive definite and S2 is invariant.

Lemma 1.11. The action of Sp(4,R) on S2 is transitive.

Proof. Choosing iI2 as a basepoint, it suffices to show that for any point Z =

X + iY ∈ S2 there is M ∈ Sp(4,R) such that M(iI2) = Z. Since Y is positive

definite, it has a positive definite square root, i.e. there is a matrix Y 1/2 such that

(Y 1/2)2 = Y . Let M =

 Y 1/2 XY −1/2

0 Y −1/2

. It is easy to check that MTΩM = Ω so

M ∈ Sp(4,R) and that M(iI) = Z as desired.

Lemma 1.12. Any point Z ∈ S2 is a nonsingular matrix

Proof. Suppose X + iY ∈ S2 and v = v1 + iv2 ∈ C2 where v1, v2 ∈ R2 such that

(X + iY )v = 0. Expanding we have 0 = (Xv1 − Y v2) + i(Y v1 +Xv2) which occurs

if and only if

Xv1 = Y v2 and Y v1 = −Xv2.

15



Since Y > 0 it is invertible it is possible to solve the first equation for v2 and

substituting that solution into the second equation we obtain

Y v1 = −XY −1Xv1

Multiplying both sides on the left by vT1 and using the fact that Y > 0 we obtain:

0 < vT1 Y v1 (Y > 0)

= −vT1 XY −1Xv1

= −(Xv1)TY −1(Xv1) (Since X = XT )

< 0 (Since Y −1 > 0)

So v1 = 0, and hence v2 = 0, so X + iY is invertible.

Lemma 1.13. The isotropy subgroup of Sp(4,R) acting on S2 is isomorphic to the

unitary group U(2)

Proof. If M stabilizes the basepoint iI2 =

 i 0

0 i

 ∈ S2, then

(AiI2 +B)(CiI2 +D)−1 = iI2

iA+B = i(iC +D)

iA+B = iD − C

i(A−D) + (B + C) = 0

This immediately implies that A = D and B = −C. So the isotropy subgroup

consists of matrices of the form

M =

 A B

−B A

.
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Symplecticity of M means

MTΩM = Ω AT −BT

BT AT


 0 −I2

I2 0


 A B

−B A

 =

 0 −I2

I2 0


 −BTA+ ATB −BTB − ATA

ATA+BTB ATB −BTA

 =

 0 −I2

I2 0


This yields 2 the equations: ATB −BTA = 02 and ATA+BTB = I2 which are the

defining equations for U(2) described in §1.3.

Recapping, the above lemmas established that Sp(4,R) acts transitively on

the S2 and the isotropy subgroup is isomorphic to U(2). Thus the Siegel upper half

space is a homogeneous space and there is a diffeomorphism

Sp(4,R)/U(2)
≈→ S2

This diffeomorphism is given by evaluation at any point in S2. A convenient

basepoint to choose is iI2 =

 i 0

0 i

, so for a matrix M ∈ Sp(4,R), the coset

M/U(2) identifies with the point M(iI2) ∈ S2.
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Chapter 2

The Dual Manifold

When studying hyperbolic geometry, it is often convenient to realize the upper

half plane as embedded in the complex projective line CP1. The ideal boundary of

H2 can easily be described as a circle in CP1, and the linear fractional action of

Isom(H2) ≈ SL(2,R) extends naturally to an action of SL(2,C) on CP1. In addition

CP1 contains a bounded model for hyperbolic geometry, the Poincare unit disk.

There is a mapping of CP1 called the Cayley Map, which maps the upper half plane

to the Poincare unit disk.

Analogously, the Siegel upper half space is contained in a larger space called

its Compact Dual. The action of Sp(4,R) on S2 extends to an action of Sp(4,C)

on the compact dual and many computations become easier by first lifting to this

larger space. The compact dual contains a bounded model for the geometry of the

Siegel space as well. There is an Sp(4,C) mapping called the Cayley map from S2

to this bounded model.

To motivate the construction of the compact dual, we first recall the construc-

tion of CP1 and its relationship to the upper half plane. Then we will construct

the compact dual to S2 in an analogous manner. We will see that the dual mani-

fold identifies with the Complex Lagrangian Grassmannian, i.e. the subspace of the

Grassmannian of 2-planes in C4 consisting of Lagrangian 2-planes.
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2.1 H2 and CP1

The nonzero complex numbers C∗ act on the vector space C2 by scalar mul-

tiplication and define an equivalence relation on C2 by

 z1

z2

 ∼
 λz1

λz2

 for ev-

ery λ ∈ C∗. The Complex Projective Line CP1 is defined as the quotient space

(C2 − {~0})/ ∼. The group GL(2,C) acts on C2 preserving equivalence classes, so

the action passes down to a well defined action on CP1. The upper half plane is

then naturally embedded by

j : H2 ↪→ CP1

j(z) =

 z

1


A standard exercise in hyperbolic geometry is to check that the subgroup SL(2,R)

leaves the image of j invariant, and under this embedding corresponds to the linear

fractional action of SL(2,R) on H2.

The Dual manifold to H2 is CP1. For comparison with the dual manifold

constructed in the next section, note that a line in C2 is a Lagrangian subspace of

C2 and hence CP1 can be thought of as the space of Lagrangian subspaces of C2.

2.2 S2 and Lag(C4)

Consider the space of 4×2 complex matrices U of rank 2 satisfying UTΩU = 02.

There are two convenient ways of viewing this space corresponding to 2 natural ways

of breaking up a 4× 2 matrix.
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• We can view elements as pairs of 2 × 2 block matrices U =

 Z1

Z2

. In this

description this space takes the form:
 Z1

Z2

 : rank


 Z1

Z2


 = 2 and ZT

2 Z1 − ZT
1 Z2 = 02


In this description the condition UTΩU = 02 sort of generalizes the notion of

”symmetric”. In particular note that if Z2 = I2, this is precisely the condition

that Z1 is symmetric.

• Consider elements as pairs of column vectors U =


| |

c1 c2

| |

. In this de-

scription, U having rank 2 means that Span{c1, c2} is a 2-plane in C4. The

condition UTΩU = 02 means that this plane is Lagrangian. In this viewpoint

the space takes the form:

{[c1, c2] : c1, c2 are linearly independent, and ω(c1, c2) = 0}.

The space thus identifies with the space of Lagrangian 2-Frames in C4.

Define an equivalence relation on Lagrangian 2-Frames by

U ∼ Ug for every g ∈ GL(2,C).

Definition 2.1. The Compact Dual Manifold is the space of equivalence classes of

Lagrangian frames under the above equivalence relation. For a Lagrangian plane
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in C4, the right action of GL(2,C) simply changes the basis for that plane. The

compact dual can then be seen as

Compact Dual = {U4×2 : rk(U) = 2 and UTΩU = 02}/GL(2,C)

= {Lagrangian 2-Frames}/Change of basis

= Lagrangian Planes

=: Lag(C4)

Lag(C4) is called the Complex Lagrangian Grassmannian, and is the dual man-

ifold to the Siegel upper half space. It is naturally a subspace of the Grassmannian

of all 2-planes in C4 and is endowed with the subspace topology.

The description of this space as equivalence classes of 4 × 2 matrices is anal-

ogous to the description of homogeneous coordinates on CP1. So at the risk of

creating some confusion, these will be referred to as Siegel Homogeneous Coordi-

nates for Lag(C4). There are other natural coordinate systems which are described

in chapter 5, but we will primarily use these coordinates.

A collection of facts about Lag(C4):

• Sp(4,C) action: The group Sp(4,C) acts on Lag(C4
ω) by left multiplication.

For M =

 A B

C D

 ∈ Sp(4,C) written as 2 × 2 blocks and a Lagrangian

Frame U =

 Z1

Z2

,

MU =

 A B

C D


 Z1

Z2

 =

 AZ1 +BZ2

CZ1 +DZ2
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Since M is nonsingular the image also has rank 2. Further since M is sym-

plectic,

(MU)TΩ(MU) = UT (MTΩM)U = UTΩU = 02

hence the image of U is Lagrangian.

Finally, since the Sp(4,C) action is on the left, and the equivalence relation is

defined via a right action, the action of Sp(4,C) is well defined on equivalence

classes and passes down to an action on Lag(C4). This action is simply the

natural action of GL(4,C) on the Grassmannian of 2-planes in C4, restricted

to the subgroup Sp(4,C) on the subspace of Lagrangian planes.

• S2 embedding: S2 embeds into Lag(C4) by

j : Z ↪→

 Z

I2


If M ∈ Sp(4,R) ⊂ Sp(4,C), then M acts on the image of j by A B

C D


 Z

I2

 =

 AZ +B

CZ +D



∼

 (AZ +B)(CZ +D)−1

I2


= j((AZ +B)(CZ +D)−1)

so this embedding is equivariant with respect to the generalized linear frac-

tional action of Sp(4,R) on S2. By lemma 1.10, the image of j is invariant

under Sp(4,R).

22



Conversely, consider the subspace of Lag(C4
ω) consisting of those U such that

1
2i
U †ΩU > 0.

First note that this in fact makes sense: For any v ∈ C4,

ω(v, v) = (v)TΩ(v) = (v)TΩ(v) = ω(v, v) = −ω(v, v)

which implies that ω(v, v) is purely imaginary. Then

v†( 1
2i
U †ΩU)v = 1

2i
(Uv)†Ω(Uv) = 1

2i
ω(Uv, Uv)

is in fact real. Further

1
2i
U †ΩU = 1

2i
(Z†2Z1 − Z†1Z2) > 0

implies that Z1 and Z2 are nonsingular. Acting on the positive definite matrix

1
2i
U †ΩU by Z−1

2 we have:

0 < (Z−1
2 )†(

1

2i
U †ΩU)(Z−1

2 )

=
1

2i
(UZ−1

2 )†Ω(UZ−1
2 )

=
1

2i
[(Z1Z

−1
2 )† I]Ω

 Z1Z
−1
2

I


=

1

2i
(Z1Z

−1
2 − (Z1Z

−1
2 )†)

= Im(Z1Z
−1
2 )

So the complex Lagrangian planes U satisfying 1
2i
U †ΩU > 0 correspond to

points in the Siegel upper half space.

23



2.3 The bounded model and the Cayley transform

The Poincare unit disk model of the hyperbolic plane is

{z ∈ C : 1− zz > 0}

Since C naturally identifies with an affine patch of CP1, the Poincare disk can be

seen as contained in CP1 via the embedding z ↪→

 z

1

. There is a conformal

automorphism of CP1 given by the SL(2,C) matrix

√
2

2

 1 −i

−i 1


which maps the upper half plane to the Poincare unit disk. This mapping is an

isometry with respect to the respective hyperbolic metrics on the upper half plane

and the Poincare disk, and is called the Cayley map or Cayley transformation.

Similarly, there is a bounded model for S2. Let

D2 = {Z ∈ Mat(2,C) : Z = ZT and I2 − Z†Z > 0}

This embeds into Lag(C4) in the obvious way: Z ↪→

 Z

I2

. In Siegel homogeneous

coordinates the bounded model is described by

D2 =

U4×2 : UTΩU = 02 and U †

 −I2 0

0 I2

U > 0


The Cayley transform is given by the Sp(4,C) matrix:

Cay =
√

2
2

 I2 −iI2

−iI2 I2
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Lemma 2.2. The Cayley transform maps S2 → D2.

Proof. Let

 Z

I2

 ∈ S2. Then

Cay


 Z

I2


 =

√
2

2

 Z − iI

−iZ + I

.

Since the Cayley transform is in Sp(4,C) the image of a Lagrangian plane is a

Lagrangian plane and thus UTΩU = 02. For the other condition we compute

U †

 −I2 0

0 I2

U =
1

2
[(Z† + iI) (iZ† + I)]

 −Z + iI

−iZ + I


=

1

2
[(Z† + iI)(−Z + iI) + (iZ† + I)(−iZ + I)]

=
1

i
(Z − Z†)

Now Im(Z) = 1
2i

(Z − Z†) > 0 by assumption, so U ∈ D2.

25



Chapter 3

The Riemannian structure of S2

In this section we describe S2 as a Riemannian manifold. Much of this geom-

etry was described by Siegel in [19]. We will take a slightly different approach using

the geometry of the Lie group Sp(4,R), and make use of results tediously obtained

in appendix A. The main tools we will use are lemma A.1, the bilinear form given

at the end of §A.2 and corollary A.6.

The bilinear form given at the end of §A.2 is a positive definite inner product

on TiIS2 and is invariant under the isotropy subgroup U(2) by construction. The

idea will be to use this form together with the transitivity of the Sp(4,R) action

(lemma 1.11) to induce an invariant metric on S2.

3.1 The Riemannian Metric

The tangent space at the base point TiIS2 identifies with all 2 × 2 complex

symmetric matrices. If v = Ai+B ∈ TiIS2 then lemma A.2 yields an identification

of TiIS2 with a subspace p ⊂ sp(4,R) given by

TiIS2 ←→ p

v = Ai+B ←→ V =
1

2

 A B

B −A
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Restricting the trace form on sp(4,R) to p (see A.2) induces a positive definite

bilinear form

B(V, V ) = 2tr(V 2) = tr(vv)

which defines a U(2) invariant inner product on TiIS2 by

< v, v >iI= tr(vv)

This inner product can be extended to a Riemannian metric on S2. Let

X + iY ∈ S2, and consider the automorphism of S2 that is f : Z → Y Z +X. The

fact that Y > 0 implies that Y has a square root, i.e. there is a matrix
√
Y > 0

such that
√
Y

2
= Y . The map f is then given by the symplectic matrix:

M =


√
Y X

√
Y
−1

0
√
Y
−1

 ∈ Sp(4,R)

Now f(iI) = X + iY and the differential of this map is simply Y , so we define

the inner product at X+iY in such a way that f is an isometry. So for v ∈ TX+iY S2,

< v, v >X+iY =< (df)−1v, (df)−1v >iI

=< Y −1v, Y −1v >iI

= tr(Y −1vY −1v)

= tr(Y −1vY −1v)

Letting dZ denote the differential of Z, the Riemannian metric on S2 is given

by

ds2 = tr(Y −1dZY −1dZ)

Sp(4,R) now acts by isometries with respect to this metric.
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3.2 The Generalized Cross Ratio

In [19], Siegel defines a Generalized Cross Ratio for points in Z,Z1 ∈ S2 by

R(Z,Z1) = (Z − Z1)(Z − Z1)−1(Z − Z1)(Z − Z1)−1

In §6.6 we will extend his definition in a natural way to the dual manifold

Lag(C4), and see that this definition generalizes the familiar cross ratio for quadru-

ples of points in CP1. Siegel’s primary use for this definition is the following theorem

which generalizes a similar result for the upper half plane:

Theorem 3.1 (Siegel, Theorem 2 from [19]). For any points Z,Z1,W,W1 ∈ S2

there is a transformation M ∈ Sp(4,R) such that M(Z) = W and M(Z1) = W1 if

and only if the cross ratios R(Z,Z1) and R(W,W1) have the same eigenvalues.

Proof. (⇒) Suppose there is M ∈ Sp(4,R) written as 2× 2 blocks. Then

Z − Z1 =

 Z1

I2


T

Ω

 Z

I2

 =

 Z1

I2


T

MTΩM

 Z

I2



=

 AZ1 +B

CZ1 +D


T

Ω

 AZ +B

CZ +D


= (CZ1 +D)T (AZ +B)− (AZ1 +B)T (CZ +D)

= (CZ1 +D)T
[
(AZ +B)(CZ +D)−1 − ((CZ1 +D)T )−1(AZ1 +B)T

]
(CZ +D)

= (CZ1 +D)T [M(Z)−M(Z1)T ](CZ +D)

= (CZ1 +D)T [W −W1](CZ +D)

Similarly we can compute that:
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Z − Z1 = (CZ1 +D)T (W −W1)(CZ +D)

Z − Z1 = (CZ1 +D)T (W −W1)(CZ +D)

Z − Z1 = (CZ1 +D)T (W −W1)(CZ +D)

Observe that Z − Z1 = (X − X1) + i(Y + Y1), so this is a point in S2. By

lemma 1.12 it is invertible, hence (Z−Z1)−1 (and inverse of all the other differences

above) make sense. Then computing R(Z,Z1) we have:

(Z − Z1)(Z − Z1)−1 = (CZ1 +D)T (W −W1)(CZ +D) [(CZ1 +D)T (W −W1)(CZ +D)]−1

= (CZ1 +D)T (W −W1)(W −W1)−1((CZ1 +D)T )−1

and

(Z − Z1)(Z − Z1)−1 = (CZ1 +D)T (W −W1)(CZ +D)[(CZ1 +D)T (W −W1)(CZ +D)]−1

= (CZ1 +D)T (W −W1)(W −W1)−1((CZ1 +D)T )−1

Multiplying the 2 previous products together we obtain:

R(Z,Z1) = (CZ1 +D)T (W −W1)(W −W1)−1(W −W1)(W −W1)−1((CZ1 +D)T )−1

R(Z,Z1) = (CZ1 +D)TR(W,W1)((CZ1 +D)T )−1

So the cross ratios R(Z,Z1) and R(W,W1) are conjugate matrices, hence have

the same eigenvalues.

(⇐) Suppose that R(Z,Z1) and R(W,W1) have the same eigenvalues. Since

the Sp(4,R) action is transitive (lemma 1.11) we may assume Z1 is the basepoint

iI. Using Corollary A.6, we can apply a matrix in the stablizer of iI to assume

29



that Z = i

 y1 0

0 y2

 for some 1 ≤ y1 ≤ y2 ∈ R. As proved above, both of these

transformations leave the eigenvalues of the cross ratios invariant.

Now it’s easy to compute that

R(Z,Z1) =


(
y1−1
y1+1

)2

0

0
(
y2−1
y2+1

)2


so the eigenvalues are

λi =
(
yi−1
yi+1

)2

for i = 1, 2.

Solving for yi we obtain that

yi = 1+
√
λi

1−
√
λi

for i = 1, 2.

hence

Z = i

 1+
√
λ1

1−
√
λ1

0

0 1+
√
λ2

1−
√
λ2


is entirely determined by the eigenvalues of R(Z,Z1). We could apply the same

argument to the pair (W,W1), and since the image of W depends only upon the

eigenvalues of R(W,W1), W1 would map to the base point Z1 and W would map to

Z as desired.

3.3 Geodesics in S2

In [19], Siegel computes geodesics directly from the metric by minimizing the

length of an arbitrary curve between 2 points. It is much simpler to take a Lie theory

approach following the ideas of [7]. For any unit tangent vector v, γ(t) = exp(tv)
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is a geodesic parameterized at unit speed. By transitivity of the Sp(4,R) action

(lemma 1.11), we need only consider geodesics through the base point iI2. We can

restrict our attention further to geodesics contained in a specified flat.

Definition 3.2. A Flat in S2 is a subspace isometric to Euclidean space. The

subspace i
 y1 0

0 y2

 : y1, y2 > 0


is called the Standard Flat.

The standard flat is the image under the exponential map ofi
 a 0

0 b

 : a, b ∈ R

 ⊂ TiI2S2

Lemma A.1 identifies this with the Cartan subalgebra of sp(4,R). Corollary

A.6 says that every element in sp(4,R) can be mapped to this Cartan subalgebra

by a unitary matrix. Thus every v ∈ TiIS2 can be mapped by a unitary matrix

(stabilizing iI) to one in the tangent space to the standard flat.

Let v = i

 a 0

0 b

 ∈ TiI2S2 be a unit tangent vector, so a2 + b2 = 1. This

corresponds in the Cartan subalgebra to the matrix

V =



a
2

0 0 0

0 b
2

0 0

0 0 −a
2

0

0 0 0 −b
2
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Then

γ(t) = exp(tV )(iI) =

 ieat 0

0 iebt


is a unit speed geodesic through γ(0) = iI. Applying the Cayley transform from

§2.3 to these geodesics, we obtain geodesics in the standard flat of the bounded

model given by:

(Cay)γ(t) = i

 tanh
(
at
2

)
0

0 tanh
(
bt
2

)


The figure below shows these geodesics in the standard flat of the Siegel upper

half space on the left and the bounded model on the right.

y1

y2

3.4 The Metric Distance

We can now compute the distance between Z,Z1 ∈ S2. By Corollary A.6 we

may apply Sp(4,R) transformations to assume that Z = iI and Z1 = i

 y1 0

0 y2


where 1 ≤ y1 ≤ y2. Sp(4,R) acts by isometries so these transformations preserve
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dist(Z,Z1). In the proof of Theorem 3.1 we saw that y1 and y2 could be computed

explicitly as functions of the eigenvalues of the cross ratio R(Z,Z1). Let λ1, λ2 be

the eigenvalues of R(Z,Z1). Then

yi = 1+
√
λi

1−
√
λi

= coth
(

lnλi
4

)
for i = 1, 2

Suppose γ(t) = i

 eat 0

0 ebt

 is the unit speed geodesic connecting these

points. We can find the arc length by solving for t:

γ(t) = iZ1

i

 eat 0

0 ebt

 = i

 y1 0

0 y2


⇒ eat = y1 ebt = y2

t =
ln(y1)

a
t =

ln y2

b

ln y1

ln y2

=
a

b

Since a2 + b2 = 1 and 1 ≤ y1 ≤ y2, we have that

(
b ln y1

ln y2

)2

+ b2 = 1⇒ b = ln y2√
ln2 y1+ln2 y2

Similarly a = ln y1√
ln2 y1+ln2 y2

. We now can compute

t = ln y2
b

=
√

ln2 y1 + ln2 y2

Hence we have dist(Z,Z1) as a function of the eigenvalues of R(Z,Z1)

dist(Z,Z1)2 = ln2 y1 + ln2 y2 = ln2 coth
(

lnλ1

4

)
+ ln2 coth

(
lnλ2

4

)
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Chapter 4

Embeded Hyperbolic Planes

This section describes several different embeddings of SL(2,R) into Sp(4,R).

