G-INVARIANT REPRESENTATIONS USING COORBITS

dc.contributor.advisorBalan, Radu Ven_US
dc.contributor.authorTsoukanis, Efstratiosen_US
dc.contributor.departmentMathematicsen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.date.accessioned2024-06-29T06:15:13Z
dc.date.available2024-06-29T06:15:13Z
dc.date.issued2024en_US
dc.description.abstractConsider a finite-dimensional real vector space and a finite group acting unitarily on it. We investigate the general problem of constructing Euclidean stable embeddings of the quotient space of orbits. Our embedding relies on subsets of sorted coorbits with respect to chosen window vectors.Our main injectivity results examine the conditions under which such embeddings are injective. We establish these results using semialgebraic techniques. Furthermore, our main stability result states and demonstrates that any embedding based on sorted coorbits is automatically bi-Lipschitz when injective. We establish this result using geometric function techniques. Our work has applications in data science, where certain systems exhibit intrinsic invariance to group actions. For instance, in graph deep learning, graph-level regression and classification models must be invariant to node labeling.en_US
dc.identifierhttps://doi.org/10.13016/dovm-l2k4
dc.identifier.urihttp://hdl.handle.net/1903/32974
dc.language.isoenen_US
dc.subject.pqcontrolledMathematicsen_US
dc.titleG-INVARIANT REPRESENTATIONS USING COORBITSen_US
dc.typeDissertationen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tsoukanis_umd_0117E_24251.pdf
Size:
552 KB
Format:
Adobe Portable Document Format