HEAT AND MASS TRANSFER ANALYSIS AND PERFORMANCE IMPROVEMENT FOR AIR GAP MEMBRANE DISTILLATION

dc.contributor.advisorRadermacher, Reinharden_US
dc.contributor.authorKim, Gyeong Sungen_US
dc.contributor.departmentMechanical Engineeringen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2022-09-27T05:43:53Z
dc.date.available2022-09-27T05:43:53Z
dc.date.issued2022en_US
dc.description.abstractSeawater desalination method can be largely divided into evaporation- and membrane-based techniques. From decades ago, the global installation capacity of reverse-osmosis membrane-based seawater desalination (SWRO) started outgrowing that of the evaporative desalination plant due to its higher energy efficiency and it became the mainstream technology in the 20th century. However, small-scale SWRO facilities installed on South Korean islands are not competitive compared to the thermally driven evaporation method as their specific energy consumption (SEC) values are highly ranging in 9 – 19 kWh∙m^(-3) and there have been frequent maintenance events.By taking the advantages of direct utilization of renewable and thermal energy, air gap membrane distillation (AGMD) is investigated in this study as an improved approach. From the preliminary experimental study, it was found that the lower air-gap pressure of AGMD helps to increase its water productivity. However, most of the heat and mass transfer models in AGMD used the constant atmospheric pressure for the air gap. Therefore, new models considering the pressure effect of the air gap is needed. Since maintaining a vacuum pressure in the gap requires additional energy, a vacuum technique consuming less energy is also needed. In addition to controlling the total pressure of the gap, condensation augmentation on the cooling surface on one side of the gap is critical since the vapor flux is dependent on the vapor pressure in the gap. As the preliminary experimental study showed that the dropwise condensation mode dominates the condensation of AGMD, the effect of gap size between the condensation surface and hydrophobic membrane is needed to be investigated. Therefore, this research was performed with the following objectives: (i) experimental investigation and mass transfer model development for vacuum applied AGMD (V-AGMD), (ii) development of a wave-powered desalination system using V-AGMD, (iii) experimental investigation of condensation in AGMD, and (iv) development of condensation enhancement technology for AGMD. From the modeling and experimental research, this study made the following major research outcomes and observations. First, a straightforward mass transfer model was developed by using the concept of Kinetic Theory of Evaporation and temperature fraction value between the fluid temperatures of feed and coolant, based on the AGMD experimental results. This model was evaluated experimentally and showed an excellent prediction of water flux in various air-gap pressures without measuring each temperature of the interface of the feed-membrane-air-cooling surface-coolant. Second, considering that the air gap of AGMD can be operated in a vacuum state using wave power, a novel wave-powered AGMD desalination device was proposed and evaluated for the island’s dwellers. Third, during the whole AGMD tests, only dropwise condensation (DWC) modes were observed on the stainless-steel condensing wall. Therefore, experiments were conducted to understand the physical pattern of DWC from nucleation to departure. After testing under various temperature and humidity conditions, it was confirmed that the average size of the water droplets followed the power law for each case. Fourth, as the periodic cleaning of the condensate wall of AGMD could improve the production of condensate, an experimental study was subsequently performed for the condensation augmentation using an electrohydrodynamic (EHD) method. By both cleaning periodically and applying 2.5 kV and 5.0 kV fields on the condensing surface in a thermos-hygrostat chamber, the water production rate was increased by 32% and 88%, respectively. This study concluded that the performance of an AGMD desalination system can be improved by applying a vacuum or an EHD device in its air gap. Therefore, pilot-scale experiments will be conducted as future studies to evaluate the commercial viability of the improved system.en_US
dc.identifierhttps://doi.org/10.13016/zdgu-xfrd
dc.identifier.urihttp://hdl.handle.net/1903/29373
dc.language.isoenen_US
dc.subject.pqcontrolledMechanical engineeringen_US
dc.subject.pqcontrolledEnvironmental engineeringen_US
dc.subject.pqcontrolledCivil engineeringen_US
dc.subject.pquncontrolledAir gap membrane distillationen_US
dc.subject.pquncontrolledCondensation enhancementen_US
dc.subject.pquncontrolledDesalinationen_US
dc.subject.pquncontrolledHeat transferen_US
dc.subject.pquncontrolledKinetic Theory of Gasesen_US
dc.subject.pquncontrolledMass transferen_US
dc.titleHEAT AND MASS TRANSFER ANALYSIS AND PERFORMANCE IMPROVEMENT FOR AIR GAP MEMBRANE DISTILLATIONen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kim_umd_0117E_22829.pdf
Size:
5.06 MB
Format:
Adobe Portable Document Format