An embedding of Lie groups induces an embedding of the corresponding homoge-

neous spaces, i.e. an embedding of the hyperbolic plane into the Siegel space. We

will show that these are then equivariant with respect to the natural actions of the

groups. The hyperbolic planes are then totally geodesic submanifolds of the Siegel

space. In chapter 8 we will examine representations of triangle groups which factor

through these embeddings.

The full group of isometries Isom(H2) consists of both orientation preserving

and reversing isometries, and involutions generating triangle groups are in fact orien-

tation reversing. Similarly Isom(S2) consists of both symplectic and anti-symplectic

transformations and the involutions of interest will in fact be anti-symplectic. For

this reason we will need to examine to what extent the embeddings of SL(2,R) ↪→

Sp(4,R) extend to embeddings of Isom(H2) ↪→ Isom(S2). This is the topic of §4.5

and will be used in a very crucial way in §8.2.1.

4.1 The bidisk H2 ×H2

Definition 4.1. The Bidisk embedding is the homomorphism
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Φbidisk : SL(2,R)× SL(2,R) ↪→ Sp(4,R)

Φbidisk


 a11 a12

a21 a22

 ,
 b11 b12

b21 b22


 =



a11 0 a12 0

0 b11 0 b12

a21 0 a22 0

0 b21 0 b22


In a basis different from the one we have been using this homomorphism is

simply given by the direct sum of the two SL(2,R) matrices. It is straightforward

to check that the image is actually symplectic.

The homogeneous space for SL(2,R)×SL(2,R) is H2×H2. Using the Poincare

disk model this is simply the product of two disks, hence the name bidisk embedding.

The embedding of Lie groups induces an embedding of the bidisk into S2 given in

upper half plane coordinates by

φbidisk : H2 ×H2 ↪→ S2

φbidisk(x1 + iy1, x2 + iy2) =

 x1 + iy1 0

0 x2 + iy2


This embedding is equivariant with respect to the appropriate actions, so the

following diagram commutes:

H2 ×H2 SL(2,R)×SL(2,R)−−−−−−−−−→ H2 ×H2yφbidisk yφbidisk
S2

Sp(4,R)−−−−→ S2

Let Rθ =

 cos(θ) sin(θ)

− sin(θ) cos(θ)

 ∈ SL(2,R). The image Φbidisk(Rθ, I2) is in
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the isotropy subgroup of the base point U(2). For points Z = i

 y1 0

0 y2

 in the

standard flat, these rotations act by

Φbidisk(Rθ, I2)(Z) =

 sin(θ)+i cos(θ)y1
cos(θ)−i sin(θ)y1

0

0 iy2


This action of fixes {i} ×H2 point-wise and acts as an elliptic element in the

first factor of the bidisk. All geodesics through i in the first factor of the bidisk are

images of the singular geodesic γ(t) = i

 et 0

0 1

.

The graphic below shows the 3 dimensional subspace of S2 consisting of x1 + iy1 0

0 iy2

. The y1y2-plane is the standard flat, and the second frame show

the image of this flat under Φbidisk(Rπ
8
, I2). The red curves are all images of the

geodesic i

 et 0

0 1

 and are geodesics through i in the first factor of the embedded

bidisk. The geodesic highlighted in yellow is fixed by the action.

y1

y2

y1

y2

The picture is perhaps a bit less confusing in the bounded model. Here the

rotation looks like a Euclidean Rotation and the embedded Poincare Unit Disk is
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more apparent.

y1

y2

y1

y2

Similarly Φbidisk(I2, Rθ) fixes the embedded H2×{i} point-wise and acts as an

elliptic transformation in the second factor in the bidisk. The pictures shown below

are in the 3 dimensional subspace

 iy1 0

0 x2 + iy2

. All geodesics in this embedded

H2 are images of the singular geodesic γ(t) = i

 1 0

0 et

.

y1

y2

y1

y2
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y1

y2

y1

y2

Flash Animations of this action (and all remaining similar pictures) are avail-

able online at [15].

4.2 The diagonal in the bidisk

If we compose the diagonal embedding of SL(2,R) with the bidisk embedding

we obtain an embedding

Φdiag : SL(2,R) ↪→ SL(2,R)× SL(2,R) ↪→ Sp(4,R)

Φdiag


 a b

c d


 = Φbidisk


 a b

c d

 ,
 a b

c d


 =



a 0 b 0

0 a 0 b

c 0 d 0

0 c 0 d


This induces the diagonal embedding of H2

φdiag : H2 ↪→ S2

φdiag(x+ iy) =

 x+ iy 0

0 x+ iy
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The matrix Φdiag(Rθ) acts on this embedded H2 by an elliptic transformation

preserving i. The base point is its only fixed point in the standard flat. The

embedded H2 is the image under this one parameter family of rotations of the

singular geodesic

γ(t) = i

 e
√

2
2
t 0

0 e
√

2
2
t


4.3 An embedded GL(2,R)

Let M ∈ GL(2,R) and define the embedding

ΦPDS : GL(2,R) ↪→ Sp(4,R)

ΦPDS(M) =

 M 02

02 (MT )−1


It is straightforward to check that the image is symplectic. Let PDS(2,R) denote

the cone of positive definite symmetric real matrices. This is a homogeneous space

for GL(2,R). GL(2,R) acts transitively on PDS(2,R) by transpose conjugation,

and choosing I2 ∈ PDS(2,R) as a base point, the stabilizer is the orthogonal group

O(2). Evaluation at the base point yields a diffeomorphism

GL(2,R)/O(2)→ PDS(2,R)

which identifies the coset M/O(2) with MMT ∈ PDS(2,R). ΦPDS induces an

equivariant embedding

φPDS : PDS(2,R) ↪→ S2

φPDS(Y ) = iY
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The natural inclusion SL(2,R) ↪→ GL(2,R) induces an embedding H2 ↪→

PDS. To compute this explicitly, recall that x + iy ∈ H2 is the image of i under

the SL(2,R) matrix M =

 y
1
2 xy−

1
2

0 y−
1
2

, and hence the coset M/SO(2) identifies

with x+ iy.

The inclusion SL(2,R) ↪→ GL(2,R) induces a map on the coset spaces SL(2,R)/SO(2)→

GL(2,R)/O(2) sending M/SO(2) → M/O(2). This coset identifies with MMT ∈

PDS. So we have the mapping

H2 ↪→ PDS

x+ iy →MMT =

 y + x2y−1 xy−1

xy−1 y−1


We summarize all the maps discussed in this section with the following com-

mutative diagram:

U(2) � � // Sp(4,R) // Sp(4,R)/U(2)
≈ // S2

O(2) � � //
?�

ΦPDS

OO

GL(2,R) //
?�

ΦPDS

OO

GL(2,R)/O(2)
≈ //

?�

φPDS

OO

PDS
?�

φPDS

OO

SO(2)
?�

OO

� � // SL(2,R)
?�

OO

// SL(2,R)/SO(2)
?�

OO

≈ // H2
?�

OO

In particular the embedding induced by restriction H2 ↪→ S2 is:

φPDS : x+ iy → i

 (x2 + y2)y−1 xy−1

xy−1 y−1


The action of the image of ΦPDS leaves the imaginary subspace of S2 invariant.

In particular, ΦPDS(Rθ) =

 Rθ 02

02 Rθ

 fixes the singular geodesic
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i

 e
√

2
2
t 0

0 e
√

2
2
t


and acts as an elliptic transformation fixing i on this embedded H2.

The images below show the purely imaginary subspace of S2. The standard

flat is shown as well as its image under the action of ΦPDS

(
Rπ

8

)
. The geodesic

shown in yellow is fixed and the embedded H2 is a hyperboloid in this cone. All

geodesics through the base point in this embedded H2 are images of the singular

geodesic γ(t) = i

 e
√

2
2
t 0

0 e−
√

2
2
t

.

Again the picture is perhaps clearer in the bounded model where the embedded

H2 is a copy of the Poincare disk.
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4.3.1 A conjugate embedding of GL(2,R)

There is an interesting embedding of GL(2,R) which is Sp(4,R) conjugate to

ΦPDS given by

 a b

c d

→



a 0 0 b

0 a
ad−bc

b
ad−bc 0

0 c
ad−bc

d
ad−bc 0

c 0 0 d


This induces an embedding PDS → S2 given by a b

c d

 −→
 0 ac+bd

c2+d2

ac+bd
c2+d2

0

+ i

 (bc−ad)2

c2+d2
0

0 1
c2+d2


and by restriction we obtain an embedding of H2:

x+ iy →

 0 x

x 0

+ i

 y 0

0 y


As in the previous cases, the rotation matrix Rθ ∈ SL(2,R) embeds to ob-

tain a one parameter group of elements in the isotropy subgroup. This group fixes

one of the singular geodesics pointwise and the embedded H2 is the image of an-

other singular geodesic under this group. The graphic below shows the subspace iy1 x12

x12 iy2

.
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Once again the rotations look more Euclidean in the bounded model

4.4 The irreducible 4-dimensional embedding of SL(2, R)

Let R2
µ be the 2 dimensional vector space with basis {x, y} equipped with the

standard symplectic form µ given by

 0 −1

1 0

. Let v1⊗ v2⊗ v3 and w1⊗w2⊗w3

be simple tensors in (R2
µ)⊗3. µ induces a bilinear form <,> on (R2

µ)⊗3 defined for

simple tensors by

< v1 ⊗ v2 ⊗ v3, w1 ⊗ w2 ⊗ w3 >:= µ(v1, w1)µ(v2, w2)µ(v3, w3)

and extended to (R2
µ)⊗3 linearly.
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Let P(x, y) denote the four dimensional vector space of homogeneous cubic

polynomials in x and y. P(x, y) has a basis consisting of the cubic monomials

{x2, x2y, xy2, y3}, and can be can be obtained as a quotient of (R2
µ)⊗3 by sym-

metrizing. More precisely, (R2
µ)⊗3 has a basis of simple tensors in x and y, and

we can define a mapping (R2
µ)⊗3 → P(x, y) by specifying the images of the simple

tensors:

x⊗ x⊗ x→ x3,

{x⊗ x⊗ y, x⊗ y ⊗ x, y ⊗ x⊗ x} → x2y

{x⊗ y ⊗ y, y ⊗ x⊗ y, y ⊗ y ⊗ x} → xy2

y ⊗ y ⊗ y → y3

This mapping induces a bilinear form <,>P on P(x, y) by averaging over the

simple tensors in the preimage. Since µ is skew symmetric and each term will have

3 factors, it is clear that <,>P is skew symmetric. It suffices to define <,>P for the

pairs of basis elements, most of which will be zero. The only nonzero pairings are:

< x3, y3 >P =< x⊗ x⊗ x, y ⊗ y ⊗ y >= µ(x, y)µ(x, y)µ(x, y) = −1

< x2y, xy2 >P =
1

9
(µ(x, y)µ(x, y)µ(y, x) + µ(x, y)µ(y, x)µ(x, y) + µ(y, x)µ(x, y)µ(x, y))

=
1

3

The bilinear form <,>P is then a symplectic form given by the skew symmetric

matrix
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J :=



0 0 0 −1

0 0 1
3

0

0 −1
3

0 0

1 0 0 0


The linear action of SL(2,R) on R2

µ preserves µ and this induces an action

on the tensor product (R2
µ)⊗3 preserving <,>. Composing with the above mapping

induces an action on P preserving J .

If M =

 a b

c d

 ∈ SL(2,R), the images of the basis elements x and y under

M are ax + cy and bx + dy respectively. M then acts on the basis elements for

P(x, y):

x3 → (ax+ cy)3 = a3x3 + 3a2cyx2 + 3ac2y2x+ c3y3

x2y → (ax+ cy)2(bx+ dy) = a2bx3 + 2abcyx2 + a2dyx2 + bc2y2x+ 2acdy2x+ c2dy3

xy2 → (ax+ cy)(bx+ dy)2 = ab2x3 + b2cyx2 + 2abdyx2 + ad2y2x+ 2bcdy2x+ cd2y3

y3 → (bx+ dy)3 = b3x3 + 3b2dyx2 + 3bd2y2x+ d3y3

The result is a linear transformation and defines a representation of SL(2,R)

given by

 a b

c d

→



a3 a2b ab2 b3

3a2c da2 + 2bca cb2 + 2adb 3b2d

3ac2 bc2 + 2adc ad2 + 2bcd 3bd2

c3 c2d cd2 d3
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which is symplectic with respect to J . To make use of this representation in studying

S2, we need to express this representation with respect to the Lagrangian basis. We

obtain

Definition 4.2. The irreducible 4 dimensional representation is

Φirr : SL(2,R)→ Sp(4,R)

Φirr


 a b

c d


 =



a3 −a2b b3 3ab2

−3a2c da2 + 2bca −3b2d 3 (−cb2 − 2adb)

c3 −c2d d3 3cd2

ac2 1
3

(−bc2 − 2adc) bd2 ad2 + 2bcd


This induces an embedding φirr : H2 ↪→ S2 given by

φirr(x+ iy) =

 −2x3 3x2

3x2 −6x

+ i

 y3 + x2y −xy

−xy y


Of interesting note here is that all geodesics in this embedded H2 are regular

geodesics.

4.5 Anti-Symplectic Mappings and Lagrangian Involutions

The full isometry group of H2 contains both orientation preserving and revers-

ing transformations and is isomorphic to

SL±(2,R) := {M ∈ GL(2,R) : det(M) = ±1}

A transformation M ∈ SL(4,R) is called Anti-Symplectic if MTΩM = −Ω. Let

Sp±(4,R) :=
{
M ∈ SL(4,R) : MTΩM = ±Ω

}
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An anti-symplectic mapping M acts on S2 by generalized linear fractional action

composed with complex conjugation: Z →M(Z).

A Lagrangian Involution is an involution in Sp±(4,R) conjugate to

−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1


The eigenspaces of a Lagrangian involution are Lagrangian planes. To what

extent do the SL(2,R) embeddings discussed thus far extend to embeddings of

SL±(2,R) in Sp±(4,R)? The SL(2,R) embeddings factoring through GL(2,R) obvi-

ously extend and their image still contained in Sp(4,R). We now address the extent

to which the other embeddings extend.

4.5.1 Extending the bidisk embedding

Direct computation shows that

Φbidisk(A,B)TΩΦbidisk(A,B) =



0 0 − det(A) 0

0 0 0 − det(B)

det(A) 0 0 0

0 det(B) 0 0


thus Φbidisk(A,B) is symplectic if and only if det(A) = det(B) = 1, and anti-

symplectic if and only if det(A) = det(B) = −1. So Φbidisk extends not to all of

SL±(2,R)× SL±(2,R) but only to the subgroup
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{(A,B) : det(A) = det(B)} ⊂ SL±(2,R)× SL±(2,R)

In particular the diagonal embedding Φdiag extends to an embedding

Φdiag : SL±(2,R) ↪→ Sp±(4,R).

4.5.2 Extending the irreducible representation

Direct computation checking the symplecticity of the image of Φirr shows

Φirr(A)TΩΦirr(A) =



0 0 − det(A) 0

0 0 0 − det(A)

det(A) 0 0 0

0 det(A) 0 0


so Φirr(A) is symplectic if det(A) = 1 and anti-symplectic if det(A) = −1. Thus the

irreducible representation extends to an embedding Φirr : SL±(2,R) ↪→ Sp±(4,R).
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Chapter 5

Coordinates on the Lag(C4) and the Einstein Universe

In §2.2 we described how the dual manifold to S2 identified with the complex

Lagrangian Grassmannian Lag(C4) and described Siegel homogeneous coordinates

for that manifold. This is just one of several different coordinate systems which are

convenient for describing this manifold, so here we will describe other coordinate

systems and the relationships between them.

We will then give a brief overview of the geometry of the real Lagrangian

Grassmannian Lag(R4). This is a proper three dimensional submanifold of the

topological boundary of S2 which is invariant under Isom(S2) ≈ Sp(4,R). It is the

Shilov boundary for S2 and identifies with the three dimensional Einstein Universe

Ein2,1. The geometry of Ein2,1 will allow us to visualize objects in Lag(R4), and

in §5.4 we will give a brief overview of the objects of interest in our study. For

a full treatment of the Einstein universe see [6]. Lastly, we will describe how the

boundaries of the embedded hyperbolic planes intersect this.

5.1 Siegel “Homogeneous” Coordinates

Given a Lagrangian plane in C4, choose a basis {c1, c2} for that plane. These

vectors form a Lagrangian frame, that is, a pair of linearly independent vectors

spanning a Lagrangian plane. Let L denote the 4 × 2 matrix whose columns are
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these vectors

L =


| |

c1 c2

| |


The space of Lagrangian frames is {L4×2 : rk(L) = 2 and LTΩL = 02}. The

Lagrangian Grassmannian is obtained as a quotient of the space of Lagrangian

frames by considering two frames equivalent if they span the same plane. Two

frames L,L′ span the same plane if and only if there is a change of basis matrix

g ∈ GL(2,C) such that L′ = Lg. So

Lag(C4) = Lagrangian Frames/Change of Basis

= {L4×2 : rk(L) = 2 and LTΩL = 02}/GL(2,C)

In these coordinates the action of Sp±(4,C) on Lag(C4) is simply left matrix

multiplication. Restricting all matrices to have real entries yields Siegel homoge-

neous coordinates on Lag(R4).

5.2 Homogeneous Skew Symmetric Matrices

One effective way to represent elements in any Grassmannian is by certain

elements in the exterior algebra. We will use an equivalent formulation to this using

skew symmetric matrices that is more computationally effective.

Let Matskew(4,C) denote the vector space of 4 × 4 skew symmetric matrices

and define a bilinear mapping, called the Exterior Outer Product, by

50



ExtOuter : C4 × C4 → Matskew(4,C)

(u, v)→ uvT − vuT

where u, v ∈ C4 are column vectors. ExtOuter(u, v) is a skew symmetric matrix

whose column space is Span(u, v). We note that this mapping is equivalent to the

wedge product when working in the exterior algebra.

This induces a mapping from Siegel homogeneous coordinates to the projec-

tivization of Matskew(4,R) given by

Lag(C4)→ P(Matskew(4,C))
| |

c1 c2

| |

→ ExtOuter(c1, c2)

The following lemma establishes that this mapping is well defined

Lemma 5.1. Suppose L is a 4× 2 matrix of rank 2 and let g ∈ GL(2,C). Then

ExtOuter(Lg) = det(g)ExtOuter(L)

hence the above mapping is well defined.

Proof. L and Lg are Siegel homogeneous coordinates for the same Lagrangian plane.

Suppose

L =


| |

c1 c2

| |

 and g =

 a b

c d
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Then Lg =


| |

c1 c2

| |


 a b

c d

 =


| |

ac1 + cc2 bc1 + dc2

| |


The image of Lg is then:

Lg →
[
ac1 + cc2

] [
bc1 + dc2

]T
−
[
bc1 + dc2

] [
ac1 + cc2

]T
= (abc1c

T
1 + adc1c

T
2 + bcc2c

T
1 + cdc2c

T
2 )− (abc1c

T
1 + bcc1c

T
2 + adc2c

T
1 + cdc2c

T
2 )

= adc1c
T
2 + bcc2c

T
1 − bcc1c

T
2 − adc2c

T
1

= (ad− bc)(c1c
T
2 − c2c

T
1 )

= det(g)ExtOuter(c1, c2)

Definition 5.2. Let A ∈ Matskew(4,C). The Pfaffian of A is the quadratic polyno-

mial Pfaff(A) =
√

det(A). Suppose

A =



0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

−a14 −a24 −a34 0


It is straightforward to compute

det(A) = (a14a23 − a13a24 + a12a34)2

Pfaff(A) = a14a23 − a13a24 + a12a34

The Pfaffian can be used to describe the image of ExtOuter:
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Theorem 5.3. A nonzero skew symmetric matrix A is in the image of ExtOuter if

and only if Pfaff(A) = 0.

Proof. (=⇒) Suppose A = ExtOuter(u, v). Since the image of A is the span of u

and v, the rank rk(A) ≤ 2 so det(A) = 0 and Pfaff(A) = 0.

(⇐=) Suppose Pfaff(A) = 0. Then det(A) = 0 hence rk(A) < 4. The rank

of any skew symmetric matrix is even, and since A 6= 04, we know rk(A) = 2.

Hence the image of A is a 2 dimensional plane. Choose a basis {u, v} for the image

of A. Then ExtOuter(u, v) and A differ by a scalar, hence A is in the image of

ExtOuter.

The Pfaffian can be used to define a bilinear form of signature (3,3) on Matskew(4,C).

For A,B ∈ Matskew(4,R), the bilinear form is given by

Matskew(4,C)×Matskew(4,C)→ C

(A,B)→ Pfaff(A+B)− Pfaff(A)− Pfaff(B)

We note that this is equivalent to the wedge product of bivectors when working in the

exterior algebra. It is straightforward to compute that ExtOuter(A,A) = 2Pfaff(A),

thus the above theorem implies that A corresponds to plane if and only if A is null

with respect to this bilinear form.

