Instances for the Recoverable Robust Two-Level Network Design Problem
dc.contributor.author | Alvarez-Miranda, Eduardo | |
dc.contributor.author | Ljubic, Ivana | |
dc.contributor.author | Raghavan, S. | |
dc.contributor.author | Toth, Paolo | |
dc.date.accessioned | 2014-07-10T10:25:26Z | |
dc.date.available | 2014-07-10T10:25:26Z | |
dc.date.issued | 2014 | |
dc.description.abstract | We provide the instances used in the paper "The Recoverable Robust Two-Level Network Design Problem", by E. Alvarez-Miranda, I. Ljubic, S. Raghavan and P. Toth, accepted for publication in the INFORMS J. on Computing, 2014 (http://dx.doi.org/10.1287/ijoc.2014.0606). This repository contains both the instances used in the paper as well as the results obtained by the proposed algorithm. | en_US |
dc.identifier.uri | http://hdl.handle.net/1903/15522 | |
dc.language.iso | en_US | en_US |
dc.relation.isAvailableAt | Robert H. Smith School of Business | en_us |
dc.relation.isAvailableAt | Decision & Information Technologies | en_us |
dc.relation.isAvailableAt | Digital Repository at the University of Maryland | en_us |
dc.relation.isAvailableAt | University of Maryland (College Park, MD) | en_us |
dc.subject | network design | en_US |
dc.subject | robust optimization | en_US |
dc.subject | mixed-integer programming | en_US |
dc.subject | branch and cut | en_US |
dc.title | Instances for the Recoverable Robust Two-Level Network Design Problem | en_US |
dc.type | Dataset | en_US |
Files
Original bundle
1 - 4 of 4
- Name:
- rrtlnddataset.pdf
- Size:
- 125.22 KB
- Format:
- Adobe Portable Document Format
- Description:
- main article
No Thumbnail Available
- Name:
- InstancesDescription.txt
- Size:
- 1.93 KB
- Format:
- Plain Text
- Description:
- Instance Description
No Thumbnail Available
- Name:
- Instancesrrtlnd.rar
- Size:
- 51.72 MB
- Format:
- Unknown data format
- Description:
- Instances (RAR archive)
No Thumbnail Available
- Name:
- summaryresults.xls
- Size:
- 554 KB
- Format:
- Microsoft Excel
- Description:
- Results for Instances