The effect of salinity on species survival and carbon storage on the Lower Eastern Shore of Maryland due to saltwater intrusion
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
As sea levels continue to rise, coastal ecosystems are vulnerable to saltwater intrusion (SWI), the landward movement of sea salts. Specifically, in coastal farmlands, we expect SWI to drive changes in plant species composition and carbon (C) storage. As soils salinize, standard crops (i.e. corn, soybean, and wheat) can no longer survive and farmers must consider alternatives. Further, transitioning agricultural fields may become C sinks as SWI advances inland and farmlands begin to resemble tidal wetlands. My objectives were to determine: (1) the effect of SWI on the germination of standard and alternative crop species, and (2) the C storage potential of salt-intruded farmlands. Most standard and alternative crops were intolerant to high levels of osmotic and ionic stress at the germination stage. However, sorghum and salt-tolerant soybean showed promise in field experiments. I show that agricultural fields exposed to SWI have a high potential to store C in soils.