In fact the mapping Lag(C4)→ P(Matskew(4,C)) extends to a mapping from

the entire Grassmannian of two planes in C4: notice that in this section we have

yet to use the assumption that plane of interest in Lagrangian. So the collection

of skew symmetric matrices whose Pfaffian is zero actually provides homogeneous

coordinates for the entire Grassmannian of two planes.
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Restricting now to the Lagrangians, let L be a Lagrangian plane whose Siegel

homogeneous coordinates are given by

L =



a11 a12

a21 a22

a31 a32

a41 a42


(We are abusing language here slightly and referring to L as both the Lagrangian

itself and the Siegel homogeneous coordinates for the Lagrangian). The condition

that L is Lagrangian is given by:

02 = LTΩL

=

 0 a12a31 − a11a32 + a22a41 − a21a42

−a12a31 + a11a32 − a22a41 + a21a42 0


L maps to the skew symmetric matrix:

0 a11a22 − a12a21 a11a32 − a12a31 a11a42 − a12a41

a12a21 − a11a22 0 a21a32 − a22a31 a21a42 − a22a41

a12a31 − a11a32 a22a31 − a21a32 0 a31a42 − a32a41

a12a41 − a11a42 a22a41 − a21a42 a32a41 − a31a42 0


so the assumption that L is Lagrangian implies that the (1, 3)-entry and the (2, 4)-

entry sum to zero. So the Lagrangian Grassmannian can be described in this coor-

dinate system as:

Lag(C4) = {A4×4 : A+ AT = 04 and Pfaff(A) = 0 and a13 + a24 = 0}/C∗
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The action of Sp±(4,C) is given by transpose conjugation. For M ∈ Sp±(4,C)

and A ∈ Matskew(4,C), the action is

(M,A)→MAMT

Since det(M) = ±1, the action preserves the Pfaff(A) and the subspace where

a13 + a24 = 0 is invariant.

5.3 Homogeneous Coordinates for Null Lines

The bilinear form on Matskew(4,C) has signature (3, 3), thus this space iden-

tifies with C3,3. The matrices corresponding to Lagrangians are null with respect to

this form and lie in the 5 dimensional subspace where the (1, 3) and (2, 4) entries

sum to zero. The restriction of the bilinear form to this subspace has signature

(3, 2). Let C3,2 denote the C5 equipped with the signature (3, 2) bilinear form

given by X2 + Y 2 − Z2 − UV . Then we have an identification of this subspace of

Matskew(4,C) with C3,2 given by



0 −U Y Z −X

U 0 −X − Z −Y

−Y X + Z 0 V

X − Z Y −V 0


←→



X

Y

Z

U

V


Thus the subspace of P(Matskew(4,C)) identifies with P(C3,2). Further the

condition Pfaff(A) = 0 is equivalent to the corresponding vector being null. We can

thus describe Lagrangians as
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Lag(C4) = {[X, Y, Z, U, V ] ∈ C3,2 : X2 + Y 2 − Z2 − UV = 0}/C∗

The action of Sp(4,C) on Lag(C4) induces an action on C3,2. Restricting to real

Lagrangians, we have an action of Sp(4,R) on R3,2. This results in a homomorphism

Sp(4,R)→ SO(3, 2). We summarize all of these coordinate systems:

• Siegel Homogeneous Coordinates

Lag(C4) = {L4×2 : rk(L) = 2 & LTΩL = 02}/GL(2,C)

• Skew symmetric matrices

Lag(C4) = {A4×4 : A+ AT = 04 & Pfaff(A) = 0 & a13 + a24 = 0}/C∗

• Null Lines in C3,2

Lag(C4) = {[X, Y, Z, U, V ] ∈ C3,2 : X2 + Y 2 − Z2 − UV = 0}/C∗

5.4 Visualizing in the Einstein Universe Ein2,1

The projectivization of null lines in R3,2 identifies with the Einstein Universe

(see [6]), denoted Ein2,1. The identification Lag(R4) ≈ Ein2,1 enables us to visualize

the local geometry of Lag(R4) in an affine patch of Ein2,1, which identifies with

Minkowski space-time. The action of Sp(4,R) can then be visualized using the local

isomorphism Sp(4,R) ≈ SO(3, 2).

Let E2,1 denote the affine space of R2,1 called Minkowski space-time. Fix a

basis for R2,1 where the quadratic form is given by x2 + y2 − z2, and a basis for

R3,2 where the quadratic form is X2 + Y 2 − Z2 − UV . There is an embedding

E2,1 ↪→ Ein2,1 given by
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x

y

z

 ↪→



x

y

z

x2 + y2 − z2

1


The inverse of this map will serve as an affine chart referred to as the standard

Minkowski patch where we can visualize objects. For a Lagrangian Li given in Siegel

homogeneous coordinates, the corresponding point in Ein2,1 will be denoted pi. In

particular fix notation for the following Lagrangians:

L0 :=



0 0

0 0

1 0

0 1


L1 :=



1 0

0 1

1 0

0 1


L−1 :=



−1 0

0 −1

1 0

0 1


L∞ :=



1 0

0 1

0 0

0 0


We have used the notation here to be suggestive of homogeneous coordinates for

the points 0, 1,−1 and ∞ in RP1. Under the identification in the previous sections

these correspond to

p0 :=



0

0

0

0

1


p1 :=



0

0

1

−1

1


p−1 :=



0

0

−1

−1

1


p∞ :=



0

0

0

0

1
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Remark 5.4. We may abuse notation and language slightly by referring to Li as both

a Lagrangian and as Siegel homogeneous coordinates for that Lagrangian. We will

have to use caution when doing this as most computations require a choice of basis.

For instance the plane L0 could be specified by

 02

A

 where A is any nonsingular

2 × 2 matrix, though most often we will want to refer to it using the 4 × 2 matrix

L0 above.

Other Lagrangians of interest which will arise in §6.5 are

p−1,1 :=



−1

0

0

1

1


↔ L−1,1 :=



−1 0

0 1

1 0

0 1



p1,−1 =



1

0

0

1

1


↔ L1,−1 :=



1 0

0 −1

1 0

0 1



The points in the standard Minkowski patch (the affine points) have the last

coordinate V 6= 0. All points in this chart may be represented in Siegel homogeneous

coordinates where the bottom 2 × 2 block is nonsingular. We can thus choose a

normal form for arbitrary points in E2,1 with the correspondence
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E2,1 ↪→ Lag(R4)


x

y

z

 ↪→



x+ z −y

−y −x+ z

1 0

0 1


Under this correspondence in the standard Minkowski patch

p0 is the origin p1 ↔ (0, 0, 1) p−1 ↔ (0, 0,−1) p1,−1 ↔ (1, 0, 0)

x

y

z

The ideal points come in a few different flavors. All ideal points can be rep-

resented in Siegel homogeneous coordinates by matrices whose bottom block is sin-

gular. The improper point p∞ ∈ Ein2,1 corresponds to L∞. The generic ideal points

are Lagrangians whose bottom block has rank 1 and whose top block is nonsingular.

Those Lagrangians with both top and bottom block having rank 1 form the ideal

circle.
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Distinct Lagrangians can either intersect transversely or in a line. Two La-

grangians which do not intersect transversely correspond to points in Ein2,1 which

are incident, i.e. lie on a photon. Photons are diffeomorphic to RP1 and intersect

E2,1 in a null line. The collection of all null lines through a point p is the Light Cone

at p and will be denoted Light(p). Thus Light(pi) consists of points corresponding

to all Lagrangians which are not transverse to Li.

For a Lagrangian written in Siegel coordinates as 2× 2 blocks L =

 A

B

, let

[L∞|L] denote the 4× 4 matrix whose columns are the columns of L∞ and L

[L∞|L] =

 I2 A

02 B


If L is transverse to L∞, then R4 = L∞ ⊕ L hence [L∞|L] is nonsingular. Since

det([L∞|L]) = det(B) we see that the Lagrangians transverse to L∞ have nonsin-

gular bottom block, thus correspond to the affine points E2,1. All ideal points have

a singular bottom block, hence the collection of all ideal points is Light(p∞). We

visualize these objects in the Minkowski patch as follows:

• Photons which intersect the Minkowski patch are simply seen as null lines in

E2,1. Photons have a single ideal point.

• If p is an affine point, then its light cone intersects the Minkowski patch in an

affine light cone. The light cone of p0 is shown in the picture below in red. Its

points correspond to Lagrangians not transverse to L0.

• If p is a generic ideal point, its light cone intersects the Minkowski patch in
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an affine null plane, shown in the picture below in green.

• If p is on the ideal circle, its light cone intersects the Minkowski patch in a

null plane passing through the origin in E2,1, shown in the picture below in

blue.

• The light cone of the improper point does not intersect the Minkowski patch

and contains all the ideal points. All photons on this light cone are ideal

photons.

x

y

z

Light cones for points which are incident intersect in a photon containing both

of these points, as seen with the red and blue light cones above. Light cones for

two non incident points intersect in a Spacelike Circle. All spacelike circles are

diffeomorphic to RP1 but their intersection with the Minkowski patch can be any

type of conic section. The pictures below illustrate typical spacelike circles in the

Minkowski patch. On the left, the three light cones shown are for points in the

Minkowski patch, and the intersection of these light cones is seen as either a circle,
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ellipse, or hyperbola. On the right, two of the light cones shown are for ideal points

and one is for an affine point. The intersections are seen as either a parabola or line.

The spacelike circle determined by non-incident points pa and pb consists of

those points pc such that La ∩ Lc and Lb ∩ Lc are both not transverse.

5.5 The intersections ∂H2 ∩ Ein2,1

Each embedding of SL(2,R) yields an embedding of H2 ↪→ S2. The image of

the ∂H2 is then contained in Lag(R4). We describe here the images of ∂H2 for each

of the SL(2,R) embeddings discussed above.

Composing φbidisk with the embedding of S2 ↪→ Lag(C4) from §2.2 yields a

mapping

H2 ×H2 ↪→ Lag(C4)

(x1 + iy1, x2 + iy2)→



x1 + iy1 0

0 x2 + iy2

1 0

0 1
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The image of ∂H2 × ∂H2 is a torus contained in Lag(R4). Under the identifi-

cation Lag(R4) ≈ Ein2,1 this torus intersects the Minkowski patch in the xz-plane

∂H2 × ∂H2 ↪→ Lag(R4)↔ E2,1 ⊂ Ein2,1

(x1, x2) ↪→



x1 0

0 x2

1 0

0 1


↔


x1−x2

2

0

x1+x2

2



The image of each factor of ∂H2 × ∂H2 is a photon in the xz-plane. The image

φdiag(∂H2) is the z-axis.

If we compose φPDS(H2) with the embedding S2 ↪→ Lag(C4) we obtain

x+ iy →



i(y + x2y−1) ixy−1

ixy−1 iy−1

1 0

0 1


∼



iy −x

0 −1

1 0

−x iy


The image of φPDS(∂H2) is then 

0 −x

0 −1

1 0

−x 0


which describes the ideal circle. The conjugate GL(2,R) embedding described above

yields a hyperbolic plane embedded by
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x+ iy →



iy x

x iy

1 0

0 1


whose boundary is easily seen to intersect E2,1 in the y-axis

0 x

x 0

1 0

0 1


↔


0

x

0



These are both spacelike circles in Ein2,1, and can be mapped to the space-

like that intersects E2,1 in the x-axis. This is the boundary of a hyperbolic plane

embedded in the anti-diagonal in the bidisk.

x+ iy →



x+ iy 0

0 −x+ iy

1 0

0 1


Finally composing φirr(H2) with S2 ↪→ Lag(C4) yields

x+ iy →



i (y3 + x2y)− 2x3 3x2 − ixy

3x2 − ixy iy − 6x

1 0

0 1


whose boundary embeds intersects E2,1 in a timelike cubic curve
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−2x3 3x2

3x2 −6x

1 0

0 1


↔


x (x2 − 3)

−3x2

−x (x2 + 3)



The pictures below illustrate the images of each of these boundaries in the

Minkowski patch.

x

z

F bid
isk

H¶ H
2 ´

80<L
F
bidisk H80< ´

¶
H 2LFdiagH¶ H

2L

¶ Anti-Diagonal

x

y

z

Nothing to see here
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Chapter 6

Configurations of Lagrangian Planes

In this section we will investigate configurations of pairwise transverse La-

grangians up to the action of the symplectic group. A set of Lagrangian planes will

be called transverse if each pair in the set is transverse. We will see that Sp(4,C) acts

triply transitively on Lag(C4) but Sp(4,R) acts only doubly transitively on Lag(R4).

Triples of transverse real Lagrangians have 3 distinct orbits, and the geometry of

Ein2,1 provides a nice way of easily visualizing this fact. Finally we develop a Gen-

eralized Cross Ratio on quadruples of transverse Lagrangians which generalizes the

classical cross ratio on CP1 and extends the cross ratio defined by Siegel (see §3.2).

As motivation we begin by recalling some facts about the classical cross ratio.

6.1 The Classical Cross Ratio

It is well known that SL(2,C) acts triply transitively on CP1- any triple of dis-

tinct points can be mapped by an SL(2,C) transformation to (0, 1,∞). Quadruples

of distinct points in CP1 are characterized by the cross ratio.

Definition 6.1 (The Classical Cross Ratio). Let a, b, c, d ∈ CP1 be distinct and

have homogeneous coordinates a =

 a1

a2

, etc. The cross ratio of these points is

given by:
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[a, b, c, d] :=

det


c1 a1

c2 a2

 det


b1 d1

b2 d2



det


c1 d1

c2 d2

 det


b1 a1

b2 a2


There are several variants on the definition of the cross ratio found in the

literature. We have chosen a definition such that

[0, 1, λ,∞] = λ

The cross ratio determines quadruples up to the action of SL(2,C) as seen in

the following

Lemma 6.2. Let z0, z1, z, z∞ be distinct points in CP1. There exists M ∈ SL(2,C)

mapping the quadruple (z0, z1, z, z∞) → (0, 1, λ,∞) if and only if the cross ratio

[z0, z1, z, z∞] = λ.

The action of SL(2,R) on RP1 ⊂ CP1 is not quite triply transitive, but it is

once we allow for orientation reversing transformations. The action of SL±(2,R) on

RP1 is triply transitive. The cross ratio can be used to classify distinct quadruples

in RP1 up to the action of SL±(2,R).

Lemma 6.3. Let x0, x1, x, x∞ be distinct points in RP1. There exists M ∈ SL±(2,R)

mapping the quadruple (x0, x1, x, x∞) → (0, 1, λ,∞) if and only if the cross ratio

[x0, x1, x, x∞] = λ
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6.2 Pairs of Transverse Lagrangians

We will show that Sp(4,C) act doubly transitively on transverse pairs in

Lag(C4). Exactly the same argument shows that Sp(4,R) act doubly transitively

on Lag(R4). We will prove that every pair of transverse Lagrangians is in the orbit

of the pair (L0, L∞).

Lemma 6.4 (Sp(4,C) acts doubly transitively:). Let U , V be a pair of transverse

Lagrangians. Then there is M ∈ Sp(4,C) such that ML0 = U and ML∞ = V .

Proof. Suppose U and V have Siegel homogeneous coordinates

U =


| |

u3 u4

| |

 V =


| |

v1 v2

| |


The reason for the strange choice of indices for these column vectors will be

clear in a moment. Since ω is non-degenerate we can choose u2 such that ω(u2, u3) =

0 and ω(u2, u4) = −1. Now u⊥2 ∩u⊥4 is a 2-plane intersecting u⊥3 in a line. So we can

choose u1 ∈ u⊥2 ∩u⊥4 such that ω(u1, u3) = −1. Let M be the matrix whose columns

are u1, u2, u3, u4:

M0 =


| | | |

u1 u2 u3 u4

| | | |


Then MT

0 ΩM0 = Ω by construction so M0 ∈ Sp(4,C). Further M0L0 = U

as desired. Applying M0 to both U and V we may now assume without loss of
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generality that U = L0. Since V intersects U = L0 transversely we can write

C4 = V ⊕ L0, and hence the matrix

[V |L0] =



| | 0 0

v1 v2 0 0

| | 1 0

| | 0 1


is nonsingular. It is straightforward to compute that the determinant of this matrix

is equal to the determinant of the top block of V , hence the top block of V is

nonsingular.

The isotropy subgroup of L0 consists of symplectic matrices of the form:

Stab(L0) =

 A 02

C D

.

Let v3 =



0

0

z

w


. Since the top block of V is nonsingular the equations

ω(v1, v3) = −1 and ω(v2, v3) = 0 are non singular and hence there is a solution for

z, w. Choose v3 satisfying those equations. Now choose v4 such that ω(v1, v4) = 0,

ω(v2, v4) = −1 and ω(v3, v4) = 0. Once again such a solution exists since the top

block of V is nonsingular and ω is non-degenerate. Let M∞ be the matrix whose

columns are v1, v2, v3, v4:
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M∞ =


| | | |

v1 v2 v3 v4

| | | |


Then by construction M∞ ∈ Sp(4,C), M∞L0 = L0 and M∞V = L∞. Now

the matrix M∞M0 is a symplectic transformation taking U → L0 and V → L∞ as

desired.

6.3 Triples of Lagrangian Planes

Suppose now L is a Lagrangian transverse to both L0 and L∞ with coordinates

L =



l11 l12

l21 l22

l31 l32

l41 l42


Since L ∩ L∞ is transverse, we can then write C4 = L∞ ⊕ L and hence the

matrix

[L∞|L] =



1 0 l11 l12

0 1 l21 l22

0 0 l31 l32

0 0 l41 l42


is nonsingular. It is easy to see that det[L∞|L] = l31l42 − l32l41, hence the bottom

2× 2 block for L is nonsingular. Thus we may choose a basis for L such that
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L =



l11 l12

l21 l22

1 0

0 1


Similarly since L ∩ L0 is transverse we can write C4 = L0 ⊕ L and the matrix

[L0|L] =



0 0 l11 l12

0 0 l21 l22

1 0 1 0

0 1 0 1


is nonsingular. This implies that det[L0|L] = l11l22− l12l21 is nonzero and hence the

top 2×2 block of L is nonsingular. Since L is assumed to be Lagrangian, it satisfies

LTΩ4L = 02. As noted in §2.2 this implies that the top block of L is a symmetric

matrix. So L has coordinates:

L =



l11 l12

l12 l22

1 0

0 1


The discussion thus far applies equally to real and complex Lagrangians. There

is now a difference due to the fact that GL(2,C) acts transitively on non-degenerate

symmetric bilinear forms, but GL(2,R) preserves the signature of the form.
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6.4 Triples of Complex Lagrangians

The following lemma allows us to further simplify the coordinates for L in the

complex case.

Lemma 6.5. GL(2,C) acts transitively on non-degenerate symmetric bilinear forms.

More precisely, for any 2 × 2 nonsingular symmetric matrix l there exists g ∈

GL(2,C) such that gT lg = I2.

Proof. Since l is nonsingular there exists v ∈ C2 such that vT lv 6= 0. Rescaling v by

1√
vT lv

, which exists since we are working over C, we see that

vT√
vT lv

l v√
vT lv

= vT lv
vT lv

= 1

So without any loss of generality we may assume vT lv = 1. Choose w ∈ v⊥

so that wT lw 6= 0. Again by rescaling we may assume wT lw = 1. Then {v, w}

is an orthonormal basis for C2 with respect to the bilinear form defined by l. Let

g = [v|w]. It is now easy to check that:

gT lg =

 vT lv vT lw

wT lv wT lw

 =

 1 0

0 1



It is straightforward to check that the stabilizer of (L0, L∞) is image of ΦPDS

(see §4.3). Specifically,

Stab(L0, L∞) =


 A 02

02 (AT )−1

 : A ∈ GL(2,C)
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If L is a Lagrangian in C4 which is transverse to L0 and L∞, the above ar-

gument says that L has coordinates L =

 l

I2

 where l is a nonsigular symmetric

matrix. Lemma 6.5 yields g ∈ GL(2,C) such that gT lg = I2. The image of gT under

ΦPDS is  gT 02

02 g−1


This stabilizes L0 and L∞ and acts on L by gT 02

02 g−1


 l

I2

 =

 gT l

g−1

 ∼
 gT lg

I2

 =

 I2

I2


Thus we may assume that the third plane is

L1 =



1 0

0 1

1 0

0 1


We thus conclude

Lemma 6.6 (Sp(4,C) acts triply transitively). Any transverse triple in Lag(C4) is

Sp(4,C) equivalent to

(L0, L1, L∞) =





0 0

0 0

1 0

0 1


,



1 0

0 1

1 0

0 1


,



1 0

0 1

0 0

0 0
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6.5 Triples of Real Lagrangians

If we restrict our attention to Sp(4,R) and the real Lagrangian Grassmannian,

lemma 6.5 does not apply and Sp(4,R) does not act transitively on triples of trans-

verse Lagrangian planes. The argument in §6.3 still applies: any triple of transverse

Lagrangians is Sp(4,R) equivalent to the triple

L0 =



0 0

0 0

1 0

0 1


, L∞ =



1 0

0 1

0 0

0 0


, L =



l11 l12

l12 l22

1 0

0 1


The top block for L is now a nonsingular real symmetric matrix. By the

spectral theorem for real symmetric matrices there is an orthogonal matrix P

which diagonalizes the top block of L. Now the matrix

ΦPDS(P ) =

 P 02

02 P


stabilizes L0 and L∞, and acts on L by P 02

02 (P T )−1


 l

I2

 =

 Pl

P

 ∼
 PlP T

I2


So we may assume that the top block of L is diagonal and the diagonal entries

are nonzero. We may then apply a (real) diagonal matrix to L to assume that the

diagonal entries are ±1. Thus there are 3 possibilities for L:

74



L1 =



1 0

0 1

1 0

0 1


, L−1 =



−1 0

0 −1

1 0

0 1


or L−1,1 =



−1 0

0 1

1 0

0 1


We conclude that there are 3 orbits of transverse Lagrangian triples in R4

under the action of Sp(4,R).

Lemma 6.7 (Orbits of transverse triples in Lag(R4)). Any triple of transverse

Lagrangians in Lag(R4) is Sp(4,R) equivalent to one of the following

• (L0, L1, L∞)

• (L0, L−1, L∞)

• (L0, L1,−1, L∞)

The identification Lag(R4) ≈ Ein2,1 yields an easy way of visualizing these

orbits. L0 and L∞ correspond to the origin p0 and the improper point p∞ respec-

tively. The light cones Light(p0) and Light(p∞) consist of points corresponding to

non-transverse Lagrangians. The complement

Ein2,1 − {Light(p0) ∪ Light(p∞)}

consists of points corresponding to Lagrangians transverse to both. It is easy to see

that this is equal to the complement

E2,1 − {Light(p0)}
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and this set has 3 components. The picture below shows Light(p0) and a point

corresponding each of L1, L−1 and L1,−1.

x

y

z

Nothing to see here

Viewing these triples in this manner also makes apparent that there is an

involution in Minkowski space which maps the triple (L0, L1, L∞)→ (L0, L−1, L∞).

This is the Lagrangian involution  −I2 02

02 I2


thus any transverse triple is Sp±(4,R) equivalent to either (L0, L1, L∞) or (L0, L−1,1, L∞).

For obvious reasons we will refer to these orbits as the Definite triple or Indefinite

triple. Further it is clear that the subgroup stabilizing a triple is nontrivial. Specif-

ically,

Theorem 6.8 (Stabilizers of Triples).

1. The subgroup of Sp(4,R) stabilizing the definite triple is isomorphic to the

orthogonal group O(2). The isomorphism is given by restricting ΦPDS to

O(2) ⊂ GL(2,R):
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Stab(L0, L1, L∞) = ΦPDS(O(2)) =


 P 02

02 P

 : P ∈ O(2)


2. The subgroup stabilizing the indefinite triple is isomorphic to O(1, 1). The

isomorphism is again given by restricting ΦPDS:

Stab(L0, L−1,1, L∞) = ΦPDS(O(1, 1)) =


 P 02

02 P

 : P ∈ O(1, 1)


6.6 Extending Siegel’s Generalized Cross Ratio

Here we will generalize the cross ratio defined by Siegel and discussed in §3.2.

This is an invariant for configurations of quadruples of transverse Lagrangians in

C4. We then present a series of lemmas establishing the properties expected from

any reasonably defined cross ratio. Specifically the last few theorems in this section

generalize lemma 6.2.

First we define the Gram matrix for pairs of 4× 2 matrices.

Definition 6.9. Let U1, U2 be 4× 2 matrices. The Gram Matrix for the symplectic

pairings of the columns of U1 and U2 is

Gr(U1, U2) := UT
1 ΩU2

It is clear that the Gram matrix is invariant under the left action of Sp(4,C).

The Gram matrix is not well defined for pairs of Lagrangian planes,

only for pairs of Lagrangian frames. Changing basis for a plane will change

the Gram matrix by either right or left multiplication by some matrix in GL(2,C).
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Lemma 6.10. If U1 and U2 are 4 × 2 matrices spanning transverse Lagrangian

planes, then Gr(U1, U2) is nonsingular.

Proof. By lemma 6.4, we may apply symplectomorphisms to assume that the planes

are U1 = L0 and U2 = L∞. These transformations preserve Gr(U1, U2). We may

then change basis to make the coordinates L0 =

 02

I2

 and L∞ =

 I2

02

, and this

change of basis multiplies the Gram matrix by a nonsingular matrix. Now direct

computation yields that Gr(L0, L∞) = I2, hence Gr(U1, U2) is nonsingular.

The cross ratio can now be defined for transverse quadruples. It also depends

upon a choice of basis for each plane, but it is a first step to finding an invariant

which is independent of these choices.

Definition 6.11. Let U1, U2, U3, U4 be 4× 2 matrices of rank 2 spanning pairwise

transverse Lagrangian planes. This means that Gr(Ui, Uj) is nonsingular if i 6= j

and Gr(Ui, Ui) = 02. Define the cross ratio as

CR[U1, U2, U3, U4] : = Gr(U1, U3)Gr−1(U4, U3)Gr(U4, U2)Gr−1(U1, U2)

= [UT
1 ΩU3][UT

4 ΩU3]−1[UT
4 ΩU2][UT

1 ΩU2]−1

The first trivial observation is the following:

Lemma 6.12. The Cross Ratio is invariant under Sp(4,C).

Proof. Follows immediately from the fact that the Gram matrix is invariant under

Sp(4,C).

The following lemma establishes that the cross ratio for transverse quadruples

of Lagrangians is well defined up to conjugacy. This means that the spectral
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properties of the cross ratio are independent of choices of basis for each

plane, and we can use the spectrum of the cross ratio to produce well defined

invariants for quadruples.

Lemma 6.13. The cross ratio for a quadruple of transverse Lagrangians is well

defined up to conjugacy. More precisely, if U1,U2, U3 and U4 are Lagrangian frames

spanning pairwise transverse Lagrangian planes, and g ∈ GL(2,C) then the following

cross ratios are all GL(2,C) conjugate:

• CR[U1, U2, U3, U4]

• CR[U1g, U2, U3, U4]

• CR[U1, U2g, U3, U4]

• CR[U1, U2, U3g, U4]

• CR[U1, U2, U3, U4g]

Proof. Consider how changing basis for each of the planes affects the cross ratio:

1. Change basis for U1:

CR[U1g, U2, U3, U4] = [(U1g)TΩU3][UT
4 ΩU3]−1[UT

4 ΩU2][(U1g)TΩU2]−1

= gT [UT
1 ΩU3][UT

4 ΩU3]−1[UT
4 ΩU2][gTUT

1 ΩU2]−1

= gT [UT
1 ΩU3][UT

4 ΩU3]−1[UT
4 ΩU2][UT

1 ΩU2]−1(gT )−1

= gTCR[U1, U2, U3, U4](gT )−1

2. Change basis for U2:
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CR[U1, U2g, U3, U4] = [UT
1 ΩU3][UT

4 ΩU3]−1[UT
4 ΩU2g][UT

1 ΩU2g]−1

= [UT
1 ΩU3][UT

4 ΩU3]−1[UT
4 ΩU2]gg−1[UT

1 ΩU2]−1

= CR[U1, U2, U3, U4]

3. Change basis for U3:

CR[U1, U2, U3g, U4] = [UT
1 ΩU3g][UT

4 ΩU3g]−1[UT
4 ΩU2][UT

1 ΩU2]−1

= [UT
1 ΩU3]gg−1[UT

4 ΩU3]−1[UT
4 ΩU2][UT

1 ΩU2]−1

= CR[U1, U2, U3, U4]

4. Change basis for U4:

CR[U1, U2, U3, U4g] = [UT
1 ΩU3][(U4g)TΩU3]−1[(U4g)TΩU2][UT

1 ΩU2]−1

= [UT
1 ΩU3][gTUT

4 ΩU3]−1[gTUT
4 ΩU2][UT

1 ΩU2]−1

= [UT
1 ΩU3][UT

4 ΩU3]−1(gT )−1gT [UT
4 ΩU2][UT

1 ΩU2]−1

= CR[U1, U2, U3, U4]

There is a cool observation to be made from the above proof, namely that

changing basis for U2, U3 or U4 actually preserves the cross ratio; only changing

basis for U1 conjugates the cross ratio. This can simplify things if we are able to fix

a basis for U1.

The definition of cross ratio is the natural extension of Siegel’s cross ratio

defined on S2 to Lag(C4), as shown in the following

Lemma 6.14. For points Z,Z1 ∈ S2, the cross ratio R(Z,Z1) discussed in §3.2

satisfies:
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R(Z,Z1) = CR


 Z1

I2

 ,
 Z

I2

 ,
 Z

I2

 ,
 Z1

I2




As with the classical cross ratio for quadruples of points in CP1, there is a

natural action of the symmetric group S4 which permute the Ui. The choice made

in definition 6.11 is such that for a nonsingular 2× 2 symmetric matrix l

CR[L0, L1, L, L∞] = CR


 02

I2

 ,
 I2

I2

 ,
 l

I2

 ,
 I2

02


 = l

In light of lemma 6.13 we make the following extension to the definition of the

cross ratio:

Definition 6.15. Let CREig be the mapping defined on transverse quadruples of

transverse Lagrangians which yields the (unordered) eigenvalues of the cross ratio

of the quadruple. By lemma 6.13, this mapping is well defined.

The following is the direct generalization of lemma 6.2, and extends theorem

3.1 from S2 to Lag(C4).

Theorem 6.16. Let L =

 l

I2

 where l is a nonsingular 2 × 2 symmetric matrix

and let (N0, N1, N,N∞) be transverse Lagrangian planes. Then there is a symplectic

transformation A ∈ Sp(4,C) such that A(N0) = L0, A(N1) = L1, A(N) = L, and

A(N∞) = L∞ if and only if their cross ratios are GL(2,C) conjugate, equivalently

CREig[L0, L1, L, L∞] = CREig[N0, N1, N,N∞]

Proof. (⇒) Supposing there is a symplectic mapping between these quadruples and

applying lemma 6.12 we have that

81



CR[N0, N1, N,N∞] = CR[AN0, AN1, AN,AN∞]

Although the Largangians are equal, AN0 = L0, we may need to change basis

for this plane to write L0 in the appropriate coordinates, which would conjugate the

cross ratio (lemma 6.13) and hence preserve the eigenvalues.

(⇐) Applying lemma 6.6 we know that any triple of transverse Lagrangians

can be mapped to L0, L1 and L∞. By lemma 6.12 this mapping preserves the cross

ratio. So we may assume without loss of generality that the Lagrangian planes are

N0 = L0, N1 = L1 and N∞ = L∞. We may need to change basis for these to make

the Siegel homogeneous coordinates the same, which would (at worst) conjugate the

cross ratio (lemma 6.13). This now implies that we can choose a basis for N of the

form

N =

 n

I2


where n is a nonsingular symmetric matrix. The cross ratios are now

CR[L0, L1, L, L∞] = CR[N0, N1, N,N∞]

l = n

as desired.

The above theorem is not quite applicable to real Lagrangians. Since trans-

verse triples are partitioned into three orbits, the cross ratio can only be used to

distinguish quadruples after choosing an orbit for the triple. The corresponding

theorem for the cross ratio is:
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Theorem 6.17. Let (N0, Ni, N,N∞) be an ordered quadruple of transverse La-

grangians and

L =

 l

I2


where l is a 2× 2 nonsingular symmetric matrix.

1. CREig[N0, Ni, N,N∞] = Eigenvalues(l) if and only if there is A ∈ Sp(4,R)

which maps this quadruple to one of the following:

• (L0, L1, L, L∞)

• (L0, L−1, L, L∞)

• (L0, L−1,1, L, L∞)

2. CREig[N0, Ni, N,N∞] = Eigenvalues(l) if and only if there is A ∈ Sp±(4,R)

mapping this quadruple to either

• (L0, L1, L, L∞)

• (L0, L−1,1, L, L∞)

We can visualize these orbits in the pictures below as follows. The point p1

corresponding to L1 is shown, and by theorem 6.8 the stabilizer of triple is ≈ O(2).

Thinking of CREig[L0, L1, ∗, L∞] as a function on Ein2,1, the level sets of this function

are shown in red. There are two types of orbits:

• Each point along the z-axis is in its own orbit. These points are stabilized

by the stabilizer of the triple, and correspond to Lagrangians in the image of

φdiag(∂H2) (see §5.5). In Siegel coordinates they are given by:
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λ 0

0 λ

1 0

0 1


: λ ∈ R


For such Lagrangians, CREig[L0, L1, L, L∞] = (λ, λ).

• Circles centered along the z-axis. Each circle intersects the xz-plane in exactly

2 points, and by ordering the eigenvalues of the cross ratio we obtain a unique

representative from each orbit of the form

λ1 0

0 λ2

1 0

0 1


where λ1 < λ2 and CREig[L0, L1, L, L∞] = (λ1, λ2).

x

y

z

x

y

z

Nothing to see here

x

y

z

Nothing to see here

CR[L0, L1, L, L∞] > 0, CR[L0, L1, L, L∞] indefinite, CR[L0, L1, L, L∞] < 0

The Lagrangians L such that CR[L0, L1, L, L∞] is positive definite correspond

to points in the same component of E2,1 − Light(p0) as p1. Those with indefinite
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cross ratio correspond to points outside the light cone Light(p0), and those with

negative definite cross ratio are in the same component as −p1.

We obtain a similar picture for the triple (L0, L−1, L∞). Shown below in green

is the point p−1 corresponding to L−1. The isotropy group is the same and the orbits

admit a similar description to the above. The triples (L0, L1, L∞) and (L0, L−1, L∞)

are equivalent by a Lagrangian involution.

x

y

z

Nothing to see here

x

y

z

Nothing to see here

x

y

z

Nothing to see here

The point p−1,1 corresponding to L−1,1 and the level sets of CReig[L0, L−1,1, ∗, L∞]

are shown below. The stabilizer of the triple is ≈ O(1, 1) (theorem 6.8) and once

again there are 2 types of orbits.

• Each point along the x-axis is in its own orbit. These correspond to the image

of the boundary of the anti-diagonal in the bidisk (§5.5) and are given in Siegel

coordinates by: 



λ 0

0 −λ

1 0

0 1


: λ ∈ R


and CREig[L0, L−1,1, L, L∞] = (λ,−λ)
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• Hyperbolas in planes parallel to the yz-plane. Each such hyperbola intersects

the xz-plane twice and so there is a unique representative from each orbit of

the form 

λ1 0

0 λ2

1 0

0 1


where λ1 < λ2 and CREig[L0, L−1,1, L, L∞] = (λ1, λ2).

x

y

z

x

y

z

Nothing to see here

x

y

z

Nothing to see here

All of these hyperbolas pass through the same ideal point which lies on the

ideal circle. This point corresponds to a Lagrangian which is not transverse to either

L0 or L∞. The cross ratio is undefined here, so the level sets necessarily have two

components, one for each branch of the hyperbola. The components are equivalent

via a Lagrangian involution.
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Chapter 7

Dihedral Groups

In this section we will study faithful representations of dihedral groups into

Sp±(4,R). Our focus will be representations constructed by building a representa-

tion into SL±(2,R) and then composing with one of the embeddings described in §4.

Each involution generating the dihedral group will have Lagrangian eigenspaces. We

will make use of the cross ratio to describe which configurations of Lagrangians cor-

respond to dihedral groups. The first section considers dihedral groups in SL±(2,R).

7.1 Dihedral groups in SL±(2,R)

Suppose R1, R2 ∈ SL±(2,R) are reflections generating a dihedral group of

order 2p. For the reflection Ri, let

FRi = Fixed Vector for Ri = +1 eigenspace for Ri

NRi = Negated Vector for Ri = −1 eigenspace for Ri

Using the fact that SL±(2,R) acts triply transitively on RP1 we may assume without

loss of generality that these are:

FR1 =

 0

1

 FR2 =

 1

0


NR1 =

 1

1

 NR2 =

 λ

1
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We may abuse language slightly by referring to Ri as both the reflection and its

matrix representative in SL±(2,R). With the above choices the reflections are:

R1 =

 −1 0

−2 1

 R2 =

 1 −2λ

0 −1

 R1R2 =

 −1 2λ

−2 4λ− 1


Let τ be an eigenvalue forR1R2. The condition that (R1R2)p = I2 ∈ PSL±(2,R)

means that the matrix representatives satisfy (R1R2)p = ±I2, hence τ p = ±1. So

τ = ±e
kπi
p for some integer k < 2p. Since det(R1) = det(R2) = −1, we know

det(R1R2) = 1 hence τ−1 is the other eigenvalue for R1R2. We can compute that

the trace is:

Tr(R1R2) = τ + τ−1

= ±e
kπi
p ± e−

kπi
p

= ±2 cosh

(
kπi

p

)
= ±2 cos

(
kπ

p

)
4λ− 2 = ±2 cos

(
kπ

p

)

λ =
1± cos

(
kπ
p

)
2

λ = cos2

(
kπ

2p

)
or λ = sin2

(
kπ

2p

)
We will further restrict our attention to the situation where k = 1 to avoid a

cone angle and obtain a representation which is geometric. This yields 2 geomet-

ric representations of the dihedral group of order 2p into SL±(2,R). While these

representations are not conjugate in SL(2,R) they are conjugate in SL±(2,R). In-

terchanging the roles of FR1 and NR1 determines the same involution in PSL±(2,R).
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This can be easily seen by looking at the configuration of geodesics fixed by

R1 and R2 in H2. All of our computations above can be interpreted in the upper

half plane, and the picture below is the corresponding picture in the Poincare Disk

under the Cayley transform (see §2.3). The geodesic between 0 and 1 is fixed by

R1, and the fixed geodesics for R2 are shown for p = 2, 3, 4, 5. It is clear that the

two fixed geodesics are conjugate by reflection M in the geodesic from 1
2

to∞. This

reflection interchanges FR1 and NR1 .

FR1
=0

NR1
=1

FR2
=¥

cos2@Π�4D=sin2@Π�4D=1�2

cos2@Π�6D

sin2@Π�6D

cos2@Π�8D

sin2@Π�8D

cos2@Π�10D

sin2@Π�10D

To more easily generalize the above argument, we can reformulate the above

condition on the trace in terms of cross ratios. The cross ratio [FR1 , NR1 , NR2 , FR2 ] =

λ, thus we could have found the above configuration of geodesics by solving the

equations:

[FR1 , NR1 , NR2 , FR2 ] = cos2
(
π
2p

)
or [FR1 , NR1 , NR2 , FR2 ] = sin2

(
π
2p

)
.

It is easy to see that the reflection M interchanges these solutions. Since M preserves

the cross ratio
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[FR1 , NR1 , NR2 , FR2 ] = [M(FR1),M(NR1),M(NR2),M(FR2)]

[0, 1, λ,∞] = [M(0),M(1),M(λ),M(∞)]

λ = [1, 0,M(λ),∞]

λ = 1−M(λ)

cos2

(
π

2p

)
= 1− sin2

(
π

2p

)
Remark 7.1. A key note here is that neither tr(R1R2) nor the cross ratio can be used

to distinguish between the +1 and −1 eigenspaces. Although we will continue to use

the notation FRi and NRi , it really makes no difference which eigenspace is which.

Considering the action on H2, interchanging these ideal fixed points still determines

the same reflection. Interchanging the eigenspaces of both reflections preserves the

cross ratio, interchanging just one pair of eigenspaces negates the cross ratio and

adds 1.

[FR1 , NR1 , NR2 , FR2 ] = [NR1 , FR1 , FR2 , NR2 ]

1− [NR1 , FR1 , NR2 , FR2 ] = 1− [FR1 , NR1 , NR2 , FR2 ]

We conclude that

Theorem 7.2. There is a unique faithful geometric representation of the dihedral

group of order 2p in SL±(2,R) up to conjugacy.

Remark 7.3. If k 6= 1 we can still build dihedral representations where the cross

ratio will be sin2
(
kπ
2p

)
. Such representations will give rise to structures with a cone

point. The fixed geodesics of the generators will intersect in an angle which is kπ
p

and the “wedge” in between these geodesics will not be a fundamental domain.
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7.2 Dihedral Groups in Sp±(4,R)

Let R1, R2 ∈ Sp±(4,R) be Lagrangian involutions generating a dihedral group

of order 2p. Similar to the SL±(2,R) case, let

FRi = Fixed Lagrangian for Ri = +1 eigenspace for Ri

NRi = Negated Largangian for Ri = −1 eigenspace for Ri

Sp(4,R) is acts doubly transitively on Lag(R4) (see §6.2), so without any loss

of generality we may assume that FR1 = L0 and FR2 = L∞. For a third Lagrangian

we must make a choice of a triple. We may choose NR1 to be either

L1 =



1 0

0 1

1 0

0 1


or L1,−1 =



1 0

0 −1

1 0

0 1


In either case, we may then apply an element which stabilizes the triple (theorem

6.8) to assume that

NR2 =



λ1 0

0 λ2

1 0

0 1


thus all elements of the quadruple have a diagonal top block. Such Lagrangians

are in the image of the bidisk (see §5.5). So without any loss of generality we may

assume that a dihedral group representation factors through the bidisk.
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7.3 The definite triple

First consider choosing NR1 = L1. It is now straightforward to compute that

R1 =



−1 0 0 0

0 −1 0 0

−2 0 1 0

0 −2 0 1


R2 =



1 0 −2λ1 0

0 1 0 −2λ2

0 0 −1 0

0 0 0 −1


We can now express tr(R1R2) and tr((R1R2)2) as polynomial functions of λ1, λ2

tr(R1R2) = 4(λ1 + λ2)− 4

tr((R1R2)2) = 4(2(λ1 + λ2)− 1)2 − 32λ1λ2

Since we know the cross ratio is

CR[FR1 , NR1 , NR2 , FR2 ] =

 λ1 0

0 λ2


the above equations can be reformulated as polynomial functions of the spectrum

of the cross ratio. Let

Tp := tr(CR[FR1 , NR1 , NR2 , FR2 ]) = λ1 + λ2

Dp := det(CR[FR1 , NR1 , NR2 , FR2 ]) = λ1λ2

so we can rewrite the above equations as

tr(R1R2) = 4Tp − 4

tr((R1R2)2) = 4(2Tp − 1)2 − 32Dp

92



Let τ be an eigenvalue for R1R2. As in the case of SL±(2,R), τ = ±e
kπi
p , and

we will primarily focus on the case k = 1. Since R1R2 ∈ Sp(4,R), lemma 1.7 implies

that eigenvalues come in inverse pairs. There are now 2 different cases to consider

depending upon whether or not R1R2 has a repeated eigenvalue.

7.3.1 The diagonal case: Repeated eigenvalues

If the dihedral representation factors through the diagonal embedding of SL±(2,R)

then R1R2 has repeated eigenvalues. We will show that the converse is also true:

if R1R2 has repeated eigenvalues then it is conjugate to a representation factoring

through Φdiag. The eigenvalues are ±τ,±τ,±τ−1,±τ−1 and

tr(R1R2) = ±2(τ + τ−1)

= ±2(e
πi
p + e−

πi
p )

= ±4 cosh

(
πi

p

)
= ±4 cos

(
π

p

)

tr((R1R2)2) = 2(τ 2 + τ−2)

= 2(e
2πi
p + e−

2πi
p )

= 4 cosh

(
2πi

p

)
= 4 cos

(
2π

p

)
This yields a system of 2 equations in the unknowns λ1 and λ2, or equivalently in

the unknowns Tp and Dp. Solving these systems yields

λ1 = λ2 = cos2
(
π
2p

)
or

λ1 = λ2 = sin2
(
π
2p

)
equivalently

Tp = 2 cos2
(
π
2p

)
and Dp = cos4

(
π
2p

)
or
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Tp = 2 sin2
(
π
2p

)
and Dp = sin4

(
π
2p

)
These are precisely the solutions obtained above for SL±(2,R). Such a rep-

resentation can be constructed by taking a representation in SL±(2,R) whose gen-

erators fix the geodesics (0, 1) and
(

sin2
(
π
2p

)
,∞
)

and composing with Φdiag. The

picture below illustrates this configuration in the bidisk:

FR1
=0

NR1
=1

FR2
=¥

sin2@Π�2pD

Π�p

FR1
=0

NR1
=1

FR2
=¥

sin2@Π�2pD

Π�p

The image of the fixed points can be seen in Ein2,1 below. Recall from §5.5

that φdiag(∂H2) identifies with the z-axis in the standard Minkowski patch.

x

z

L0

L1

x

y

z
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The points FR1 = L0 and NR1 = L1 correspond to p0 and p1 respectively.

FR2 = L∞ corresponds to the improper point p∞ and NR2 is the point in the

Minkowski patch
(

0, 0, sin2
(
π
2p

))
. The stabilizer of the triple (L0, L1, L∞) also

stabilizes NR2 , hence no deformations of this solution is possible. We conclude that

Theorem 7.4. The (unique) geometric faithful representation of the dihedral group

or order 2p which factors through Φbidisk is locally rigid, i.e. there are no Sp±(4,R)

deformations of this representation.

7.3.2 Non-diagonal: Distinct eigenvalues

In this case the eigenvalues of R1R2 are τ,−τ, τ−1,−τ−1 and we can compute

tr(R1R2) = τ − τ + τ−1 − τ−1

= 0

tr((R1R2)2) = 2(τ 2 + τ−2)

= ±4 cos

(
2π

p

)
Solving the system now yields the solutions

λ1 = cos2
(
π
2p

)
and λ2 = sin2

(
π
2p

)
or

λ1 = sin2
(
π
2p

)
and λ2 = cos2

(
π
2p

)
equivalently

Tp = 1 and Dp = 1
4

sin2
(
π
p

)
Such a representation can be constructed as follows: Begin with a dihedral rep-

resentation in each factor of the bidisk where the cross ratio for the first quadruple is

sin2
(
π
2p

)
and for the second factor it is cos2

(
π
2p

)
. In the bidisk these configurations

look like:
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FR1
=0

NR1
=1

FR2
=¥

sin2@Π�2pD

Π�p

FR1
=0

NR1
=1

FR2
=¥

cos2@Π�2pD
Π�p

The image of these fixed points under φbidisk yield the desired configuration

in Lag(R4). We can visualize this configuration in Ein2,1 in a manner analogous

to above. FR1 , NR1 and FR2 are the same and NR2 corresponds to the point(
−1

2
cos
(
π
p

)
, 0, 1

2

)
.

x

z

L0

L1

x

y

z

The stabilizer of the triple (FR1 , NR1 , FR2) is O(2) (see thm 6.8) and if p 6= 2

then NR2 is not fixed by this subgroup. There is a 1 parameter family of solutions,

all of whom have the same cross ratio. This is shown in the picture above as a circle

centered at the point corresponding to the solution for p = 2.
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Remark 7.5. The eigenvalues of the cross ratio for these representations are related

by the trigonometric identity

sin2
(
π
2p

)
= cos2

(
(p+1)π

2p

)
We could in a similar manner construct representations where the cross ratio is

conjugate to  sin2
(
π
2p

)
0

0 sin2
(
kπ
2p

)


For each k there is a one parameter family of such representations, all of which are

conjugate to one factoring through the bidisk.

Theorem 7.6. For p 6= 2 and all k < 2p there is a one parameter family of faithful

representations of the dihedral group of order 2p where the cross ratio is conjugate

to  sin2
(
π
2p

)
0

0 sin2
(
kπ
2p

)


In particular these representations are conjugate to one which factors through

Φbidisk but not through Φdiag.

7.4 The indefinite triple

Now we suppose that NR1 = L1,−1. This is surprisingly similar to the case

using the definite triple. The eigenspaces for the generators are:
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FR1 =



0 0

0 0

1 0

0 1


FR2 =



1 0

0 1

0 0

0 0


NR1 =



1 0

0 −1

1 0

0 1


NR2 =



λ1 0

0 λ2

1 0

0 1


The cross ratio is

CR[FR1 , NR1 , NR2 , FR2 ] =

 λ1 0

0 −λ2


and it is straightforward to compute that the equations are the same

Tp := tr(CR[FR1 , NR1 , NR2 , FR2 ]) = λ1 − λ2

Dp := det(CR[FR1 , NR1 , NR2 , FR2 ]) = −λ1λ2

tr(R1R2) = 4Tp − 4

tr((R1R2)2) = 4(2Tp − 1)2 − 32Dp

Once again we have two cases to consider depending upon whether or not

R1R2 has a repeated eigenvalue.

7.4.1 The anti-diagonal case: Repeated eigenvalues

As above, if R1R2 has a repeated eigenvalue then

tr(R1R2) = ±4 cos
(
π
p

)
tr((R1R2)2) = 4 cos

(
2π
p

)
The solving for λ1 and λ2 yields

λ1 = cos2
(
π
2p

)
and λ2 = − cos2

(
π
2p

)
or

λ1 = sin2
(
π
2p

)
and λ2 = − sin2

(
π
2p

)
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Since the eigenvalues of the cross ratio are λ1 and −λ2 we equivalently have

Tp = 2 cos2
(
π
2p

)
and Dp = cos4

(
π
2p

)
or

Tp = 2 sin2
(
π
2p

)
and Dp = sin4

(
π
2p

)
We can construct such a representation by taking a dihedral representation

into SL±(2,R) in one factor, and a conjugate of that group by reflection over the

geodesic (0,∞) in the other factor. The configuration of fixed geodesics in the bidisk

is shown below.

FR1
=0

NR1
=1

FR2
=¥

sin2@Π�2pD FR1
=0

NR1
=-1

FR2
=¥

-sin2@Π�2pD

The image of the fixed points in Ein2,1 are shown below. These all lie on the

x-axis in the standard Minkowski patch. As discussed in §5.5, this is precisely the

image of anti-diagonally embedded ∂H2.
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x

z

L0

L
-1,1

x

y

z

The stabilizer of the triple (FR1 , NR1 , FR2) is isomorphic to O(1, 1) (see thm 6.8)

and this fixes NR2 as well.

7.4.2 Not anti-diagonal: Distinct eigenvalues

If R1R2 has distinct eigenvalues then

tr(R1R2) = 0 tr((R1R2)2) = ±4 cos
(

2π
p

)
The cross ratio is then conjugate to cos2

(
π
2p

)
0

0 sin2
(
π
2p

)


thus the trace and determinant of the cross ratio is

Tp = 1 and Dp = 1
4

sin2
(
π
p

)
Once again such a configuration can be constructed from two dihedral groups

in SL±(2,R) which are conjugate by orientation reversing transformations and have

distinct cross ratios. Such a configuration is shown here in the bidisk
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FR1
=0

NR1
=1

FR2
=¥

sin2@Π�2pD FR1
=0

NR1
=-1

FR2
=¥

-cos2@Π�2pD

The corresponding configuration of fixed Lagrangians is shown here in Ein2,1.

The stabilizer of the triple (FR1 , NR1 , FR2) is isomorphic to O(1, 1) and NR2 is not

fixed by this subgroup. The result is a one parameter family of such configurations

all which are conjugate.

x

z

p0

p1

x

y

z

7.5 Key Lemma on the characteristic polynomial of the cross ratio

The following trivial lemma regarding trace and determinant of the cross ratio

will be essential to studying triangle groups. Let
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CR = CR[FR1 , NR1 , NR2 , FR2 ]

Tp = tr(CR)

Dp = det(CR)

Lemma 7.7. The discriminant of the characteristic polynomial for CR is T 2
p −4Dp.

This is simply square of the difference of the eigenvalues of CR. In particular:

• If CR has a repeated eigenvalue then T 2
p − 4Dp = 0

• If CR has distinct eigenvalues then T 2
p − 4Dp = cos2

(
π
p

)
Proof. If CR has a repeated eigenvalue λ, we saw above that either λ = cos2

(
π
2p

)
or λ = sin2

(
π
2p

)
.

T 2
p − 4Dp = (2λ)2 − 4λ2 = 0

If CR has distinct eigenvalues then we saw in above that Tp = 1 and Dp =

1
4

sin2
(
π
p

)
. Then

T 2
p − 4Dp = 1− sin2

(
π
p

)
= cos2

(
π
p

)
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Chapter 8

Triangle Groups

In this section we consider deformations of hyperbolic triangle groups. Our

approach will be to construct representations of these groups into SL±(2,R), where

we will show they are rigid. Then composing with an embedding arising from

the bidisk (§4.1) will yield a representation into Sp±(4,R). We will then look for

deformations of such representations inside Sp±(4,R)

Definition 8.1. Let p, q, r be positive integers. A pqr-triangle group is a group that

has a presentation

∆pqr := 〈R1, R2, R3 : R2
1 = R2

2 = R2
3 = (R1R2)p = (R2R3)q = (R3R1)r = 1〉

The group is called hyperbolic if π
p

+ π
q

+ π
r
< π, and in this case the generators

can be realized as reflections in the sides of a triangle in the hyperbolic plane. Any

2 generators generate a dihedral group; hence the study in the previous section will

be essential.

The fact that representations of triangle groups into the isometry group of the

hyperbolic plane are rigid is perhaps easier to see geometrically by the well known

fact that any two similar triangles in H2 are congruent. We will reprove this local

rigidity in a geometric fashion by considering configurations of 6-tuples of distinct

points on ∂H2. This technique will generalize nicely to the symplectic case. In §8.3.1

we will prove theorem 1.1, that representations factoring through Φdiag are locally
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rigid. In §8.4.1 we will present evidence that representations factoring through the

anti-diagonal have non-trivial deformations.

Lastly in §8.5 we will illustrate some more exotic constructions factoring

through the bi-disk which are neither diagonal nor anti-diagonal. These representa-

tions are still quite mysterious. We will give some evidence that such representations

may not be rigid.

8.1 Hyperbolic Triangle Groups in SL±(2,R)

Let R1, R2, R3 ∈ SL±(2,R) be reflections generating a pqr-triangle group.

These determine 3 fixed vectors and 3 negated vectors which must be distinct. Using

the fact that SL±(2,R) acts triply transitively on RP1, we may assume without loss

of generality that

FR1 =

 0

1

 FR2 =

 1

0

 FR3 =

 1

1


and the negated vectors are

NR1 =

 1

m

 NR2 =

 n

1

 NR3 =

 λ

1


where m,n, λ are not zero or one. Imposing the relations of a triangle group yields

equations which we can solve for m,n, λ. We first sketch a purely algebraic approach

to this problem. We will find values of m,n, λ which yield a triangle group and prove

that such groups have no deformations.
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8.1.1 Algebraic Setup using Traces

It is straightforward to compute with the above choices that

R1 =

 −1 0

−2m 1

 R2 =

 1 −2n

0 −1

 R3 =

 λ+1
1−λ

2λ
λ−1

− 2
λ−1

λ+1
λ−1


Any two of these reflections generates a dihedral group, so imposing the triangle

group relations determines 3 equations that can expressed in terms of traces. Com-

puting the traces of the pairwise products we obtain

tr(R1R2) = −2 + 4mn

tr(R2R3) = −2(−2n+ λ+ 1)

λ− 1

tr(R3R1) =
(2− 4m)λ+ 2

λ− 1

Let x, y and z denote these traces:

x = tr(R1R2) y = tr(R2R3) z = tr(R3R1).

The triple (x, y, z) is called the trace coordinates for the representation (see [13]).

Solving this system for m,n, λ we obtain:

m =
−x+ y + z − 2±

√
x2 + y2 + z2 − xyz − 4

2y − 4

n =
−x+ y + z − 2∓

√
x2 + y2 + z2 − xyz − 4

2z − 4

λ =
−2x+ yz ∓ 2

√
x2 + y2 + z2 − xyz − 4

(y + 2) (z − 2)

It is not clear that there even are trace coordinates yielding real solutions. It is also

unclear whether or not possible trace coordinates yielding real solutions are conju-

gate. We make a change of variables to the above system which yields equivalent

solutions and make these a bit clearer.
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8.1.2 Geometric Solution using Cross Ratios

The cross ratios are given by

CR12 := [FR1 , NR1 , NR2 , FR2 ] = nm

CR23 := [FR2 , NR2 , NR3 , FR3 ] =
n− 1

λ− 1

CR31 := [FR3 , NR3 , NR1 , FR1 ] = −(m− 1)λ

λ− 1

Let Cp, Cq, Cr be the values of the cross ratios determined by the relations

for the group. By §7.1 we know that Cp = cos2
(
π
2p

)
or Cp = sin2

(
π
2p

)
, etc. The

relationship between the trace coordinates and the cross ratios is

(x, y, z) = (4Cp − 2, 4Cq − 2, 4Cr − 2)

The equivalent system of equations is

CR12 = Cp CR23 = Cq CR31 = Cr (8.1)

Solving this system for m,n, λ we obtain

m =
−1− Cp + Cq + Cr ±

√
−4CqCrCp + C2

p + C2
q + C2

r − 2 (Cp + Cq + Cr) + 2 (CpCq + CrCq + CpCr) + 1

2 (Cq − 1)

n =
−1− Cp + Cq + Cr ∓

√
−4CqCrCp + C2

p + C2
q + C2

r − 2 (Cp + Cq + Cr) + 2 (CpCq + CrCq + CpCr) + 1

2 (Cr − 1)

λ =
1− Cp − Cq + 2CqCr − Cr ∓

√
−4CqCrCp + C2

p + C2
q + C2

r − 2 (Cp + Cq + Cr) + 2 (CpCq + CrCq + CpCr) + 1

2Cq (Cr − 1)
(8.2)

The radicand in each of the above expressions is the same, so a real solution

to this system exists provided we can choose (Cp, Cq, Cr) such that the radicand is

nonnegative. We will consider possible tuples yielding real solutions in a moment.

First we claim that if the radicand is positive, both solutions above are conjugate

by an orientation preserving transformation. The first solution is obtained from
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the second by interchanging the roles of the +1 and −1 eigenspaces for all three

reflections.

Proposition 8.2. Let (m,n, λ) be the first solution to (8.1) and (m̃, ñ, λ̃) be the

second. There exists T ∈ SL(2,R) conjugating these groups. More precisely, if

(m̃, ñ, λ̃) 6= (m,n, λ) then

T (0) =
1

m

T

(
1

m̃

)
= 0

T (∞) =
1

n

T (ñ) =∞

T (1) = λ

T (λ̃) = 1

Proof. Since both (m,n, λ) and (m̃, ñ, λ̃) are solutions to the same system of equa-

tions, the relevant cross ratios yield 3 equations

Cp = [0, 1
m
, n,∞] = [0, 1

m̃
, ñ,∞]

Cq = [∞, n, λ, 1] = [∞, ñ, λ̃, 1]

Cq = [1, λ, 1
m
, 0] = [1, λ̃, 1

m̃
, 0]

which allows us to write (m̃, ñ, λ̃) in terms of m,n, λ. We obtain

(m̃, ñ, λ̃) = (m,n, λ) or (m̃, ñ, λ̃) =
(
n−mnλ
n−λ , m(λ−n)

mλ−1
, (m−1)(n−λ)

(n−1)(mλ−1)

)
In the first case we can take T to be the identity map. This occurs if and only

if the radicand above is zero which occurs only for Euclidean triangle groups.

In the second case, let T be the SL(2,R) transformation taking (0, 1,∞) →

( 1
m
, λ, n). As a matrix in PGL(2,R) this is

T =

 n
(

1
m
− λ
)

λ−n
m

1
m
− λ λ− n


Straightforward computations now yield
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T
(

1
m̃

)
= 0 T (ñ) =∞ T (λ̃) = 1

and det(T ) > 0 as desired.

Now let us consider how to obtain real solutions to (8.1). Let

κ(x, y, z) := x2 + y2 + z2 − xyz − 2

be the polynomial defined in appendix B. The radicands in (8.2) are all

1
16

(κ(4Cp − 2, 4Cq − 2, 4Cr − 2)− 2)

so to obtain real solutions we need this value to be positive. Lemma B.3 says that

κ
(
−2 cos

(
π
p

)
,−2 cos

(
π
q

)
,−2 cos

(
π
r

))
> 2

Applying relevant trigonometric identities yields

κ

(
4 sin2

(
π

2p

)
− 2, 4 sin2

(
π

2q

)
− 2, 4 sin2

( π
2r

)
− 2

)
> 2

κ

(
4 sin2

(
π

2p

)
− 2, 4 sin2

(
π

2q

)
− 2, 4 sin2

( π
2r

)
− 2

)
− 2 > 0

1

16

(
κ

(
4 sin2

(
π

2p

)
− 2, 4 sin2

(
π

2q

)
− 2, 4 sin2

( π
2r

)
− 2

)
− 2

)
> 0

thus we obtain real solutions when

(Cp, Cq, Cr) =
(

sin2
(
π
2p

)
, sin2

(
π
2q

)
, sin2

(
π
2r

))
Lemma B.4 implies that other possible solutions are

• (Cp, Cq, Cr) =
(

cos2
(
π
2p

)
, cos2

(
π
2q

)
, sin2

(
π
2r

))
• (Cp, Cq, Cr) =

(
cos2

(
π
2p

)
, sin2

(
π
2q

)
, cos2

(
π
2r

))
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• (Cp, Cq, Cr) =
(

sin2
(
π
2p

)
, cos2

(
π
2q

)
, cos2

(
π
2r

))
We now claim that the three solutions to (8.1) obtained using each of these are

conjugate by an orientation reversing transformation to the one obtained using

(Cp, Cq, Cr) =
(

sin2
(
π
2p

)
, sin2

(
π
2q

)
, sin2

(
π
2r

))
. The conjugating map is obtained

by interchanging the eigenspaces for one or two of the reflections but not all three.

Proposition 8.3. Fix p, q, r satisfing the relations for a hyperbolic triangle group.

Let (msss, nsss, λsss) be the solution to (8.2) obtained using

(Cp, Cq, Cr) =
(

sin2
(
π
2p

)
, sin2

(
π
2q

)
, sin2

(
π
2r

))
and (mccs, nccs, λccs) be the solution obtained using

(Cp, Cq, Cr) =
(

cos2
(
π
2p

)
, cos2

(
π
2q

)
, sin2

(
π
2r

))
.

Then there is T ∈ SL±(2,R) conjugating these groups.

Proof. The cross ratios are related by

[0,
1

msss

, nsss,∞] = 1− [0,
1

mccs

, nccs,∞]

[∞, nsss, λsss, 1] = 1− [∞, nccs, λccs, 1]

[1, λsss,
1

msss

, 0] = [1, λccs,
1

mccs

, 0]

We can solve for (mccs, nccs, λccs) in terms of (msss, nsss, λsss) to obtain

(mccs, nccs, λccs) =
(

1−msssλsss,
msssnsss−1
msssλsss−1

, msss−1
msssλsss−1

)
or

(mccs, nccs, λccs) =
(
msssnsss−1
nsss−1

, 1− nsss, (nsss−1)λsss
nsss−λsss

)
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In the first case, let T be the transformation mapping (0, 1,∞)→ (0, 1, nsss).

Direct computation shows that

(0, 1,∞, 1
mccs

, nccs, λccs)
T−→ (0, 1, nsss,

1
msss

,∞, λsss)

Hence T conjugates the groups.

In the second case, let T be the transformation mapping (0, 1,∞)→ ( 1
msss

, λsss,∞).

Direct computation shows that

(0, 1,∞, 1
mccs

, nccs, λccs)
T−→ ( 1

msss
, λsss,∞, 0, nsss, 1)

hence T conjugates the groups.

The same argument can be used to show that the other possible triples for

(Cp, Cq, Cr) also yield conjugate groups. Since all these solutions yield conjugate

groups we have proven:

Theorem 8.4 (Rigidity of triangle groups in SL±(2,R)). Let ∆pqr be a hyperbolic

triangle group. There is a unique faithful representation ∆pqr → SL±(2,R) up to

conjugacy.

Although all of these groups are SL±(2,R) conjugate, there are eight possible

pqr-triangle groups with 0, 1,∞ as eigenvectors for one reflection: two solutions

in (8.2) and four possible values for the cross ratios (Cp, Cq, Cr). To add to the

confusion, we establish some notation.

Notation 8.5. Fix a hyperbolic triangle group ∆pqr. Denote each of the eight repre-

sentations ρ and the corresponding values of (m,n, λ) as follows:
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ρ (m,n, λ) (8.2) Solution (Cp, Cq, Cr)

ρsss (msss, nsss, λsss) First (
sin2

(
π
2p

)
, sin2

(
π
2q

)
, sin2

(
π
2r

))
ρ̃sss (m̃sss, ñsss, λ̃sss) Second

ρccs (mccs, nccs, λccs) First (
cos2

(
π
2p

)
, cos2

(
π
2q

)
, sin2

(
π
2r

))
ρ̃ccs (m̃ccs, ñccs, λ̃ccs) Second

ρcsc (mcsc, ncsc, λcsc) First (
cos2

(
π
2p

)
, sin2

(
π
2q

)
, cos2

(
π
2r

))
ρ̃csc (m̃csc, ñcsc, λ̃csc) Second

ρscc (mscc, nscc, λscc) First (
sin2

(
π
2p

)
, cos2

(
π
2q

)
, cos2

(
π
2r

))
ρ̃scc (m̃scc, ñscc, λ̃scc) Second

The picture below illustrates this notation with the example of ∆345. When the

choice of cross ratios is irrelevant we will write ρ∗, (m∗, n∗, λ∗) for the first solution

to (8.2) and ρ̃∗, (m̃∗, ñ∗, λ̃∗) for the second.

Theorem 8.4 says that all these representations are conjugate, but the way

in which they are conjugate will be important. ρ∗ and ρ̃∗ are conjugate by an

orientation preserving transformation. ρsss is conjugate to ρccs, ρcsc and ρscc by

orientation reversing transformations. The rest can be determined by composing

these. The picture below also helps make these conjugacies apparent.
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8.2 Triangle Groups in Sp±(4,R)

Let R1, R2, R3 ∈ Sp±(4,R) be Lagrangian involutions generating a pqr triangle

group. The eigenspaces for these forms a 6-tuple of Lagrangians which we will

assume is transverse. Again we will denote the +1 eigenspaces as FR1 , FR2 , FR3 and

the −1 eigenspaces as NR1 , NR2 , NR3 .

The +1 eigenspaces form a triple and thus we have two possibilities for which

orbit this triple is in. We may assume without loss of generality that the fixed

eigenspaces have Siegel homogeneous coordinates

FR1 = L0 =



0 0

0 0

1 0

0 1


FR2 = L∞ =



1 0

0 1

0 0

0 0


FR3 =



1 0

0 ±1

1 0

0 1


Assuming that the −1 eigenspaces are transverse to FR1 and FR2 implies that

the Siegel homogeneous coordinates for these spaces have top and bottom blocks

which are nonsingular (see §6.3). Thus we may choose coordinates such that one of

the blocks is the identity matrix and the other is a nonsingular symmetric matrix.

Applying elements in the isotropy subgroup of the +1 eigenspaces (see theorem 6.8)

allows us to further assume that one of those symmetric matrices is diagonal. So we

can choose coordinates of the form
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NR1 =



1 0

0 1

m11 m12

m12 m22


NR2 =



n11 n12

n12 n22

1 0

0 1


NR3 =



λ1 0

0 λ2

1 0

0 1


Note that without any loss of generality we can assume that FR1 , FR2 , FR3

and NR3 all have a top block which is a diagonal matrix. As noted in §5.5,

such Lagrangians are in the image of φbidisk(∂H2 × ∂H2). This image intersects the

Minkowski patch in the xz-plane.

We can construct a faithful Sp±(4,R) representation ρ0 by building represen-

tations into SL±(2,R)× SL±(2,R) and then composing with Φbidisk

ρ0 : ∆pqr → SL±(2,R)× SL±(2,R) ↪→ Sp±(4,R)

Some care must be taken to ensure that the fixed points for the representation

in SL±(2,R) map to the Lagrangians given above. In the previous section we saw

that there were 8 possible representations into SL±(2,R) whose generators had fixed

eigenspaces 0,∞, 1. Conjugating by the isometry fixing 0 and ∞ gives a represen-

tation whose fixed eigenspaces are 0,∞− 1. Combinations of these composed with

the bidisk embedding will yield a representation factoring through the bidisk whose

eigenspaces are as desired. For all of these representations the off diagonal entries

m12 = n12 = 0.
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8.2.1 Possibilities for ρ0

We can produce representations ρ0 having the form Φbidisk(ρ1, ρ2) where ρ1,ρ2

are representations in SL±(2,R). A choice of ρ0 amounts to choosing a component

of the representation variety Hom(∆pqr, Sp±(4,R))/Sp±(4,R) to investigate.

Choosing ρ1 to be one of the possibilities from the table in the previous section

ensures that the +1 eigenspaces in R2 map to the desired Lagrangians defined above.

By theorem 8.4, all possibilities for ρ1 are conjugate to ρsss, so there is T ∈ SL±(2,R)

such that T−1ρsssT = ρ1. Then

ρ0 = Φbidisk(ρ1, ρ2)

= Φbidisk(T
−1ρsssT, ρ2)

= Φbidisk(T
−1, T−1)Φbidisk(ρsss, Tρ2T

−1)Φbidisk(T, T )

thus ρ0 is conjugate to a representation factoring through Φbidisk(ρsss, ∗).

Remark 8.6. A key point here is that the above argument applies regardless of

whether T is orientation preserving or reversing. We are using the result in §4.5.1

which says that Φbidisk extends not to all of SL±(2,R) × SL±(2,R) but only to a

mapping of the index two subgroup

Φbidisk : {(A,B) ∈ SL±(2,R)× SL±(2, R) : det(A) = det(B)} → Sp±(4,R)

Thus Φbidisk(T, T ) ∈ Sp±(4,R) regardless of the determinant of T .

So without any loss of generality we may assume that ρ0 = Φbidisk(ρsss, ρ2).

We must choose ρ2 such that the +1 eigenspaces are either (0,∞, 1) or (0,∞,−1)

to ensure that the FRi are the Lagrangians from above. The representations defined
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on the table at the end of the previous section all have +1 eigenspaces (0,∞, 1).

Choosing ρ2 to be one of these we obtain representations such that (FR1 , FR2 , FR3)

is the definite triple. Conjugating any of these by the involution in SL±(2,R) fixing

the geodesic (0,∞) yields a representation where (FR1 , FR2 , FR3) is the indefinite

triple.

Theorem 8.4 again implies that ρ2 is conjugate to ρsss, so there is T ∈

SL±(2,R) (different T than above) such that ρ2 = T−1ρsssT . Thus

ρ0 = Φbidisk(ρsss, T
−1ρsssT )

There are now several cases to consider, depending upon det(T ). The key

point in what follows is that if det(T ) = −1, then (I2, T ) ∈ SL±(2,R) × SL±(2, R)

but not in the domain of Φbidisk.

1. (Diagonal) If T is orientation preserving then Φbidisk(I2, T ) ∈ Sp±(4,R) and

ρ0 = Φbidisk(ρsss, T
−1ρsssT )

= Φbidisk(I2, T )Φbidisk(ρsss, ρsss)Φbidisk(I, T
−1)

= Φbidisk(I2, T )Φdiag(ρsss)Φbidisk(I, T
−1)

hence ρ0 is conjugate to a representation factoring through Φdiag. The triple

(FR1 , FR2 , FR3) is the definite triple.

2. (Anti-Diagonal) If T is the involution fixing (0,∞) then det(T ) = −1.

So Φbidisk(ρsss, T
−1ρsssT ) is not conjugate in Sp±(4,R) to the diagonal rep-

resentation. This is conjugate to the anti-diagonal representation obtained by
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composing ρsss with the conjugate of ΦPDS discussed in §4.3.1. The triple

(FR1 , FR2 , FR3) is the indefinite triple

3. (Mysterious) If T is orientation reversing but does not fix (0,∞) we obtain

some more exotic representations. For instance ρscc is conjugate to ρsss by

an orientation reversing transformation and the +1 eigenspaces map to the

definite triple as desired. We will investigate

ρ0 = Φbidisk(ρsss, ρscc)

The result is a triangle group representation where two of the three cross ratios

have distinct eigenvalues.

8.3 Equations obtained using the definite triple

Suppose that FRi is the definite triple, so FR3 = L1. Suppose ρ(t) is a con-

tinuous path of faithful representations of ∆pqr and ρ(0) = ρ0. We denote the

eigenspaces for the generators of ρ(t) by FRi(t) and NRi(t) for i = 1, 2, 3. As seen

above, we assume without loss of generality that FRi(t) is constant for i = 1, 2, 3

and that NR3(t) has a top block which is diagonal. Thinking of each of the variables

as functions of t, the cross ratios for the eigenspaces for ρ(t) are:
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CR12 : = CR[FR1 , NR1 , NR2 , FR2 ] =

 n11 n12

n12 n22


 m11 m12

m12 m22



=

 m11n11 +m12n12 m12n11 +m22n12

m11n12 +m12n22 m12n12 +m22n22



CR23 : = CR[FR2 , NR2 , NR3 , FR3 ] =

 λ1 − 1 0

0 λ2 − 1


−1 n11 − 1 n12

n12 n22 − 1



=

 n11−1
λ1−1

n12

λ1−1

n12

λ2−1
n22−1
λ2−1



CR31 : = CR[FR3 , NR3 , NR1 , FR1 ] =

 m11 − 1 m12

m12 m22 − 1


 λ1 0

0 λ2


 1− λ1 0

0 1− λ2


−1

=

 − (m11−1)λ1

λ1−1
m12λ2

1−λ2

m12λ1

1−λ1
− (m22−1)λ2

λ2−1


Let Tp, Tq, Tr denote the traces of the cross ratios and Dp, Dq, Dr denote the

determinants. Imposing the triangle group relations determines a system of six

equations in these 8 variables:

Tp = tr(CR12) Dp = det(CR12)

= m11n11 + 2m12n12 +m22n22 =
(
m2

12 −m11m22

) (
n2

12 − n11n22

) (8.3)

Tq = tr(CR23) Dq = det(CR23)

=
n11 − 1

λ1 − 1
+
n22 − 1

λ2 − 1
= −n

2
12 + n11 − n11n22 + n22 − 1

(λ1 − 1) (λ2 − 1)

(8.4)
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Tr = tr(CR31) Dr = det(CR31)

= −(m11 − 1)λ1

λ1 − 1
− (m22 − 1)λ2

λ2 − 1
=

(−m2
12 −m11 +m11m22 −m22 + 1)λ1λ2

(λ1 − 1) (λ2 − 1)
(8.5)

Lemma 7.7 implies that T 2
p − 4Dp = 0 if the cross ratio has a repeated eigen-

value and cos2
(
π
p

)
if it does not. Thus the triple (T 2

p −4Dp, T
2
q −4Dq, T

2
r −4Dr) can

only take on 8 possible values. The mapping which takes a representation ρ(t) to

any of the corresponding cross ratios is a continuous mapping into a discrete (finite)

space, hence is constant. So any local deformation ρ(t) of ρ0 must take on the same

values for this triple as ρ0.

Consider the last two equations (8.5) induced by the relation (R3R1)r = Id.

Solving these for m11 and m22 yields

m11 =
λ1Tr − λ1λ2Tr + λ2Tr − Tr − 2λ1 + 2λ1λ2 ±

√
(T 2
r − 4Dr) (λ1 − 1) 2 (λ2 − 1) 2 − 4m2

12 (λ1 − 1)λ1 (λ2 − 1)λ2

2λ1 (λ2 − 1)

m22 =
λ1Tr − λ1λ2Tr + λ2Tr − Tr − 2λ2 + 2λ1λ2 ∓

√
(T 2
r − 4Dr) (λ1 − 1) 2 (λ2 − 1) 2 − 4m2

12 (λ1 − 1)λ1 (λ2 − 1)λ2

2 (λ1 − 1)λ2

(8.6)

Similarly equations (8.4) are induced by the relation (R2R3)q = Id and we can solve

these for n11 and n22 yielding

n11 =
−2− λ1Tq + λ1λ2Tq − λ2Tq + Tq + 2λ2 ±

√(
T 2
q − 4Dq

)
(λ1 − 1) 2 (λ2 − 1) 2 − 4n2

12 (λ1 − 1) (λ2 − 1)

2 (λ2 − 1)

n22 =
−2− λ1Tq + λ1λ2Tq − λ2Tq + Tq + 2λ1 ∓

√(
T 2
q − 4Dq

)
(λ1 − 1) 2 (λ2 − 1) 2 − 4n2

12 (λ1 − 1) (λ2 − 1)

2 (λ1 − 1)
(8.7)

Each of the radicands in the above solutions contains a factor of (T 2
r −4Dr)

or (T 2
q − 4Dq) in one term.

8.3.1 ρ0 factors through Φdiag

As noted in §8.2.1 we may assume without loss of generality that ρ0 = Φdiag(ρsss).

The projections of the fixed geodesics onto each factor of the bidisk yield the con-
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figuration shown here:

0
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1
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The images of these fixed ideal points under φdiag yield a configuration of

6 Lagrangians which, except for the improper point, all like on the z-axis in the

Minkowski patch:

x

z

NR3H0L

In this case, all cross ratios have a repeated eigenvalue. Lemma 7.7 implies

that T 2
p − 4Dp = T 2

q − 4Dq = T 2
r − 4Dr = 0. The above solutions (8.6) and (8.7)

reduce to

m11 =
λ1Tr − λ1λ2Tr + λ2Tr − Tr − 2λ1 + 2λ1λ2 ±

√
−4m2

12 (λ1 − 1)λ1 (λ2 − 1)λ2

2λ1 (λ2 − 1)

m22 =
λ1Tr − λ1λ2Tr + λ2Tr − Tr − 2λ2 + 2λ1λ2 ∓

√
−4m2

12 (λ1 − 1)λ1 (λ2 − 1)λ2

2 (λ1 − 1)λ2

(8.8)
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n11 =
−2− λ1Tq + λ1λ2Tq − λ2Tq + Tq + 2λ2 ±

√
−4n2

12 (λ1 − 1) (λ2 − 1)

2 (λ2 − 1)

n22 =
−2− λ1Tq + λ1λ2Tq − λ2Tq + Tq + 2λ1 ∓

√
−4n2

12 (λ1 − 1) (λ2 − 1)

2 (λ1 − 1)

(8.9)

Consider the off diagonal entries: If m12 6= 0 or n12 6= 0 then to obtain a real solution

we need the radicands

−4m2
12 (λ1 − 1)λ1 (λ2 − 1)λ2 ≥ 0

−4n2
12 (λ1 − 1) (λ2 − 1) ≥ 0

The solutions to the above inequalities are shaded below in the xz-plane. The

fixed points for ρ0 are shown and of course all lie on the z-axis.

x

z

Λ 1=
0

Λ 1=
1

Λ
2 =0

Λ
2 =1

NR3H0L

There is a neighborhood of pNR3
(0) ∈ Ein2,1 which is disjoint from the shaded

region, i.e. there exists a neighborhood of the Lagrangian NR3(0) in Lag(R4) which

contains no values for λ1 and λ2 making the radicands positive.

Thus any deformation of ρ0 must then havem12 = n12 = 0, hence it must factor

through Φbidisk. Then NR1(t) and NR2(t) are also in the image of φbidisk(∂H2×∂H2)

and correspond to points in the xz-plane. The solutions (8.8) and (8.9) reduce to
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m11 = λ1Tr−λ1λ2Tr+λ2Tr−Tr−2λ1+2λ1λ2

2λ1(λ2−1)

m22 = λ1Tr−λ1λ2Tr+λ2Tr−Tr−2λ2+2λ1λ2

2(λ1−1)λ2

n11 = −2−λ1Tq+λ1λ2Tq−λ2Tq+Tq+2λ2

2(λ2−1)

n22 = −2−λ1Tq+λ1λ2Tq−λ2Tq+Tq+2λ1

2(λ1−1)

Since m12 = n12 = 0 and T 2
p − 4Dp = 0, the equations (8.3) reduce to

Tp = m11n11 +m22n22
T 2
p

4
= m11m22n11n22

Now substituting the above reductions into these equations and solving for λ1 and

λ2 we obtain 4 possible solutions λ1

λ2

 =


−Tp−Tq+TqTr−Tr+2±

√
T 2
p+2(−TrTq+Tq+Tr−2)Tp+(Tq+Tr−2)2

Tq(Tr−2)

−Tp−Tq+TqTr−Tr+2±
√
T 2
p+2(−TrTq+Tq+Tr−2)Tp+(Tq+Tr−2)2

Tq(Tr−2)


or λ1

λ2

 =


−Tp−Tq+TqTr−Tr+2±

√
T 2
p+2(−TrTq+Tq+Tr−2)Tp+(Tq+Tr−2)2

Tq(Tr−2)

−Tp−Tq+TqTr−Tr+2∓
√
T 2
p+2(−TrTq+Tq+Tr−2)Tp+(Tq+Tr−2)2

Tq(Tr−2)


The first two of these solutions correspond to the images of φdiag(λ∗) and

φdiag(λ̃∗). The second two correspond to the images of φbidisk(λ∗, λ̃∗) and φbidisk(λ̃∗, λ∗).

Thus NR3(t) is constant and hence so are NR1 and NR2 . Thus ρ(t) is constant and

we have proven

Theorem 8.7. Let ρ0 : ∆pqr → Sp±(4,R) be a faithful representation conjugate to

a representation factoring through Φdiag. Then ρ0 is locally rigid, i.e. there does not

exist any Sp±(4,R) deformations.

In particular we have
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Corollary 8.8 (Rigidity of diagonally embedded triangle groups). All faithful rep-

resentations of ∆pqr factoring through Φdiag are locally rigid.

8.4 Equations obtained using the indefinite triple

Suppose now that FR3 = L1,−1. The equations obtained in this case are ex-

tremely similar to 8.3, 8.4 and 8.5, and we refer to the Mathematica notebook (see

[15]) for the exact equations. Taking them one cross ratio at a time and solving in

a manner similar to above allows us to write m11 and m22 as functions of λ1, λ2 and

m12 with the parameters being Tr and Dr:

m11 =
−λ1Tr − λ1λ2Tr + λ2Tr + Tr + 2λ1 + 2λ1λ2 ∓

√
(λ1 − 1) (λ2 + 1)

(
4λ1λ2m2

12 + (T 2
r − 4Dr) (λ1 − 1) (λ2 + 1)

)
2λ1 (λ2 + 1)

m22 =
λ1Tr + λ1λ2Tr − λ2Tr − Tr − 2λ1λ2 + 2λ2 ∓

√
(λ1 − 1) (λ2 + 1)

(
4λ1λ2m2

12 + (T 2
r − 4Dr) (λ1 − 1) (λ2 + 1)

)
2 (λ1 − 1)λ2

(8.10)

Similarly we can write n11 and n22 as functions of λ1, λ2 and n12 with the parameters

being Tq and Dq:

n11 =
λ1Tq + λ1λ2Tq − λ2Tq − Tq + 2λ2 ±

√
(1− λ1) (λ2 + 1)

(
4n2

12 −
(
T 2
q − 4Dq

)
(λ1 − 1) (λ2 + 1)

)
+ 2

2 (λ2 + 1)

n22 =
λ1Tq + λ1λ2Tq − λ2Tq − Tq − 2λ1 ±

√
(1− λ1) (λ2 + 1)

(
4n2

12 −
(
T 2
q − 4Dq

)
(λ1 − 1) (λ2 + 1)

)
+ 2

2 (λ1 − 1)

(8.11)

Once again observe that the radicand of these expressions contains

the characteristic polynomial of the cross ratio.
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8.4.1 ρ0 factors through the anti-diagonal

By §8.2.1 we may assume that ρ0 = Φbidisk(ρsss, T
−1ρsssT ) where T ∈ SL±(2,R)

is the involution fixing (0,∞). Thus the projections of our starting configurations

onto each factor of the bidisk is

0

¥

1

Λsss

1�msss

nsss

0

¥

-1

THΛsssL

TH1�msssL

THnsssL

The image of this configuration in the bidisk of course lies entirely on the

x-axis in Ein2,1

x

z
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We may try to proceed analogously to the diagonal case. It is straightforward

to compute that all cross ratios ave a repeated eigenvalue. Lemma 7.7 implies that

T 2
p − 4Dp = T 2

q − 4Dq = T 2
r − 4Dr = 0 and equations 8.10 and 8.11 reduce to:

m11 =
−λ1Tr − λ1λ2Tr + λ2Tr + Tr + 2λ1 + 2λ1λ2 ∓

√
4λ1λ2m2

12 (λ1 − 1) (λ2 + 1)

2λ1 (λ2 + 1)

m22 =
λ1Tr + λ1λ2Tr − λ2Tr − Tr − 2λ1λ2 + 2λ2 ∓

√
4λ1λ2m2

12 (λ1 − 1) (λ2 + 1)

2 (λ1 − 1)λ2

(8.12)

n11 =
λ1Tq + λ1λ2Tq − λ2Tq − Tq + 2λ2 ±

√
4n2

12 (1− λ1) (λ2 + 1) + 2

2 (λ2 + 1)

n22 =
λ1Tq + λ1λ2Tq − λ2Tq − Tq − 2λ1 ±

√
4n2

12 (1− λ1) (λ2 + 1) + 2

2 (λ1 − 1)

(8.13)

We can again analyze the radicands in these expressions. These radicands are

positive in the shaded region below. Unfortunately we are not so lucky as in the

diagonal case. There is a neighborhood of NR3(0) which is entirely contained within

this region, and within this region the radicands all are non-negative.

x

z

Λ 1=
0Λ 1=

1

Λ
2 =0

Λ
2 =1

NR3H0L
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Thus we are unable to conclude that m12 and n12 are zero. We must proceed

in an another manner, which actually would have worked for the diagonal case as

well. We utilize the following trivial observation.

Lemma 8.9. A cross ratio having a repeated eigenvalue means that the quadruple

lies on a common time-like or space-like circle.

Proof. If three of the four Lagrangians are in the orbit of the definite triple, then we

may assume that they are L0, L1, L∞. If the cross ratio has a repeated eigenvalue

then the fourth Lagrangian is fixed by the stabilizer of the definite triple. All four

Lagrangians then correspond to points which lie on the (closure of) the z-axis in

Ein2,1. This is a time-like circle in Ein2,1.

Similarly if there of the four are in the orbit of indefinite triple, all points lie

on the x-axis, which is a space-like circle.

Our approach will be to try to parameterize all deformations by NR3 . Suppose

we allow NR3 to vary within a small neighborhood of NR3(0). CR23 has a repeated

eigenvalue, hence the quadruple (FR2 , NR2 , FR3 , NR3) all lie on a common space-like

circle. Since FR2 is L∞, this space-like circle intersects the Minkowski patch in a

line. This line passes through FR3 = L1,−1 and NR3 . Both of these points lie in the

xz-plane in the Minkowski patch, thus the space-like circle is a line contained in the

xz-plane. In particular this means that NR2 is constrained to lie in the xz-plane,

hence n12 = 0.

CR12 has a repeated eigenvalue hence the quadruple (FR1 , NR1 , FR2 , NR2) all

lie on a common space-like circle. Again since FR2 = L∞ this space-like circle
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intersects the Minkowski patch in a line. This line passes through FR1 = L0 and

NR2 , both of which lie in the xz-plane, hence the entire line lies in the xz-plane.

This implies that FR1 also lies in the xz-plane, hence m12 = 0.

Since m12 = n12 = 0 the solutions 8.12 and 8.13 reduce to

m11 =
−λ1Tr − λ1λ2Tr + λ2Tr + Tr + 2λ1 + 2λ1λ2

2λ1 (λ2 + 1)

m22 =
λ1Tr + λ1λ2Tr − λ2Tr − Tr − 2λ1λ2 + 2λ2

2 (λ1 − 1)λ2

n11 =
λ1Tq + λ1λ2Tq − λ2Tq − Tq + 2λ2 + 2

2 (λ2 + 1)

n22 =
λ1Tq + λ1λ2Tq − λ2Tq − Tq − 2λ1 + 2

2 (λ1 − 1)

Substituting these into the equations obtained from CR12 yields 2 equations

in the unknowns λ1 and λ2. Solving we obtain precisely four solutions for λ1 and

λ2, all of which are images of triangle groups factoring through Φbidisk. Since the

solution set is discrete we obtain

Theorem 8.10. Let ρ0 : ∆pqr → Sp±(4,R) be a faithful representation conjugate to

a representation factoring through the anti-diagonal. Then ρ0 is locally rigid.

8.5 More exotic constructions factoring through Φbidisk

Consider the case ρ0 = Φbidisk(ρsss, ρscc). The projection of the configuration

of fixed geodesics to each factor of the bidisk is
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0

¥

1

Λsss

1�msss

nsss

0

¥

1

1�mscc

nsccΛscc

The image of this configuration of Lagrangians in Ein2,1 is shown below.

x

z

FR1H0L

FR2H0L=p¥

FR3H0L
NR1H0L

NR2H0L

NR3H0L

We will attempt to parameterize representations close to ρ0 by NR3 . As above

NR3(t) is assumed to be in the image of the bi-disk. We will allow NR3 to vary in

the bi-disk in a small neighborhood of NR3(0). The starting point is

128



NR3(0) =



λsss 0

0 λscc

1 0

0 1


where

λsss =
−2 cos(πp )−2 cos(πq ) cos(πr )+

√
4 cos2(πp )+4 cos2(πq )+4 cos2(πr )+8 cos(πp ) cos(πq ) cos(πr )−4

8 sin2( π
2q ) cos2( π

2r )

λscc =
−2 cos(πp )−2 cos(πq ) cos(πr )+

√
4 cos2(πp )+4 cos2(πq )+4 cos2(πr )+8 cos(πp ) cos(πq ) cos(πr )−4

8 sin2( π
2r ) cos2( π

2q )

The following lemma characterizes the coordinates for NR3(0)

Lemma 8.11. λsss and λscc are both negative.

Proof. Rather tedious but straightforward: Using the above expressions for λsss and

λscc it suffices to show that

−2 cos
(
π
p

)
− 2 cos

(
π
q

)
cos
(
π
r

)
+

√
4 cos2

(
π
p

)
+ 4 cos2

(
π
q

)
+ 4 cos2

(
π
r

)
+ 8 cos

(
π
p

)
cos
(
π
q

)
cos
(
π
r

)
− 4 < 0√

4 cos2
(
π
p

)
+ 4 cos2

(
π
q

)
+ 4 cos2

(
π
r

)
+ 8 cos

(
π
p

)
cos
(
π
q

)
cos
(
π
r

)
− 4 < 2 cos

(
π
p

)
+ 2 cos

(
π
q

)
cos
(
π
r

)

Squaring both sides then canceling we obtain

4 cos2
(
π
q

)
+ 4 cos2

(
π
r

)
− 4 < 4 cos2

(
π
q

)
cos2

(
π
r

)
cos2

(
π
q

)
− cos2

(
π
q

)
cos2

(
π
r

)
+ cos2

(
π
r

)
< 1

cos2
(
π
q

) (
1− cos2

(
π
r

))
+ cos2

(
π
r

)
< 1

cos2
(
π
q

)
sin2

(
π
r

)
+ cos2

(
π
r

)
< 1

The first cross ratio CR12 has a repeated eigenvalue and the remaining two

have distinct eigenvalues. Specifically:
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• tr (CR12) = 2 sin2
(
π
2p

)
det (CR12) = sin4

(
π
2p

)
T 2
p − 4Dp = 0

• tr (CR23) = 1

det (CR23) = 1
4

sin2
(
π
q

)
T 2
q − 4Dq = cos2

(
π
q

)
• tr (CR31) = 1

det (CR31) = 1
4

sin2
(
π
r

)
T 2
r − 4Dr = cos2

(
π
r

)
The solutions (8.6) and (8.7) reduce to

m11 =
λ2λ1 − λ1 + λ2 ±

√
cos2

(
π
r

)
(λ1 − 1) 2 (λ2 − 1) 2 − 4m2

12 (λ1 − 1)λ1 (λ2 − 1)λ2 − 1

2λ1 (λ2 − 1)

m22 =
λ2λ1 + λ1 − λ2 ∓

√
cos2

(
π
r

)
(λ1 − 1) 2 (λ2 − 1) 2 − 4m2

12 (λ1 − 1)λ1 (λ2 − 1)λ2 − 1

2 (λ1 − 1)λ2

(8.14)

n11 =

λ2λ1 − λ1 + λ2 ±
√

cos2
(
π
q

)
(λ1 − 1) 2 (λ2 − 1) 2 − 4n2

12 (λ1 − 1) (λ2 − 1)− 1

2 (λ2 − 1)

n22 =

λ2λ1 + λ1 − λ2 ∓
√

cos2
(
π
q

)
(λ1 − 1) 2 (λ2 − 1) 2 − 4n2

12 (λ1 − 1) (λ2 − 1)− 1

2 (λ1 − 1)
(8.15)

Again we may examine the radicands, but this time we are unable to conclude

anything about m12 and n12. In particular if both are zero, λ1 and λ2 can take

any value. The picture below shows the subset of the xz-plane (equivalently the
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λ1λ2-plane) where the radicands are both positive for some small values of m12 and

n12. The blue point shown is NR3(0) and lemma 8.11 ensures that this point lies in

the interior of the region where both radicands are positive.

x

z

NR3H0L

So we must take an alternative approach in this case, attempting to satisfy

each cross ratio one at a time. NR3 will be our parameter and try to write NR1 and

NR2 in terms of this.

8.5.1 Satisfying CR31

Equations 8.14 yields m11 and m22 as functions of λ1, λ2 and m12, and the key

obstruction is that we can’t conclude m12 = 0. If however it is zero we obtain a

solution within the bidisk. Equations 8.14 reduce further and we effectively have

NR1(0) as a function of NR3(0):
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NR1(0) =



1 0

0 1

cos(πr )(λ1−1)+λ1+1

2λ1
0

0
− cos(πr )(λ2−1)+λ2+1

2λ2


We can now find all quadruples which satisfy CR31 by applying the stabilizer

of the triple (FR1 , FR3 , NR3) to this solution. By theorem 6.8 this stabilizer is iso-

morphic to O(2). We obtain a whole circle’s worth of possibilities for NR1 , given

here parameterized by θ:

NR1 =



1 0

0 1

cos(πr ) cos(2θ)(λ1−1)+λ1+1

2λ1
−1

2
cos
(
π
r

)
sin(2θ)

√
(λ1−1)(λ2−1)

λ1λ2

−1
2

cos
(
π
r

)
sin(2θ)

√
(λ1−1)(λ2−1)

λ1λ2

− cos(πr ) cos(2θ)(λ2−1)+λ2+1

2λ2


8.5.2 Satisfying CR23

Similarly equations 8.15 give n11 and n22 as functions of λ1, λ2 and n12. Sup-

posing that n12 = 0 yields a NR2 as a function of NR3 :

NR2(0) =



1
2

(
− cos

(
π
q

)
(λ1 − 1) + λ1 + 1

)
0

0 1
2

(
cos
(
π
q

)
(λ2 − 1) + λ2 + 1

)
1 0

0 1


We obtain all quadruples satisfying CR23 by computing the stabilizer of (FR2 , FR3 , NR3)

and applying it to this solution. Again the stabilizer is isomorphic to O(2) and we

obtain a whole circle’s worth of possibilities parameterized by φ:
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NR2 =



1
2

(
− cos

(
π
q

)
cos(2φ) (λ1 − 1) + λ1 + 1

)
− 1

2 cos
(
π
q

)
sin(2φ)

√
(λ1 − 1) (λ2 − 1)

− 1
2 cos

(
π
q

)
sin(2φ)

√
(λ1 − 1) (λ2 − 1) 1

2

(
cos
(
π
q

)
cos(2φ) (λ2 − 1) + λ2 + 1

)
1 0

0 1


The picture below shows these Lagrangians for ∆345. The red points are the

eigenspaces for R1(0), the green are for R2(0) (one of which is p∞ and can’t be seen)

and the blue are for R3(0). The circle in red is all possibilities for NR1 which make

CR31 is as desired and the green circle is all possibilities for NR2 so that CR23 is as

desired.

x

y

z

As NR3 varies within a neighborhood of the initial NR3(0), these circles also

vary slightly. We would like to find a smooth path on these circles corresponding
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to NR1 and NR2 such that the third cross ratio is as desired. The product of these

circles is a torus T and we want a smooth path on T which is causes CR12 to have

a repeated eigenvalue of sin2
(
π
2p

)
.

8.5.3 Satisfying CR12

CR12 = CR[FR1 , NR1 , NR2 , FR2 ] can now be restricted to T . Using the expres-

sions for NR1 and NR2 above we can write CR12 as a rather complicated looking

function of λ1,λ2, θ and φ. The trace and determinant of the cross ratio can be

thought of as real valued functions on the torus T . Explicitly these functions are:

tr(CR12) = 1
4

(
2 cos

(
π
q

)
cos
(
π
r

)
sin(2θ)

√
(λ1−1)2(λ2−1)2

λ1λ2
sin(2φ) +

(cos(πr ) cos(2θ)(λ1−1)+λ1+1)(− cos(πq ) cos(2φ)(λ1−1)+λ1+1)
λ1

+
(− cos(πr ) cos(2θ)(λ2−1)+λ2+1)(cos(πq ) cos(2φ)(λ2−1)+λ2+1)

λ2

)
det(CR12) =

(4 cos(πq ) cos(2φ)(λ1−λ2)+cos( 2π
q )(λ1−1)(λ2−1)−3λ2−λ1(λ2+3)−1)(cos( 2π

r )(λ1−1)(λ2−1)−3λ2−λ1(λ2+3)+4 cos(πr ) cos(2θ)(λ2−λ1)−1)
64λ1λ2

Each frame in the picture below shows the universal cover of the torus T

and the square in the middle of each frame is a fundamental domain for T . The

example in the picture is for ∆345. Shown in light blue is the curve on T where

tr(CR12) = 2 sin2
(
π
2p

)
, and shown in purple is the curve on T where det = sin4

(
π
2p

)
.

The intersection of these curves then represents a point on the torus where CR12

is as desired. NR3(0) is the frame where the λ1 and λ2 axes intersect. The frames

where these curves actually intersect are shaded. Generically it seems these curves

intersect in four points.
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Λ1

Λ2

Some interactive Mathematica programs showing how T and these level sets

vary are available at [15]. The experimental evidence suggests

Conjecture 8.12. There are nontrivial deformations of the ρ0 = Φbidisk(ρsss, ρscc).

The component of Hom(∆pqr, Sp±(4,R))/Sp±(4,R) containing ρ0 consists of 4 copies
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of a conical region parameterized by λ1,λ2 (the shaded frames above) glued together

at ρ0.

The conjecture could be confirmed if we could explicitly compute these inter-

sections, i.e. find θ and φ in terms of λ1 and λ2. I have so far been unsuccessful at

doing this explicitly.
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Appendix A

The Tangent Space and k⊥

In §1.4 we saw that S2 is a homogeneous space diffeomorphic to Sp(4,R)/U(2).

This diffeomorphism induces an identification of the tangent space TiI2S2 with the

a subalgebra of the Lie algebra sp(4,R). In this appendix we explicitly compute

this identification for S2. While necessary for defining an invariant metric on S2,

these computations are a bit lengthy and tedious and are hence relegated to this

appendix.

An essential tool in this analysis will be the Trace Form. For a Lie algebra of

matrices g, the trace form is a symmetric non-degenerate Aut(g)-invariant bilinear

form defined for X ∈ g by tr(X2). For any simple Lie algebra, such as sl(2,R) and

sp(4,R), all non-degenerate Aut(g)-invariant bilinear forms are scalar multiples of

the Killing form (see [10],§14.2). Although it is perhaps more thorough to use the

Killing form in the following analysis, the trace form tends to be easier to compute

and will suffice for our purposes.

A.1 The Tangent Space at i to H2

Consider first the situation in hyperbolic geometry: the upper half plane is

obtained as the quotient space for the mapping ev : SL(2,R)→ H2 given by evalu-

ation at the basepoint i. We can obtain an identification of the tangent space TiH2
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with the image of the differential of this map.

The Lie algebra sl(2,R) is

sl(2,R) =


 a b

c −a

 : a, b, c ∈ R


The stabilizer of the base point i is the subgroup K = SO(2), and its Lie

algebra k = so(2) is the 1 dimensional subalgebra generated by

 0 −1

1 0

. The

trace form is given in the basis above as:

tr(X,X) = tr(X2) = 2(a2 + bc)

It is easy to compute using this form that the orthogonal complement of k,

denoted p := so(2)⊥, consists of symmetric traceless matrices. The decomposition

of the Lie algebra as the direct sum

sl(2,R) = k
⊕

p

is called the Cartan Decomposition.

We wish to compute explicitly the differential of the evaluation mapping ev∗.

It is convenient to first consider SL(2,R) as a subset of GL(2,R) and the upper half

plane H2 as a subset of the complex projective line CP1 as described in §2.1. In this

way we can avoid having to use coordinate charts on SL(2,R) which has dimension

3, and use the canonical single chart on GL(2,R) which has dimension 4.

Using homogeneous coordinates on CP1, the upper half plane maps into CP1

via the inclusion z
j
↪→

 z

1

. Let b :=

 i

1

 ∈ CP1 be the image of the basepoint
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i under this inclusion, and let π : C2 → CP1 be the natural projection map. Define

f : GL(2,R) → C2 to be evaluation at b, that is f(M) = Mb. Consider the

commutative diagrams:

GL(2,R)
f

// C2

=

��

SL(2,R)
?�

OO

ev

��
99

99
99

99
99

99
99

99
9

f
// C2

π

��

CP 1

H2
?�

j

OO

gl(2,R)
f∗

// TbC2 ≈ C2

=

��

sl(2,R)
?�

OO

ev∗

��
;;

;;
;;

;;
;;

;;
;;

;;
;;

;

f∗
// TbC2 ≈ C2

π∗
��

Tπ(b)CP1

TiH2
?�

j∗

OO

The inverse of the inclusion j−1 (restricted to its image of course!) is an affine

chart on CP1 and in this chart

(j−1 ◦ π)

 z1

z2

→ z1
z2

.

Further j∗ is simply the identity map so Tπ(b)CP1 = TiH2 and π∗ is the linear map

given by multiplication by the row vector
[

1
z2

−z1
z22

]
, so at the basepoint b we have

(π∗)b = [1 ,−i].

Note now that the restriction to SL(2,R) of the compositions is precisely the

evaluation map from above:

j−1 ◦ π ◦ f = ev

Let X =

 a b

c d

 ∈ gl(2,R) and compute the differential of this composition:
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ev∗(X) = (j−1 ◦ π ◦ f)∗(X)

= (π∗)b(f∗)I(X)

= [1 ,−i]

 ai+ b

ci+ d


= (a− d)i+ (b+ c)

Restricting this to sl(2,R) simply means that d = −a. So

ev∗(X) = 2ai+ (b+ c).

Using the Cartan decomposition of sl(2,R) = k
⊕

p, we can easily see that k is

the kernel of ev∗, and ev∗(p) is surjective. For X ∈ p, ev∗ induces the identification:

p↔ TiH2

 a b

b −a

↔ 2(ai+ b) (A.1)

This identification allows us to choose a multiple of the trace form making this

identification an isometry with the usual Euclidean metric on TiH2. We choose the

bilinear form on sl(2,R) given by

B(X,X) = 2tr(X2)

= 4(a2 + bc)

For a tangent vector ai + b ∈ TiH2, which identifies via the above correspon-

dence with the matrix X =

 a
2

b
2

b
2
−a

2

, we have
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B(X,X) = 4
((

a
2

)2
+
(
b
2

)2
)

= a2 + b2.

As desired the restriction of this form to p is positive definite (and equal to

the Euclidean metric). This form can be used to induce an invariant Riemannian

metric on H2.

A.2 The Tangent Space at iI2 to S2

The tangent space TiI2S2 identifies with an open set of all 2 × 2 complex

symmetric matrices. Since S2 can be obtained via a quotient of the evaluation

map ev : Sp(4,R) → S2, the tangent space TiI2S2 can be seen as the image of

the differential of this map. This differential is a linear map sp(4,R) → Mat(2,C)

whose kernel is u(2). The image then identifies with the orthogonal complement of

k = u(2).

First let us explicitly compute p. In §1.3 we saw that X ∈ sp(4,R) has the

form

X =



a a12 b11 b12

a21 b b12 b22

c11 c12 −a −a21

c12 c22 −a12 −b


The trace form on sp(4,R) is given by:

tr(X,X) := tr(X2) = 2 (a2 + b2 + 2a12a21 + b11c11 + 2b12c12 + b22c22)

The orthogonal complement p = u⊥ can then be found by pairing the arbitrary

X with each of the basis vectors for u(2) found in §1.3 to obtain:
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Tr(X,B1) = 2(a21 − a12)

Tr(X,B2) = c11 − b11

Tr(X,B3) = 2(c12 − b12)

Tr(X,B4) = c22 − b22

Setting these equations equal to zero immediately implies that the 2×2 blocks

are symmetric:

p := k⊥ =


 A B

B −AT

 : A = AT & B = BT

 ⊂ sp(4,R).

Let us now compute ev∗ to obtain a natural identification of p with TiIS2. It

will be convenient to consider Sp(4,R) ⊂ Sp(4,C) and S2 ⊂ Lag(C4) as described

in §2.2. To avoid messy charts on Sp(4, ∗) we will in fact go one step further and

consider Sp(4,C) ⊂ GL(4,C).

Let Fr2 denote the space of 2-frames in C4, and FrLag2 denote the subspace of

Lagrangian 2-frames in C4. Let π be the projection map FrLag2 → Lag(C4), and j be

the natural embedding of S2 given by Z
j→

 Z

I2

. Let b = j(iI) ∈ FrLag2 ⊂ Fr2

be the basepoint and let f : GL(4,C) → Fr2 be evaluation at b. This of course

restricts to Sp(4,R) and we have the following commutative diagrams:
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GL(4,C)
f

// Fr2

Sp(4,C)
f

//
?�

OO

FrLag2

?�

OO

=

��

Sp(4,R)
?�

OO

ev

��
;;

;;
;;

;;
;;

;;
;;

;;
;;

f
// FrLag2

π

��

Lag(C4
ω)

S2

?�

j

OO

gl(4,C)
f∗

// TbFr2

sp(4,C)
f∗

//
?�

OO

TbFr
Lag
2

?�

OO

=

��

sp(4,R)
?�

OO

ev∗

��
>>

>>
>>

>>
>>

>>
>>

>>
>>

>>

f∗
// TbFr

Lag
2

π∗
��

Tπ(b)Lag(C4
ω)

TiS2

?�

j∗

OO

Note now that in the chart where Z2 is nonsingular, (−1 ◦π)

 Z1

Z2

 = Z1Z
−1
2

and the differential −1
∗ ◦ π∗ is left multiplication by

[
Z−1

2 , − Z1Z
−2
2

]
. So in par-

ticular at the base point b, the differential is [I2 , − iI2]. So for a given X = A B

C D

 ∈ gl(4,C), the differential can now be computed as

(j−1 ◦ π ◦ f)∗(X) = ((j−1 ◦ π)∗)b(f∗)I(X))

= [I2,−iI2]

 Ai+B

Ci+D


= (A−D)i+ (B + C)

.

Restricting our attention to sp(4,R) ⊂ gl(4,C) which consists of matrices

where D = −AT and B,C are symmetric, we see ev∗(X) = (A + AT )i + (B + C).

Note that ev∗(X) is clearly symmetric. The Cartan Decomposition is once again:

sp(4,R) = k
⊕

p

Recall now from section §1.3 that k = u(2) consisted of matrices where A =

−AT and B = −C, hence k ⊂ ker ev∗. Further we noted above that p consists of
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matrices where A = AT and B = C, so for X ∈ p, ev∗(X) = 2(Ai + B). So the

tangent space TiIS2 is the image of p under ev∗. The identification is

Lemma A.1. The tangent space to S2 at the base point iI2 identifies with a subspace

of the Lie algebra sp(4,R) by

p↔ TiIS2 A B

B −AT

↔ 2(Ai+B)

Since TiIS2 is simply the space of all symmetric 2 × 2 complex matrices, a

reasonably canonical inner product on this space is given by the trace form. We can

now choose a multiple of the trace form on sp(4,R) in such a way that the above

identification is an isometry. For X ∈ sp(4,R) let

B(X,X) = 2tr(X2)

= 4
(
a2 + b2 + 2a12a21 + b11c11 + 2b12c12 + b22c22

)
= tr[(ev∗X)(ev∗X)]

The restriction of this bilinear form to p is positive definite, and this will be the

quadratic form we will use on sp(4,R). It is used in §3.1 to construct a Riemannian

metric on S2.

A.3 The Action of K on Tangent Vectors

For any homogeneous space G/K, the group G acts by left multiplication

G/K. Let e denote the identity in G. The subgroup K fixes the base point eK of

G/K, hence the differential yields a linear action of K on the tangent space at eK.
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It would be desirable to lift this action of K on TeK(G/K) to an automorphism of

TeG = g which commutes with the identification developed in the previous section

of p with TeK(G/K). One might naturally be tempted to lift the action of K on

G/K by left multiplication to the action of K on G by left multiplication. This is of

course incorrect since the action of K on G by left multiplication does not preserve

the base point e. Instead note that the action of K on G/K by left multiplication

is exactly the same as the conjugation action of K on G/K. Specifically, if k ∈ K

and g ∈ G, then

k(gK)k−1 = kgKk−1 = (kg)K

The conjugation action of K on G does fix e, hence the differential yields the

Adjoint action of K on TeG = g. Further this action commutes with the identifi-

cation in the previous section as desired. For each k ∈ K we have the following

commutative diagram:

G
Inn(k)

// G
ev // G/K

g
Ad(k)

//

exp

OO

g ev∗ //

exp

OO

TeK(G/K)

exp

OO

In what follows we will analyze the Adjoint action of K on the upper half

plane model for H2 and S2. This is perhaps the first time we will see a significant

difference between these 2 spaces. K = SO(2) acts transitively on the unit sphere

in TiH2, but K = u(2) does not act transitively on the unit sphere in TiIS2. Instead

we will show that any tangent vector is Ad(K) equivalent to one a 2 dimensional

subspace of TiIS2 that is the image of a Cartan subalgebra.
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A.3.1 The Action of SO(2) on TiH2

In the hyperbolic plane, G = SL(2,R), K=SO(2), g = sl(2,R), k = so(2) and

p = so(2)⊥ are as defined previously. The tangent space TiH2 can be identified

either with the complex plane C or with elements in p. The next lemma asserts that

K acts transitively on the unit tangent vectors:

Lemma A.2. Let v = x + iy ∈ T 1
i H2 be a unit tangent vector. Then there is

M ∈ SO(2) such that M(v) = i.

Proof. Using the identification (A.1) of TiH2 with p, the tangent vector v identifies

with the matrix V =

 y
2

x
2

x
2
−y

2

 ∈ p and the tangent vector i identifies with

 1
2

0

0 −1
2

. The lemma is then equivalent to showing that there is M ∈ SO(2)

such that Ad(M)(V ) = MVM−1 =

 1
2

0

0 −1
2

.

The isotropy subalgebra k is one dimensional with X =

 0 1

−1 0

 as a basis

element, so elements in K are rotations of the form

Rθ = exp(θX) =

 cos(θ) sin(θ)

− sin(θ) cos(θ)

.

Then the action of K is:

Rθ(v) = RθV R
−1
θ = 1

2

 y cos(2θ) + x sin(2θ) x cos(2θ)− y sin(2θ)

x cos(2θ)− y sin(2θ) −y cos(2θ)− x sin(2θ)
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Setting x cos(2θ)− y sin(2θ) = 0 we obtain the solution

θ0 =


1
2

arctan
(
x
y

)
if y 6= 0

π
4

if y = 0

Using this solution it is straightforward to check that

Rθ0V R
−1
θ0

=
1

2


√
x2 + y2 0

0 −
√
x2 + y2



=

 1
2

0

0 −1
2

 (since v is a unit vector)

which identifies with the tangent vector i as desired.

An immediate corollary of this lemma is:

Corollary A.3. Given any point p = x + iy ∈ H2 there is a transformation M ∈

SO(2) such that M(p) = ieλ where λ is the hyperbolic distance from p to i.

i

p
v

i

MHpL

MHvL

The Action of SOH2L

Proof. Let γ be the geodesic segment from i to p, parameterized by arc length. Then

γ′(0) ∈ T 1
i H2 and by the lemma there is M ∈ SO(2) such that M(γ′(0)) = i. The

image of γ is then a geodesic segment starting at i in the direction of the positive

y-axis. This is the geodesic
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M(γ(t)) = exp

t
 1

2
0

0 1
2


 (i) = iet

i.e. M(γ) is the y-axis. So the image of p is on the y-axis. Further since M is an

isometry, the distance from i to M(p) is λ, so M(p) = ieλ.

A.3.2 The Action of U(2) on TiIS2

We now obtain analogous results for the Siegel space. The action on unit

tangent vectors is not transitive; rather, every unit tangent vector is equivalent to

one in a Cartan subalgebra.

For the Siegel space, we have seen that G = Sp(4,R), K ≈ U(2), g = sp(4,R),

k ≈ u(2), and p = k⊥. A Cartan Subalgebra h ⊂ g is 2 dimensional and consists of

diagonal matrices of the form

Ha
2
, b
2

=



a
2

0 0 0

0 b
2

0 0

0 0 −a
2

0

0 0 0 − b
2


Notice that in fact h ⊂ p, so using the identification (A.1) from §A.2, the

image of Ha
2
, b
2

under ev∗ identifies with a tangent vector in TiIS2, namely

ev∗

(
Ha

2
, b
2

)
= i

 a 0

0 b

 ∈ TiIS2

ev∗(h) is a 2 dimensional subspace of the tangent space and contains a circle’s worth

of unit tangent vectors (with respect to the bilinear form defined at the end of §A.2).
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The next lemma says that every unit tangent vector is equivalent by an element of

K to a tangent vector on this circle.

Lemma A.4. Let v ∈ T 1
iIS2. Then there is M ∈ K such that M(v) = i

 a 0

0 b


and a2 + b2 = 1.

Proof. This proof is basically like playing with a Rubik’s cube! We will take an

arbitrary unit tangent vector v ∈ T 1
iIS2, and apply certain rotation matrices in K

in the correct order until we have a vector in ev∗(h). Some rotations will mess up

what previous ones have done (like with a Rubik’s cube), but if done in the correct

order we obtain the desired result. The details are a bit hairy but it is worked out

explicitly in the Mathematica notebook found in [15].

Using the identification (A.1) in §A.2, an arbitrary unit tangent vector

v =

 b11 b12

b12 b22

+ i

 a a12

a12 b

 ∈ TiIS2

identifies with the matrix

P = 1
2



a a12 b11 b12

a12 b b12 b22

b11 b12 −a −a12

b12 b22 −a12 −b


∈ p

so ev∗(P ) = v. Since P is a unit tangent vector we have that

B(P, P ) = 2Tr(P 2) = 1.
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k = u(2) is 4 dimensional and we will use the basis {B1, B2, B3, B4} defined

in §1.3. K is generated by the images of these under the exponential map. These

skew symmetric matrices all exponentiate to rotation matrices, so K is generated

by matrices of the form:

M1(θ) := exp(θB1) =



cos(θ) sin(θ) 0 0

− sin(θ) cos(θ) 0 0

0 0 cos(θ) sin(θ)

0 0 − sin(θ) cos(θ)



M2(θ) := exp(θB2) =



cos(θ) 0 sin(θ) 0

0 1 0 0

− sin(θ) 0 cos(θ) 0

0 0 0 1



M3(θ) := exp(θB3) =



cos(θ) 0 0 sin(θ)

0 cos(θ) sin(θ) 0

0 − sin(θ) cos(θ) 0

− sin(θ) 0 0 cos(θ)



M4(θ) := exp(θB4) =



1 0 0 0

0 cos(θ) 0 sin(θ)

0 0 1 0

0 − sin(θ) 0 cos(θ)


Refer to [15] for full details of the following direct and messy computations.

In what follows, the ∗’s indicate a messy unimportant expression which you can
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find exactly in [15]. What is important is that certain rotations zero out some

coordinates. Should any of the denominators in the fractions below equal zero,

simply extend the definition of tan−1(±∞) = π
2
. Apply to P the adjoint action of

the following 6 matrices in K:

1. P1 := Ad{M2

(
1
2

tan−1
(
b11
a

))
}P =



∗ ∗ 0 ∗

∗ ∗ ∗ ∗

0 ∗ ∗ ∗

∗ ∗ ∗ ∗



2. P2 := Ad{M4

(
1
2

tan−1
(
b22
b

))
}P1 =



∗ ∗ 0 ∗

∗ ∗ ∗ 0

0 ∗ ∗ ∗

∗ 0 ∗ ∗


So without any loss of generality we may assume that the unit tangent vector

has the form:

P2 =



a a12 0 b12

a12 b b12 0

0 b12 −a −a12

b12 0 −a12 −b


3. Continuing to apply matrices in K, the adjoint action of M1 does not leave

the above zero entries alone, rather rotates them in a very nice controlled way:
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P3 := Ad{M1

(
1
2

tan−1
(

2a12

a−b

))
}P2 =



∗ 0 F ∗

0 ∗ ∗ −F

F ∗ ∗ 0

∗ −F 0 ∗


So without loss of generality we may assume that the tangent vector has the

form:

P3 =



a 0 b11 b12

0 b b12 −b11

b11 b12 −a 0

b12 −b11 0 −b


4. The adjoint action of M3 now fixes the above zeros and b11 coordinates, and

we obtain:

P4 := Ad{M3

(
1
2

tan−1
(

2b12
a+b

))
}P3 =



∗ 0 b11 0

0 ∗ 0 −b11

b11 0 ∗ 0

0 −b11 0 ∗


So now without loss of generality we assume the tangent vector has the form

P4 =



a 0 b11 0

0 b 0 −b11

b11 0 −a 0

0 −b11 0 −b


153



5. Applying M2 zeros out one of the remaining coordinates:

P5 := Ad{M2

(
1
2

tan−1
(
b11
a

))
}P4 =



∗ 0 0 0

0 b 0 −b11

0 0 ∗ 0

0 −b11 0 −b


So without loss of generality we the tangent vector has the form:

P5 =



a 0 0 0

0 b 0 −b11

0 0 −a 0

0 −b11 0 −b


6. Finally applying M4 zeros out the remaining coordinate:

P6 := Ad{M4

(
1
2

tan−1
(
b22
b

))
}P5 =



a 0 0 0

0 ∗ 0 0

0 0 −a 0

0 0 0 ∗


The resulting matrix is contained in the Cartan subalgebra h. Since ad(K)

acts preserving the trace form (it is simply conjugation), B(P, P ) is preserved by

each of these transformations, and hence the image of P is a unit vector in h.

The immediate consequence of the above lemma is the following corollary,

whose proof is identical to the corresponding statement in the hyperbolic plane

above.
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Corollary A.5. Given any point Z ∈ S2 there is M ∈ K such that

M(Z) = i

 y1 0

0 y2

.

The image of the Cartan subalgebra h under the exponential map is the Cartan

subgroup of diagonal matrices in Sp(4,R). The image of this subgroup in S2 under

the evaluation map will be a 2 dimensional Flat, that is a 2 dimensional subspace

isometric to the Euclidean plane. We will refer to this as the Standard Flat. The

above corollary says that every point in S2 is K equivalent to a point in the standard

flat. In the next section we will improve on this corollary a bit by realizing that the

Weyl Group of Sp(4,R) is in fact a subgroup of K which leaves this flat invariant.

A.4 The Weyl Group as a subgroup of K

The Weyl group for Sp(4,R) is isomorphic to the dihedral group D8 and can

be canonically identified with a subgroup of K. It acts on the Cartan subalgebra h

consisting of diagonal matrices of the form:

Ha,b =



a 0 0 0

0 b 0 0

0 0 −a 0

0 0 0 −b


The seven nontrivial elements in the group act on h in the following way:

1. Ad{M1(π
2
)}Ha,b = Hb,a

2. Ad{M2(π
2
)}Ha,b = H−a,b
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3. Ad{M3(π
2
)}Ha,b = H−b,−a

4. Ad{M4(π
2
)}Ha,b = Ha,−b

5. Ad{M1(π
2
)M2(π

2
)}Ha,b = Hb,−a

6. Ad{
(
M1(π

2
)M2(π

2
)
)2}Ha,b = H−a,−b

7. Ad{
(
M1(π

2
)M2(π

2
)
)3}Ha,b = H−b,a

The action on h induces an action on the Cartan subgroup, and hence an

action on the homogeneous space S2 preserving the standard flat. Corollary A.5

says that any point in S2 is equivalent to a point in the standard flat. Any point

in this flat is then equivalent by an element of the Weyl Group to a point within a

specified Weyl Chamber, so we obtain a strengthening of the previous corollary:

Corollary A.6. Any point Z ∈ S2 is K-equivalent to a point i

 y1 0

0 y2

 where

1 ≤ y1 ≤ y2.
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Appendix B

The κ Polynomial

Definition B.1. Let κ(x, y, z) = x2 + y2 + z2 − xyz − 2.

This polynomial has been studied extensively (see [12] and [13]) as it relates

heavily to character varieties for rank 2 surface groups. In this appendix we will

only collect a few facts for use elsewhere in this paper.

Recall that for positive integers p, q, r, a (p, q, r) triangle group is a group

generated by three involutions and has a presentation:

∆pqr := 〈R1, R2, R3 : R2
1 = R2

2 = R2
3 = (R1R2)p = (R2R3)q = (R3R1)r = 1〉

The group is called

• Spherical if π
p

+ π
q

+ π
r
> π

• Euclidean if π
p

+ π
q

+ π
r

= π

• Hyperbolic if π
p

+ π
q

+ π
r
< π

Such a group can be realized as a group of reflections in the 3 sides of a triangle

the appropriate space.

Lemma B.2. If ∆pqr is a Euclidean triangle group then

κ
(
−2 cos

(
π
p

)
,−2 cos

(
π
q

)
,−2 cos

(
π
r

))
= 2
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Proof. Supposing π
p

+ π
q

+ π
r

= π, then fun with trigonometric identities yields:

π

p
+
π

q
= π − π

r

cos

(
π

p
+
π

q

)
= cos

(
π − π

r

)
cos

(
π

p

)
cos

(
π

q

)
− sin

(
π

p

)
sin

(
π

q

)
= − cos

(π
r

)
cos

(
π

p

)
cos

(
π

q

)
+ cos

(π
r

)
= sin

(
π

p

)
sin

(
π

q

)
cos

(
π

p

)
cos

(
π

q

)
+ cos

(π
r

)
=

√(
1− cos2

(
π

p

))(
1− cos2

(
π

q

))
Squaring both sides we get:

LHS = cos2

(
π

p

)
cos2

(
π

q

)
+ 2 cos

(
π

p

)
cos

(
π

q

)
cos
(π
r

)
+ cos2

(π
r

)
RHS = 1− cos2

(
π

p

)
− cos2

(
π

q

)
+ cos2

(
π

p

)
cos2

(
π

q

)
Canceling and rearranging we obtain

cos2
(
π
p

)
+ cos2

(
π
q

)
+ cos2

(
π
r

)
+ 2 cos

(
π
p

)
cos
(
π
q

)
cos
(
π
r

)
− 1 = 0

Then multiplying both sides through by 4 we obtain

(
2 cos

(
π
p

))2

+
(

2 cos
(
π
q

))2

+
(
2 cos

(
π
r

))2
+(

2 cos
(
π
p

))(
2 cos

(
π
q

)) (
2 cos

(
π
r

))
− 4 = 0

Observe now that this is precisely:

κ
(
−2 cos

(
π
p

)
,−2 cos

(
π
q

)
,−2 cos

(
π
r

))
= 2

Lemma B.3. If ∆pqr is a hyperbolic triangle group then

κ
(
−2 cos

(
π
p

)
,−2 cos

(
π
q

)
,−2 cos

(
π
r

))
> 2
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Proof. Let ∆p0q0r0 be a Euclidean triangle group. We will show that all directional

derivatives of κ are increasing at this point, and nonzero elsewhere. Hence this is a

nondecreasing function of p, q, r and a hyperbolic triangle group can be obtained by

increasing any one of the variables. Any hyperbolic triangle group can be obtained

in this manner from some Euclidean triangle group. Treating q and r as constants

let

f(p) = κ
(
−2 cos

(
π
p

)
,−2 cos

(
π
q0

)
,−2 cos

(
π
r0

))
The directional derivative ∂κ

∂p
evaluated at the Euclidean triangle group is

f ′(p0).

f ′(p) =
∂κ

∂x

∂x

∂p

= (2x− yz)

(
−2π

p2
sin

(
π

p

))
=

(
−4 cos

(
π

p

)
− 4 cos

(
π

q

)
cos
(π
r

))(
−2π

p2
sin

(
π

p

))
=

8π

p2
sin

(
π

p

)(
cos

(
π

p

)
+ cos

(
π

q

)
cos
(π
r

))
At p0 we know that π

p0
= π − π

q0
− π

r0
we get

f ′(p0) =
∂κ

∂p
|Euclidean Case

=
8π

p2
0

sin

(
π − π

q0

− π

r0

)(
cos

(
π − π

q0

− π

r0

)
+ cos

(
π

q0

)
cos

(
π

r0

))
=

8π

p2
0

sin

(
π

q0

+
π

r0

)(
− cos

(
π

q0

+
π

r0

)
+ cos

(
π

q0

)
cos

(
π

r0

))
=

8π

p2
0

sin

(
π

q0

+
π

r0

)(
sin

(
π

q0

)
sin

(
π

r0

))
Since 0 < π

q0
, π
r0
≤ π

2
, we know all factors in the above expression are positive,

hence f ′(p0) > 0 and f is increasing.
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Finally, f ′(p) = 8π
p2

sin
(
π
p

)(
cos
(
π
p

)
+ cos

(
π
q

)
cos
(
π
r

))
could only be zero if

cos
(
π
p

)
+ cos

(
π
q

)
cos
(
π
r

)
= 0

cos
(
π
p

)
= − cos

(
π
q

)
cos
(
π
r

)
which can not occur since all angles are acute. Hence κ is increasing at a Euclidean

triangle group and has no critical points elsewhere. We know by lemma B.2 that

f(p0) = 2 so for a hyperbolic triangle group κ > 2.

Lemma B.4. κ is invariant under “sign change automorphisms” (teminology from

[12]), more precisely:

κ(x, y, z) = κ(−x,−y, z) = κ(−x, y,−z) = κ(x,−y,−z)

Proof. Straightforward computation, the key point being that only the cubic term

xyz is affected by any sign changes.
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